# Properties

 Label 390.2.bb.a.361.1 Level $390$ Weight $2$ Character 390.361 Analytic conductor $3.114$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$390 = 2 \cdot 3 \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 390.bb (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.11416567883$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ x^4 - x^2 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 361.1 Root $$-0.866025 + 0.500000i$$ of defining polynomial Character $$\chi$$ $$=$$ 390.361 Dual form 390.2.bb.a.121.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.500000 - 0.866025i) q^{4} +1.00000i q^{5} +(-0.866025 - 0.500000i) q^{6} +(-2.59808 - 1.50000i) q^{7} +1.00000i q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})$$ $$q+(-0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.500000 - 0.866025i) q^{4} +1.00000i q^{5} +(-0.866025 - 0.500000i) q^{6} +(-2.59808 - 1.50000i) q^{7} +1.00000i q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.500000 - 0.866025i) q^{10} +(-3.23205 + 1.86603i) q^{11} +1.00000 q^{12} +(-0.866025 + 3.50000i) q^{13} +3.00000 q^{14} +(-0.866025 + 0.500000i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.00000 + 3.46410i) q^{17} -1.00000i q^{18} +(-1.96410 - 1.13397i) q^{19} +(0.866025 + 0.500000i) q^{20} -3.00000i q^{21} +(1.86603 - 3.23205i) q^{22} +(1.73205 + 3.00000i) q^{23} +(-0.866025 + 0.500000i) q^{24} -1.00000 q^{25} +(-1.00000 - 3.46410i) q^{26} -1.00000 q^{27} +(-2.59808 + 1.50000i) q^{28} +(2.73205 + 4.73205i) q^{29} +(0.500000 - 0.866025i) q^{30} -8.92820i q^{31} +(0.866025 + 0.500000i) q^{32} +(-3.23205 - 1.86603i) q^{33} -4.00000i q^{34} +(1.50000 - 2.59808i) q^{35} +(0.500000 + 0.866025i) q^{36} +(-6.86603 + 3.96410i) q^{37} +2.26795 q^{38} +(-3.46410 + 1.00000i) q^{39} -1.00000 q^{40} +(3.46410 - 2.00000i) q^{41} +(1.50000 + 2.59808i) q^{42} +(-3.00000 + 5.19615i) q^{43} +3.73205i q^{44} +(-0.866025 - 0.500000i) q^{45} +(-3.00000 - 1.73205i) q^{46} +0.464102i q^{47} +(0.500000 - 0.866025i) q^{48} +(1.00000 + 1.73205i) q^{49} +(0.866025 - 0.500000i) q^{50} -4.00000 q^{51} +(2.59808 + 2.50000i) q^{52} -3.73205 q^{53} +(0.866025 - 0.500000i) q^{54} +(-1.86603 - 3.23205i) q^{55} +(1.50000 - 2.59808i) q^{56} -2.26795i q^{57} +(-4.73205 - 2.73205i) q^{58} +(3.92820 + 2.26795i) q^{59} +1.00000i q^{60} +(3.73205 - 6.46410i) q^{61} +(4.46410 + 7.73205i) q^{62} +(2.59808 - 1.50000i) q^{63} -1.00000 q^{64} +(-3.50000 - 0.866025i) q^{65} +3.73205 q^{66} +(4.73205 - 2.73205i) q^{67} +(2.00000 + 3.46410i) q^{68} +(-1.73205 + 3.00000i) q^{69} +3.00000i q^{70} +(-0.803848 - 0.464102i) q^{71} +(-0.866025 - 0.500000i) q^{72} +6.92820i q^{73} +(3.96410 - 6.86603i) q^{74} +(-0.500000 - 0.866025i) q^{75} +(-1.96410 + 1.13397i) q^{76} +11.1962 q^{77} +(2.50000 - 2.59808i) q^{78} +16.9282 q^{79} +(0.866025 - 0.500000i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-2.00000 + 3.46410i) q^{82} +2.53590i q^{83} +(-2.59808 - 1.50000i) q^{84} +(-3.46410 - 2.00000i) q^{85} -6.00000i q^{86} +(-2.73205 + 4.73205i) q^{87} +(-1.86603 - 3.23205i) q^{88} +(-8.76795 + 5.06218i) q^{89} +1.00000 q^{90} +(7.50000 - 7.79423i) q^{91} +3.46410 q^{92} +(7.73205 - 4.46410i) q^{93} +(-0.232051 - 0.401924i) q^{94} +(1.13397 - 1.96410i) q^{95} +1.00000i q^{96} +(10.7321 + 6.19615i) q^{97} +(-1.73205 - 1.00000i) q^{98} -3.73205i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 2 q^{3} + 2 q^{4} - 2 q^{9}+O(q^{10})$$ 4 * q + 2 * q^3 + 2 * q^4 - 2 * q^9 $$4 q + 2 q^{3} + 2 q^{4} - 2 q^{9} - 2 q^{10} - 6 q^{11} + 4 q^{12} + 12 q^{14} - 2 q^{16} - 8 q^{17} + 6 q^{19} + 4 q^{22} - 4 q^{25} - 4 q^{26} - 4 q^{27} + 4 q^{29} + 2 q^{30} - 6 q^{33} + 6 q^{35} + 2 q^{36} - 24 q^{37} + 16 q^{38} - 4 q^{40} + 6 q^{42} - 12 q^{43} - 12 q^{46} + 2 q^{48} + 4 q^{49} - 16 q^{51} - 8 q^{53} - 4 q^{55} + 6 q^{56} - 12 q^{58} - 12 q^{59} + 8 q^{61} + 4 q^{62} - 4 q^{64} - 14 q^{65} + 8 q^{66} + 12 q^{67} + 8 q^{68} - 24 q^{71} + 2 q^{74} - 2 q^{75} + 6 q^{76} + 24 q^{77} + 10 q^{78} + 40 q^{79} - 2 q^{81} - 8 q^{82} - 4 q^{87} - 4 q^{88} - 42 q^{89} + 4 q^{90} + 30 q^{91} + 24 q^{93} + 6 q^{94} + 8 q^{95} + 36 q^{97}+O(q^{100})$$ 4 * q + 2 * q^3 + 2 * q^4 - 2 * q^9 - 2 * q^10 - 6 * q^11 + 4 * q^12 + 12 * q^14 - 2 * q^16 - 8 * q^17 + 6 * q^19 + 4 * q^22 - 4 * q^25 - 4 * q^26 - 4 * q^27 + 4 * q^29 + 2 * q^30 - 6 * q^33 + 6 * q^35 + 2 * q^36 - 24 * q^37 + 16 * q^38 - 4 * q^40 + 6 * q^42 - 12 * q^43 - 12 * q^46 + 2 * q^48 + 4 * q^49 - 16 * q^51 - 8 * q^53 - 4 * q^55 + 6 * q^56 - 12 * q^58 - 12 * q^59 + 8 * q^61 + 4 * q^62 - 4 * q^64 - 14 * q^65 + 8 * q^66 + 12 * q^67 + 8 * q^68 - 24 * q^71 + 2 * q^74 - 2 * q^75 + 6 * q^76 + 24 * q^77 + 10 * q^78 + 40 * q^79 - 2 * q^81 - 8 * q^82 - 4 * q^87 - 4 * q^88 - 42 * q^89 + 4 * q^90 + 30 * q^91 + 24 * q^93 + 6 * q^94 + 8 * q^95 + 36 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/390\mathbb{Z}\right)^\times$$.

 $$n$$ $$131$$ $$157$$ $$301$$ $$\chi(n)$$ $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.866025 + 0.500000i −0.612372 + 0.353553i
$$3$$ 0.500000 + 0.866025i 0.288675 + 0.500000i
$$4$$ 0.500000 0.866025i 0.250000 0.433013i
$$5$$ 1.00000i 0.447214i
$$6$$ −0.866025 0.500000i −0.353553 0.204124i
$$7$$ −2.59808 1.50000i −0.981981 0.566947i −0.0791130 0.996866i $$-0.525209\pi$$
−0.902867 + 0.429919i $$0.858542\pi$$
$$8$$ 1.00000i 0.353553i
$$9$$ −0.500000 + 0.866025i −0.166667 + 0.288675i
$$10$$ −0.500000 0.866025i −0.158114 0.273861i
$$11$$ −3.23205 + 1.86603i −0.974500 + 0.562628i −0.900605 0.434638i $$-0.856876\pi$$
−0.0738948 + 0.997266i $$0.523543\pi$$
$$12$$ 1.00000 0.288675
$$13$$ −0.866025 + 3.50000i −0.240192 + 0.970725i
$$14$$ 3.00000 0.801784
$$15$$ −0.866025 + 0.500000i −0.223607 + 0.129099i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ −2.00000 + 3.46410i −0.485071 + 0.840168i −0.999853 0.0171533i $$-0.994540\pi$$
0.514782 + 0.857321i $$0.327873\pi$$
$$18$$ 1.00000i 0.235702i
$$19$$ −1.96410 1.13397i −0.450596 0.260152i 0.257486 0.966282i $$-0.417106\pi$$
−0.708082 + 0.706130i $$0.750439\pi$$
$$20$$ 0.866025 + 0.500000i 0.193649 + 0.111803i
$$21$$ 3.00000i 0.654654i
$$22$$ 1.86603 3.23205i 0.397838 0.689076i
$$23$$ 1.73205 + 3.00000i 0.361158 + 0.625543i 0.988152 0.153481i $$-0.0490483\pi$$
−0.626994 + 0.779024i $$0.715715\pi$$
$$24$$ −0.866025 + 0.500000i −0.176777 + 0.102062i
$$25$$ −1.00000 −0.200000
$$26$$ −1.00000 3.46410i −0.196116 0.679366i
$$27$$ −1.00000 −0.192450
$$28$$ −2.59808 + 1.50000i −0.490990 + 0.283473i
$$29$$ 2.73205 + 4.73205i 0.507329 + 0.878720i 0.999964 + 0.00848369i $$0.00270048\pi$$
−0.492635 + 0.870236i $$0.663966\pi$$
$$30$$ 0.500000 0.866025i 0.0912871 0.158114i
$$31$$ 8.92820i 1.60355i −0.597624 0.801776i $$-0.703889\pi$$
0.597624 0.801776i $$-0.296111\pi$$
$$32$$ 0.866025 + 0.500000i 0.153093 + 0.0883883i
$$33$$ −3.23205 1.86603i −0.562628 0.324833i
$$34$$ 4.00000i 0.685994i
$$35$$ 1.50000 2.59808i 0.253546 0.439155i
$$36$$ 0.500000 + 0.866025i 0.0833333 + 0.144338i
$$37$$ −6.86603 + 3.96410i −1.12877 + 0.651694i −0.943625 0.331017i $$-0.892608\pi$$
−0.185143 + 0.982712i $$0.559275\pi$$
$$38$$ 2.26795 0.367910
$$39$$ −3.46410 + 1.00000i −0.554700 + 0.160128i
$$40$$ −1.00000 −0.158114
$$41$$ 3.46410 2.00000i 0.541002 0.312348i −0.204483 0.978870i $$-0.565551\pi$$
0.745485 + 0.666523i $$0.232218\pi$$
$$42$$ 1.50000 + 2.59808i 0.231455 + 0.400892i
$$43$$ −3.00000 + 5.19615i −0.457496 + 0.792406i −0.998828 0.0484030i $$-0.984587\pi$$
0.541332 + 0.840809i $$0.317920\pi$$
$$44$$ 3.73205i 0.562628i
$$45$$ −0.866025 0.500000i −0.129099 0.0745356i
$$46$$ −3.00000 1.73205i −0.442326 0.255377i
$$47$$ 0.464102i 0.0676962i 0.999427 + 0.0338481i $$0.0107762\pi$$
−0.999427 + 0.0338481i $$0.989224\pi$$
$$48$$ 0.500000 0.866025i 0.0721688 0.125000i
$$49$$ 1.00000 + 1.73205i 0.142857 + 0.247436i
$$50$$ 0.866025 0.500000i 0.122474 0.0707107i
$$51$$ −4.00000 −0.560112
$$52$$ 2.59808 + 2.50000i 0.360288 + 0.346688i
$$53$$ −3.73205 −0.512637 −0.256318 0.966592i $$-0.582510\pi$$
−0.256318 + 0.966592i $$0.582510\pi$$
$$54$$ 0.866025 0.500000i 0.117851 0.0680414i
$$55$$ −1.86603 3.23205i −0.251615 0.435810i
$$56$$ 1.50000 2.59808i 0.200446 0.347183i
$$57$$ 2.26795i 0.300397i
$$58$$ −4.73205 2.73205i −0.621349 0.358736i
$$59$$ 3.92820 + 2.26795i 0.511409 + 0.295262i 0.733412 0.679784i $$-0.237926\pi$$
−0.222004 + 0.975046i $$0.571260\pi$$
$$60$$ 1.00000i 0.129099i
$$61$$ 3.73205 6.46410i 0.477840 0.827643i −0.521837 0.853045i $$-0.674753\pi$$
0.999677 + 0.0254017i $$0.00808648\pi$$
$$62$$ 4.46410 + 7.73205i 0.566941 + 0.981971i
$$63$$ 2.59808 1.50000i 0.327327 0.188982i
$$64$$ −1.00000 −0.125000
$$65$$ −3.50000 0.866025i −0.434122 0.107417i
$$66$$ 3.73205 0.459384
$$67$$ 4.73205 2.73205i 0.578112 0.333773i −0.182271 0.983248i $$-0.558345\pi$$
0.760383 + 0.649475i $$0.225011\pi$$
$$68$$ 2.00000 + 3.46410i 0.242536 + 0.420084i
$$69$$ −1.73205 + 3.00000i −0.208514 + 0.361158i
$$70$$ 3.00000i 0.358569i
$$71$$ −0.803848 0.464102i −0.0953992 0.0550787i 0.451541 0.892250i $$-0.350874\pi$$
−0.546941 + 0.837171i $$0.684208\pi$$
$$72$$ −0.866025 0.500000i −0.102062 0.0589256i
$$73$$ 6.92820i 0.810885i 0.914121 + 0.405442i $$0.132883\pi$$
−0.914121 + 0.405442i $$0.867117\pi$$
$$74$$ 3.96410 6.86603i 0.460817 0.798159i
$$75$$ −0.500000 0.866025i −0.0577350 0.100000i
$$76$$ −1.96410 + 1.13397i −0.225298 + 0.130076i
$$77$$ 11.1962 1.27592
$$78$$ 2.50000 2.59808i 0.283069 0.294174i
$$79$$ 16.9282 1.90457 0.952286 0.305208i $$-0.0987259\pi$$
0.952286 + 0.305208i $$0.0987259\pi$$
$$80$$ 0.866025 0.500000i 0.0968246 0.0559017i
$$81$$ −0.500000 0.866025i −0.0555556 0.0962250i
$$82$$ −2.00000 + 3.46410i −0.220863 + 0.382546i
$$83$$ 2.53590i 0.278351i 0.990268 + 0.139176i $$0.0444452\pi$$
−0.990268 + 0.139176i $$0.955555\pi$$
$$84$$ −2.59808 1.50000i −0.283473 0.163663i
$$85$$ −3.46410 2.00000i −0.375735 0.216930i
$$86$$ 6.00000i 0.646997i
$$87$$ −2.73205 + 4.73205i −0.292907 + 0.507329i
$$88$$ −1.86603 3.23205i −0.198919 0.344538i
$$89$$ −8.76795 + 5.06218i −0.929401 + 0.536590i −0.886622 0.462495i $$-0.846954\pi$$
−0.0427788 + 0.999085i $$0.513621\pi$$
$$90$$ 1.00000 0.105409
$$91$$ 7.50000 7.79423i 0.786214 0.817057i
$$92$$ 3.46410 0.361158
$$93$$ 7.73205 4.46410i 0.801776 0.462906i
$$94$$ −0.232051 0.401924i −0.0239342 0.0414553i
$$95$$ 1.13397 1.96410i 0.116343 0.201513i
$$96$$ 1.00000i 0.102062i
$$97$$ 10.7321 + 6.19615i 1.08967 + 0.629124i 0.933490 0.358604i $$-0.116747\pi$$
0.156185 + 0.987728i $$0.450080\pi$$
$$98$$ −1.73205 1.00000i −0.174964 0.101015i
$$99$$ 3.73205i 0.375085i
$$100$$ −0.500000 + 0.866025i −0.0500000 + 0.0866025i
$$101$$ 4.19615 + 7.26795i 0.417533 + 0.723188i 0.995691 0.0927369i $$-0.0295616\pi$$
−0.578158 + 0.815925i $$0.696228\pi$$
$$102$$ 3.46410 2.00000i 0.342997 0.198030i
$$103$$ 19.5885 1.93011 0.965054 0.262051i $$-0.0843989\pi$$
0.965054 + 0.262051i $$0.0843989\pi$$
$$104$$ −3.50000 0.866025i −0.343203 0.0849208i
$$105$$ 3.00000 0.292770
$$106$$ 3.23205 1.86603i 0.313925 0.181244i
$$107$$ −0.464102 0.803848i −0.0448664 0.0777109i 0.842720 0.538352i $$-0.180953\pi$$
−0.887587 + 0.460641i $$0.847620\pi$$
$$108$$ −0.500000 + 0.866025i −0.0481125 + 0.0833333i
$$109$$ 10.3923i 0.995402i 0.867349 + 0.497701i $$0.165822\pi$$
−0.867349 + 0.497701i $$0.834178\pi$$
$$110$$ 3.23205 + 1.86603i 0.308164 + 0.177919i
$$111$$ −6.86603 3.96410i −0.651694 0.376256i
$$112$$ 3.00000i 0.283473i
$$113$$ 6.00000 10.3923i 0.564433 0.977626i −0.432670 0.901553i $$-0.642428\pi$$
0.997102 0.0760733i $$-0.0242383\pi$$
$$114$$ 1.13397 + 1.96410i 0.106206 + 0.183955i
$$115$$ −3.00000 + 1.73205i −0.279751 + 0.161515i
$$116$$ 5.46410 0.507329
$$117$$ −2.59808 2.50000i −0.240192 0.231125i
$$118$$ −4.53590 −0.417563
$$119$$ 10.3923 6.00000i 0.952661 0.550019i
$$120$$ −0.500000 0.866025i −0.0456435 0.0790569i
$$121$$ 1.46410 2.53590i 0.133100 0.230536i
$$122$$ 7.46410i 0.675768i
$$123$$ 3.46410 + 2.00000i 0.312348 + 0.180334i
$$124$$ −7.73205 4.46410i −0.694359 0.400888i
$$125$$ 1.00000i 0.0894427i
$$126$$ −1.50000 + 2.59808i −0.133631 + 0.231455i
$$127$$ −2.33013 4.03590i −0.206765 0.358128i 0.743928 0.668259i $$-0.232960\pi$$
−0.950694 + 0.310131i $$0.899627\pi$$
$$128$$ 0.866025 0.500000i 0.0765466 0.0441942i
$$129$$ −6.00000 −0.528271
$$130$$ 3.46410 1.00000i 0.303822 0.0877058i
$$131$$ −20.3205 −1.77541 −0.887706 0.460412i $$-0.847702\pi$$
−0.887706 + 0.460412i $$0.847702\pi$$
$$132$$ −3.23205 + 1.86603i −0.281314 + 0.162417i
$$133$$ 3.40192 + 5.89230i 0.294984 + 0.510928i
$$134$$ −2.73205 + 4.73205i −0.236013 + 0.408787i
$$135$$ 1.00000i 0.0860663i
$$136$$ −3.46410 2.00000i −0.297044 0.171499i
$$137$$ −5.66025 3.26795i −0.483588 0.279200i 0.238322 0.971186i $$-0.423402\pi$$
−0.721911 + 0.691986i $$0.756736\pi$$
$$138$$ 3.46410i 0.294884i
$$139$$ −10.8923 + 18.8660i −0.923873 + 1.60020i −0.130510 + 0.991447i $$0.541661\pi$$
−0.793363 + 0.608748i $$0.791672\pi$$
$$140$$ −1.50000 2.59808i −0.126773 0.219578i
$$141$$ −0.401924 + 0.232051i −0.0338481 + 0.0195422i
$$142$$ 0.928203 0.0778931
$$143$$ −3.73205 12.9282i −0.312090 1.08111i
$$144$$ 1.00000 0.0833333
$$145$$ −4.73205 + 2.73205i −0.392975 + 0.226884i
$$146$$ −3.46410 6.00000i −0.286691 0.496564i
$$147$$ −1.00000 + 1.73205i −0.0824786 + 0.142857i
$$148$$ 7.92820i 0.651694i
$$149$$ 19.7321 + 11.3923i 1.61651 + 0.933294i 0.987813 + 0.155646i $$0.0497458\pi$$
0.628700 + 0.777648i $$0.283587\pi$$
$$150$$ 0.866025 + 0.500000i 0.0707107 + 0.0408248i
$$151$$ 18.7846i 1.52867i −0.644819 0.764335i $$-0.723067\pi$$
0.644819 0.764335i $$-0.276933\pi$$
$$152$$ 1.13397 1.96410i 0.0919775 0.159310i
$$153$$ −2.00000 3.46410i −0.161690 0.280056i
$$154$$ −9.69615 + 5.59808i −0.781338 + 0.451106i
$$155$$ 8.92820 0.717131
$$156$$ −0.866025 + 3.50000i −0.0693375 + 0.280224i
$$157$$ 10.8038 0.862241 0.431120 0.902294i $$-0.358118\pi$$
0.431120 + 0.902294i $$0.358118\pi$$
$$158$$ −14.6603 + 8.46410i −1.16631 + 0.673368i
$$159$$ −1.86603 3.23205i −0.147985 0.256318i
$$160$$ −0.500000 + 0.866025i −0.0395285 + 0.0684653i
$$161$$ 10.3923i 0.819028i
$$162$$ 0.866025 + 0.500000i 0.0680414 + 0.0392837i
$$163$$ −9.46410 5.46410i −0.741286 0.427981i 0.0812509 0.996694i $$-0.474108\pi$$
−0.822537 + 0.568712i $$0.807442\pi$$
$$164$$ 4.00000i 0.312348i
$$165$$ 1.86603 3.23205i 0.145270 0.251615i
$$166$$ −1.26795 2.19615i −0.0984119 0.170454i
$$167$$ −5.59808 + 3.23205i −0.433192 + 0.250104i −0.700706 0.713451i $$-0.747131\pi$$
0.267513 + 0.963554i $$0.413798\pi$$
$$168$$ 3.00000 0.231455
$$169$$ −11.5000 6.06218i −0.884615 0.466321i
$$170$$ 4.00000 0.306786
$$171$$ 1.96410 1.13397i 0.150199 0.0867172i
$$172$$ 3.00000 + 5.19615i 0.228748 + 0.396203i
$$173$$ −11.0622 + 19.1603i −0.841042 + 1.45673i 0.0479730 + 0.998849i $$0.484724\pi$$
−0.889015 + 0.457879i $$0.848609\pi$$
$$174$$ 5.46410i 0.414232i
$$175$$ 2.59808 + 1.50000i 0.196396 + 0.113389i
$$176$$ 3.23205 + 1.86603i 0.243625 + 0.140657i
$$177$$ 4.53590i 0.340939i
$$178$$ 5.06218 8.76795i 0.379426 0.657186i
$$179$$ −11.4641 19.8564i −0.856867 1.48414i −0.874902 0.484300i $$-0.839074\pi$$
0.0180347 0.999837i $$-0.494259\pi$$
$$180$$ −0.866025 + 0.500000i −0.0645497 + 0.0372678i
$$181$$ 3.07180 0.228325 0.114162 0.993462i $$-0.463582\pi$$
0.114162 + 0.993462i $$0.463582\pi$$
$$182$$ −2.59808 + 10.5000i −0.192582 + 0.778312i
$$183$$ 7.46410 0.551762
$$184$$ −3.00000 + 1.73205i −0.221163 + 0.127688i
$$185$$ −3.96410 6.86603i −0.291447 0.504800i
$$186$$ −4.46410 + 7.73205i −0.327324 + 0.566941i
$$187$$ 14.9282i 1.09166i
$$188$$ 0.401924 + 0.232051i 0.0293133 + 0.0169240i
$$189$$ 2.59808 + 1.50000i 0.188982 + 0.109109i
$$190$$ 2.26795i 0.164534i
$$191$$ −8.66025 + 15.0000i −0.626634 + 1.08536i 0.361588 + 0.932338i $$0.382235\pi$$
−0.988222 + 0.153024i $$0.951099\pi$$
$$192$$ −0.500000 0.866025i −0.0360844 0.0625000i
$$193$$ −15.4641 + 8.92820i −1.11313 + 0.642666i −0.939638 0.342169i $$-0.888838\pi$$
−0.173492 + 0.984835i $$0.555505\pi$$
$$194$$ −12.3923 −0.889716
$$195$$ −1.00000 3.46410i −0.0716115 0.248069i
$$196$$ 2.00000 0.142857
$$197$$ −8.13397 + 4.69615i −0.579522 + 0.334587i −0.760943 0.648818i $$-0.775263\pi$$
0.181422 + 0.983405i $$0.441930\pi$$
$$198$$ 1.86603 + 3.23205i 0.132613 + 0.229692i
$$199$$ 5.53590 9.58846i 0.392429 0.679708i −0.600340 0.799745i $$-0.704968\pi$$
0.992769 + 0.120037i $$0.0383014\pi$$
$$200$$ 1.00000i 0.0707107i
$$201$$ 4.73205 + 2.73205i 0.333773 + 0.192704i
$$202$$ −7.26795 4.19615i −0.511371 0.295240i
$$203$$ 16.3923i 1.15051i
$$204$$ −2.00000 + 3.46410i −0.140028 + 0.242536i
$$205$$ 2.00000 + 3.46410i 0.139686 + 0.241943i
$$206$$ −16.9641 + 9.79423i −1.18194 + 0.682396i
$$207$$ −3.46410 −0.240772
$$208$$ 3.46410 1.00000i 0.240192 0.0693375i
$$209$$ 8.46410 0.585474
$$210$$ −2.59808 + 1.50000i −0.179284 + 0.103510i
$$211$$ 10.9641 + 18.9904i 0.754800 + 1.30735i 0.945474 + 0.325698i $$0.105599\pi$$
−0.190674 + 0.981653i $$0.561067\pi$$
$$212$$ −1.86603 + 3.23205i −0.128159 + 0.221978i
$$213$$ 0.928203i 0.0635994i
$$214$$ 0.803848 + 0.464102i 0.0549499 + 0.0317253i
$$215$$ −5.19615 3.00000i −0.354375 0.204598i
$$216$$ 1.00000i 0.0680414i
$$217$$ −13.3923 + 23.1962i −0.909129 + 1.57466i
$$218$$ −5.19615 9.00000i −0.351928 0.609557i
$$219$$ −6.00000 + 3.46410i −0.405442 + 0.234082i
$$220$$ −3.73205 −0.251615
$$221$$ −10.3923 10.0000i −0.699062 0.672673i
$$222$$ 7.92820 0.532106
$$223$$ −7.66987 + 4.42820i −0.513613 + 0.296534i −0.734317 0.678806i $$-0.762498\pi$$
0.220705 + 0.975341i $$0.429164\pi$$
$$224$$ −1.50000 2.59808i −0.100223 0.173591i
$$225$$ 0.500000 0.866025i 0.0333333 0.0577350i
$$226$$ 12.0000i 0.798228i
$$227$$ −11.6603 6.73205i −0.773918 0.446822i 0.0603523 0.998177i $$-0.480778\pi$$
−0.834271 + 0.551355i $$0.814111\pi$$
$$228$$ −1.96410 1.13397i −0.130076 0.0750993i
$$229$$ 11.4641i 0.757569i 0.925485 + 0.378785i $$0.123658\pi$$
−0.925485 + 0.378785i $$0.876342\pi$$
$$230$$ 1.73205 3.00000i 0.114208 0.197814i
$$231$$ 5.59808 + 9.69615i 0.368326 + 0.637960i
$$232$$ −4.73205 + 2.73205i −0.310674 + 0.179368i
$$233$$ 18.0000 1.17922 0.589610 0.807688i $$-0.299282\pi$$
0.589610 + 0.807688i $$0.299282\pi$$
$$234$$ 3.50000 + 0.866025i 0.228802 + 0.0566139i
$$235$$ −0.464102 −0.0302747
$$236$$ 3.92820 2.26795i 0.255704 0.147631i
$$237$$ 8.46410 + 14.6603i 0.549802 + 0.952286i
$$238$$ −6.00000 + 10.3923i −0.388922 + 0.673633i
$$239$$ 3.46410i 0.224074i 0.993704 + 0.112037i $$0.0357375\pi$$
−0.993704 + 0.112037i $$0.964262\pi$$
$$240$$ 0.866025 + 0.500000i 0.0559017 + 0.0322749i
$$241$$ 12.8205 + 7.40192i 0.825842 + 0.476800i 0.852427 0.522847i $$-0.175130\pi$$
−0.0265852 + 0.999647i $$0.508463\pi$$
$$242$$ 2.92820i 0.188232i
$$243$$ 0.500000 0.866025i 0.0320750 0.0555556i
$$244$$ −3.73205 6.46410i −0.238920 0.413822i
$$245$$ −1.73205 + 1.00000i −0.110657 + 0.0638877i
$$246$$ −4.00000 −0.255031
$$247$$ 5.66987 5.89230i 0.360765 0.374918i
$$248$$ 8.92820 0.566941
$$249$$ −2.19615 + 1.26795i −0.139176 + 0.0803530i
$$250$$ 0.500000 + 0.866025i 0.0316228 + 0.0547723i
$$251$$ −13.2321 + 22.9186i −0.835200 + 1.44661i 0.0586681 + 0.998278i $$0.481315\pi$$
−0.893868 + 0.448331i $$0.852019\pi$$
$$252$$ 3.00000i 0.188982i
$$253$$ −11.1962 6.46410i −0.703896 0.406395i
$$254$$ 4.03590 + 2.33013i 0.253235 + 0.146205i
$$255$$ 4.00000i 0.250490i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ −10.7321 18.5885i −0.669447 1.15952i −0.978059 0.208328i $$-0.933198\pi$$
0.308612 0.951188i $$-0.400136\pi$$
$$258$$ 5.19615 3.00000i 0.323498 0.186772i
$$259$$ 23.7846 1.47790
$$260$$ −2.50000 + 2.59808i −0.155043 + 0.161126i
$$261$$ −5.46410 −0.338219
$$262$$ 17.5981 10.1603i 1.08721 0.627703i
$$263$$ −10.2583 17.7679i −0.632556 1.09562i −0.987027 0.160552i $$-0.948673\pi$$
0.354472 0.935067i $$-0.384661\pi$$
$$264$$ 1.86603 3.23205i 0.114846 0.198919i
$$265$$ 3.73205i 0.229258i
$$266$$ −5.89230 3.40192i −0.361280 0.208585i
$$267$$ −8.76795 5.06218i −0.536590 0.309800i
$$268$$ 5.46410i 0.333773i
$$269$$ 15.4641 26.7846i 0.942863 1.63309i 0.182888 0.983134i $$-0.441455\pi$$
0.759975 0.649953i $$-0.225211\pi$$
$$270$$ 0.500000 + 0.866025i 0.0304290 + 0.0527046i
$$271$$ −3.12436 + 1.80385i −0.189791 + 0.109576i −0.591885 0.806023i $$-0.701616\pi$$
0.402094 + 0.915599i $$0.368283\pi$$
$$272$$ 4.00000 0.242536
$$273$$ 10.5000 + 2.59808i 0.635489 + 0.157243i
$$274$$ 6.53590 0.394848
$$275$$ 3.23205 1.86603i 0.194900 0.112526i
$$276$$ 1.73205 + 3.00000i 0.104257 + 0.180579i
$$277$$ 9.79423 16.9641i 0.588478 1.01927i −0.405954 0.913894i $$-0.633061\pi$$
0.994432 0.105380i $$-0.0336060\pi$$
$$278$$ 21.7846i 1.30655i
$$279$$ 7.73205 + 4.46410i 0.462906 + 0.267259i
$$280$$ 2.59808 + 1.50000i 0.155265 + 0.0896421i
$$281$$ 6.92820i 0.413302i 0.978415 + 0.206651i $$0.0662565\pi$$
−0.978415 + 0.206651i $$0.933744\pi$$
$$282$$ 0.232051 0.401924i 0.0138184 0.0239342i
$$283$$ −7.19615 12.4641i −0.427767 0.740914i 0.568907 0.822402i $$-0.307366\pi$$
−0.996674 + 0.0814876i $$0.974033\pi$$
$$284$$ −0.803848 + 0.464102i −0.0476996 + 0.0275394i
$$285$$ 2.26795 0.134342
$$286$$ 9.69615 + 9.33013i 0.573346 + 0.551702i
$$287$$ −12.0000 −0.708338
$$288$$ −0.866025 + 0.500000i −0.0510310 + 0.0294628i
$$289$$ 0.500000 + 0.866025i 0.0294118 + 0.0509427i
$$290$$ 2.73205 4.73205i 0.160432 0.277876i
$$291$$ 12.3923i 0.726450i
$$292$$ 6.00000 + 3.46410i 0.351123 + 0.202721i
$$293$$ 16.6699 + 9.62436i 0.973864 + 0.562261i 0.900412 0.435038i $$-0.143265\pi$$
0.0734522 + 0.997299i $$0.476598\pi$$
$$294$$ 2.00000i 0.116642i
$$295$$ −2.26795 + 3.92820i −0.132045 + 0.228709i
$$296$$ −3.96410 6.86603i −0.230409 0.399080i
$$297$$ 3.23205 1.86603i 0.187543 0.108278i
$$298$$ −22.7846 −1.31988
$$299$$ −12.0000 + 3.46410i −0.693978 + 0.200334i
$$300$$ −1.00000 −0.0577350
$$301$$ 15.5885 9.00000i 0.898504 0.518751i
$$302$$ 9.39230 + 16.2679i 0.540466 + 0.936115i
$$303$$ −4.19615 + 7.26795i −0.241063 + 0.417533i
$$304$$ 2.26795i 0.130076i
$$305$$ 6.46410 + 3.73205i 0.370133 + 0.213697i
$$306$$ 3.46410 + 2.00000i 0.198030 + 0.114332i
$$307$$ 20.2487i 1.15565i −0.816159 0.577827i $$-0.803901\pi$$
0.816159 0.577827i $$-0.196099\pi$$
$$308$$ 5.59808 9.69615i 0.318980 0.552490i
$$309$$ 9.79423 + 16.9641i 0.557174 + 0.965054i
$$310$$ −7.73205 + 4.46410i −0.439151 + 0.253544i
$$311$$ 5.07180 0.287595 0.143798 0.989607i $$-0.454069\pi$$
0.143798 + 0.989607i $$0.454069\pi$$
$$312$$ −1.00000 3.46410i −0.0566139 0.196116i
$$313$$ 1.32051 0.0746395 0.0373198 0.999303i $$-0.488118\pi$$
0.0373198 + 0.999303i $$0.488118\pi$$
$$314$$ −9.35641 + 5.40192i −0.528013 + 0.304848i
$$315$$ 1.50000 + 2.59808i 0.0845154 + 0.146385i
$$316$$ 8.46410 14.6603i 0.476143 0.824704i
$$317$$ 23.5359i 1.32191i −0.750427 0.660954i $$-0.770152\pi$$
0.750427 0.660954i $$-0.229848\pi$$
$$318$$ 3.23205 + 1.86603i 0.181244 + 0.104642i
$$319$$ −17.6603 10.1962i −0.988784 0.570875i
$$320$$ 1.00000i 0.0559017i
$$321$$ 0.464102 0.803848i 0.0259036 0.0448664i
$$322$$ 5.19615 + 9.00000i 0.289570 + 0.501550i
$$323$$ 7.85641 4.53590i 0.437142 0.252384i
$$324$$ −1.00000 −0.0555556
$$325$$ 0.866025 3.50000i 0.0480384 0.194145i
$$326$$ 10.9282 0.605257
$$327$$ −9.00000 + 5.19615i −0.497701 + 0.287348i
$$328$$ 2.00000 + 3.46410i 0.110432 + 0.191273i
$$329$$ 0.696152 1.20577i 0.0383801 0.0664763i
$$330$$ 3.73205i 0.205443i
$$331$$ 5.53590 + 3.19615i 0.304280 + 0.175676i 0.644364 0.764719i $$-0.277122\pi$$
−0.340084 + 0.940395i $$0.610455\pi$$
$$332$$ 2.19615 + 1.26795i 0.120530 + 0.0695878i
$$333$$ 7.92820i 0.434463i
$$334$$ 3.23205 5.59808i 0.176850 0.306313i
$$335$$ 2.73205 + 4.73205i 0.149268 + 0.258540i
$$336$$ −2.59808 + 1.50000i −0.141737 + 0.0818317i
$$337$$ −5.60770 −0.305471 −0.152735 0.988267i $$-0.548808\pi$$
−0.152735 + 0.988267i $$0.548808\pi$$
$$338$$ 12.9904 0.500000i 0.706584 0.0271964i
$$339$$ 12.0000 0.651751
$$340$$ −3.46410 + 2.00000i −0.187867 + 0.108465i
$$341$$ 16.6603 + 28.8564i 0.902203 + 1.56266i
$$342$$ −1.13397 + 1.96410i −0.0613183 + 0.106206i
$$343$$ 15.0000i 0.809924i
$$344$$ −5.19615 3.00000i −0.280158 0.161749i
$$345$$ −3.00000 1.73205i −0.161515 0.0932505i
$$346$$ 22.1244i 1.18941i
$$347$$ 8.19615 14.1962i 0.439993 0.762089i −0.557696 0.830045i $$-0.688314\pi$$
0.997688 + 0.0679560i $$0.0216478\pi$$
$$348$$ 2.73205 + 4.73205i 0.146453 + 0.253665i
$$349$$ 15.1244 8.73205i 0.809588 0.467416i −0.0372247 0.999307i $$-0.511852\pi$$
0.846813 + 0.531891i $$0.178518\pi$$
$$350$$ −3.00000 −0.160357
$$351$$ 0.866025 3.50000i 0.0462250 0.186816i
$$352$$ −3.73205 −0.198919
$$353$$ −24.5885 + 14.1962i −1.30871 + 0.755585i −0.981881 0.189498i $$-0.939314\pi$$
−0.326830 + 0.945083i $$0.605981\pi$$
$$354$$ −2.26795 3.92820i −0.120540 0.208782i
$$355$$ 0.464102 0.803848i 0.0246320 0.0426638i
$$356$$ 10.1244i 0.536590i
$$357$$ 10.3923 + 6.00000i 0.550019 + 0.317554i
$$358$$ 19.8564 + 11.4641i 1.04944 + 0.605897i
$$359$$ 12.9282i 0.682324i 0.940004 + 0.341162i $$0.110821\pi$$
−0.940004 + 0.341162i $$0.889179\pi$$
$$360$$ 0.500000 0.866025i 0.0263523 0.0456435i
$$361$$ −6.92820 12.0000i −0.364642 0.631579i
$$362$$ −2.66025 + 1.53590i −0.139820 + 0.0807250i
$$363$$ 2.92820 0.153691
$$364$$ −3.00000 10.3923i −0.157243 0.544705i
$$365$$ −6.92820 −0.362639
$$366$$ −6.46410 + 3.73205i −0.337884 + 0.195077i
$$367$$ 6.66025 + 11.5359i 0.347662 + 0.602169i 0.985834 0.167725i $$-0.0536422\pi$$
−0.638171 + 0.769894i $$0.720309\pi$$
$$368$$ 1.73205 3.00000i 0.0902894 0.156386i
$$369$$ 4.00000i 0.208232i
$$370$$ 6.86603 + 3.96410i 0.356948 + 0.206084i
$$371$$ 9.69615 + 5.59808i 0.503399 + 0.290638i
$$372$$ 8.92820i 0.462906i
$$373$$ −11.4641 + 19.8564i −0.593589 + 1.02813i 0.400156 + 0.916447i $$0.368956\pi$$
−0.993744 + 0.111679i $$0.964377\pi$$
$$374$$ 7.46410 + 12.9282i 0.385960 + 0.668501i
$$375$$ 0.866025 0.500000i 0.0447214 0.0258199i
$$376$$ −0.464102 −0.0239342
$$377$$ −18.9282 + 5.46410i −0.974852 + 0.281416i
$$378$$ −3.00000 −0.154303
$$379$$ 5.42820 3.13397i 0.278828 0.160981i −0.354065 0.935221i $$-0.615201\pi$$
0.632893 + 0.774239i $$0.281867\pi$$
$$380$$ −1.13397 1.96410i −0.0581717 0.100756i
$$381$$ 2.33013 4.03590i 0.119376 0.206765i
$$382$$ 17.3205i 0.886194i
$$383$$ 31.8564 + 18.3923i 1.62779 + 0.939803i 0.984752 + 0.173966i $$0.0556582\pi$$
0.643035 + 0.765837i $$0.277675\pi$$
$$384$$ 0.866025 + 0.500000i 0.0441942 + 0.0255155i
$$385$$ 11.1962i 0.570609i
$$386$$ 8.92820 15.4641i 0.454434 0.787102i
$$387$$ −3.00000 5.19615i −0.152499 0.264135i
$$388$$ 10.7321 6.19615i 0.544837 0.314562i
$$389$$ −9.85641 −0.499740 −0.249870 0.968279i $$-0.580388\pi$$
−0.249870 + 0.968279i $$0.580388\pi$$
$$390$$ 2.59808 + 2.50000i 0.131559 + 0.126592i
$$391$$ −13.8564 −0.700749
$$392$$ −1.73205 + 1.00000i −0.0874818 + 0.0505076i
$$393$$ −10.1603 17.5981i −0.512517 0.887706i
$$394$$ 4.69615 8.13397i 0.236589 0.409784i
$$395$$ 16.9282i 0.851750i
$$396$$ −3.23205 1.86603i −0.162417 0.0937713i
$$397$$ −6.86603 3.96410i −0.344596 0.198953i 0.317707 0.948189i $$-0.397087\pi$$
−0.662303 + 0.749237i $$0.730421\pi$$
$$398$$ 11.0718i 0.554979i
$$399$$ −3.40192 + 5.89230i −0.170309 + 0.294984i
$$400$$ 0.500000 + 0.866025i 0.0250000 + 0.0433013i
$$401$$ −1.83975 + 1.06218i −0.0918725 + 0.0530426i −0.545232 0.838285i $$-0.683559\pi$$
0.453360 + 0.891328i $$0.350225\pi$$
$$402$$ −5.46410 −0.272525
$$403$$ 31.2487 + 7.73205i 1.55661 + 0.385161i
$$404$$ 8.39230 0.417533
$$405$$ 0.866025 0.500000i 0.0430331 0.0248452i
$$406$$ 8.19615 + 14.1962i 0.406768 + 0.704543i
$$407$$ 14.7942 25.6244i 0.733323 1.27015i
$$408$$ 4.00000i 0.198030i
$$409$$ 0.820508 + 0.473721i 0.0405715 + 0.0234240i 0.520149 0.854076i $$-0.325877\pi$$
−0.479577 + 0.877500i $$0.659210\pi$$
$$410$$ −3.46410 2.00000i −0.171080 0.0987730i
$$411$$ 6.53590i 0.322392i
$$412$$ 9.79423 16.9641i 0.482527 0.835761i
$$413$$ −6.80385 11.7846i −0.334795 0.579883i
$$414$$ 3.00000 1.73205i 0.147442 0.0851257i
$$415$$ −2.53590 −0.124482
$$416$$ −2.50000 + 2.59808i −0.122573 + 0.127381i
$$417$$ −21.7846 −1.06680
$$418$$ −7.33013 + 4.23205i −0.358528 + 0.206996i
$$419$$ 8.92820 + 15.4641i 0.436171 + 0.755471i 0.997390 0.0721964i $$-0.0230008\pi$$
−0.561219 + 0.827667i $$0.689668\pi$$
$$420$$ 1.50000 2.59808i 0.0731925 0.126773i
$$421$$ 5.85641i 0.285424i 0.989764 + 0.142712i $$0.0455822\pi$$
−0.989764 + 0.142712i $$0.954418\pi$$
$$422$$ −18.9904 10.9641i −0.924437 0.533724i
$$423$$ −0.401924 0.232051i −0.0195422 0.0112827i
$$424$$ 3.73205i 0.181244i
$$425$$ 2.00000 3.46410i 0.0970143 0.168034i
$$426$$ 0.464102 + 0.803848i 0.0224858 + 0.0389465i
$$427$$ −19.3923 + 11.1962i −0.938459 + 0.541820i
$$428$$ −0.928203 −0.0448664
$$429$$ 9.33013 9.69615i 0.450463 0.468135i
$$430$$ 6.00000 0.289346
$$431$$ −12.0000 + 6.92820i −0.578020 + 0.333720i −0.760346 0.649518i $$-0.774971\pi$$
0.182326 + 0.983238i $$0.441637\pi$$
$$432$$ 0.500000 + 0.866025i 0.0240563 + 0.0416667i
$$433$$ −16.3923 + 28.3923i −0.787764 + 1.36445i 0.139570 + 0.990212i $$0.455428\pi$$
−0.927334 + 0.374235i $$0.877905\pi$$
$$434$$ 26.7846i 1.28570i
$$435$$ −4.73205 2.73205i −0.226884 0.130992i
$$436$$ 9.00000 + 5.19615i 0.431022 + 0.248851i
$$437$$ 7.85641i 0.375823i
$$438$$ 3.46410 6.00000i 0.165521 0.286691i
$$439$$ −10.6603 18.4641i −0.508786 0.881243i −0.999948 0.0101753i $$-0.996761\pi$$
0.491162 0.871068i $$-0.336572\pi$$
$$440$$ 3.23205 1.86603i 0.154082 0.0889593i
$$441$$ −2.00000 −0.0952381
$$442$$ 14.0000 + 3.46410i 0.665912 + 0.164771i
$$443$$ 7.85641 0.373269 0.186635 0.982429i $$-0.440242\pi$$
0.186635 + 0.982429i $$0.440242\pi$$
$$444$$ −6.86603 + 3.96410i −0.325847 + 0.188128i
$$445$$ −5.06218 8.76795i −0.239970 0.415641i
$$446$$ 4.42820 7.66987i 0.209682 0.363179i
$$447$$ 22.7846i 1.07768i
$$448$$ 2.59808 + 1.50000i 0.122748 + 0.0708683i
$$449$$ −15.6962 9.06218i −0.740747 0.427671i 0.0815937 0.996666i $$-0.473999\pi$$
−0.822341 + 0.568995i $$0.807332\pi$$
$$450$$ 1.00000i 0.0471405i
$$451$$ −7.46410 + 12.9282i −0.351471 + 0.608765i
$$452$$ −6.00000 10.3923i −0.282216 0.488813i
$$453$$ 16.2679 9.39230i 0.764335 0.441289i
$$454$$ 13.4641 0.631902
$$455$$ 7.79423 + 7.50000i 0.365399 + 0.351605i
$$456$$ 2.26795 0.106206
$$457$$ 0.464102 0.267949i 0.0217098 0.0125341i −0.489106 0.872224i $$-0.662677\pi$$
0.510816 + 0.859690i $$0.329343\pi$$
$$458$$ −5.73205 9.92820i −0.267841 0.463914i
$$459$$ 2.00000 3.46410i 0.0933520 0.161690i
$$460$$ 3.46410i 0.161515i
$$461$$ 28.0526 + 16.1962i 1.30654 + 0.754330i 0.981517 0.191377i $$-0.0612952\pi$$
0.325021 + 0.945707i $$0.394629\pi$$
$$462$$ −9.69615 5.59808i −0.451106 0.260446i
$$463$$ 0.784610i 0.0364639i −0.999834 0.0182320i $$-0.994196\pi$$
0.999834 0.0182320i $$-0.00580373\pi$$
$$464$$ 2.73205 4.73205i 0.126832 0.219680i
$$465$$ 4.46410 + 7.73205i 0.207018 + 0.358565i
$$466$$ −15.5885 + 9.00000i −0.722121 + 0.416917i
$$467$$ 3.60770 0.166944 0.0834721 0.996510i $$-0.473399\pi$$
0.0834721 + 0.996510i $$0.473399\pi$$
$$468$$ −3.46410 + 1.00000i −0.160128 + 0.0462250i
$$469$$ −16.3923 −0.756926
$$470$$ 0.401924 0.232051i 0.0185394 0.0107037i
$$471$$ 5.40192 + 9.35641i 0.248908 + 0.431120i
$$472$$ −2.26795 + 3.92820i −0.104391 + 0.180810i
$$473$$ 22.3923i 1.02960i
$$474$$ −14.6603 8.46410i −0.673368 0.388769i
$$475$$ 1.96410 + 1.13397i 0.0901192 + 0.0520303i
$$476$$ 12.0000i 0.550019i
$$477$$ 1.86603 3.23205i 0.0854394 0.147985i
$$478$$ −1.73205 3.00000i −0.0792222 0.137217i
$$479$$ −22.7321 + 13.1244i −1.03865 + 0.599667i −0.919452 0.393203i $$-0.871367\pi$$
−0.119202 + 0.992870i $$0.538034\pi$$
$$480$$ −1.00000 −0.0456435
$$481$$ −7.92820 27.4641i −0.361495 1.25226i
$$482$$ −14.8038 −0.674297
$$483$$ 9.00000 5.19615i 0.409514 0.236433i
$$484$$ −1.46410 2.53590i −0.0665501 0.115268i
$$485$$ −6.19615 + 10.7321i −0.281353 + 0.487317i
$$486$$ 1.00000i 0.0453609i
$$487$$ −18.1865 10.5000i −0.824110 0.475800i 0.0277214 0.999616i $$-0.491175\pi$$
−0.851832 + 0.523815i $$0.824508\pi$$
$$488$$ 6.46410 + 3.73205i 0.292616 + 0.168942i
$$489$$ 10.9282i 0.494190i
$$490$$ 1.00000 1.73205i 0.0451754 0.0782461i
$$491$$ 7.69615 + 13.3301i 0.347322 + 0.601580i 0.985773 0.168083i $$-0.0537576\pi$$
−0.638450 + 0.769663i $$0.720424\pi$$
$$492$$ 3.46410 2.00000i 0.156174 0.0901670i
$$493$$ −21.8564 −0.984363
$$494$$ −1.96410 + 7.93782i −0.0883691 + 0.357140i
$$495$$ 3.73205 0.167743
$$496$$ −7.73205 + 4.46410i −0.347179 + 0.200444i
$$497$$ 1.39230 + 2.41154i 0.0624534 + 0.108172i
$$498$$ 1.26795 2.19615i 0.0568182 0.0984119i
$$499$$ 1.32051i 0.0591141i 0.999563 + 0.0295570i $$0.00940967\pi$$
−0.999563 + 0.0295570i $$0.990590\pi$$
$$500$$ −0.866025 0.500000i −0.0387298 0.0223607i
$$501$$ −5.59808 3.23205i −0.250104 0.144397i
$$502$$ 26.4641i 1.18115i
$$503$$ −0.133975 + 0.232051i −0.00597363 + 0.0103466i −0.868997 0.494818i $$-0.835235\pi$$
0.863023 + 0.505164i $$0.168568\pi$$
$$504$$ 1.50000 + 2.59808i 0.0668153 + 0.115728i
$$505$$ −7.26795 + 4.19615i −0.323419 + 0.186726i
$$506$$ 12.9282 0.574729
$$507$$ −0.500000 12.9904i −0.0222058 0.576923i
$$508$$ −4.66025 −0.206765
$$509$$ 4.60770 2.66025i 0.204232 0.117914i −0.394396 0.918941i $$-0.629046\pi$$
0.598628 + 0.801027i $$0.295713\pi$$
$$510$$ 2.00000 + 3.46410i 0.0885615 + 0.153393i
$$511$$ 10.3923 18.0000i 0.459728 0.796273i
$$512$$ 1.00000i 0.0441942i
$$513$$ 1.96410 + 1.13397i 0.0867172 + 0.0500662i
$$514$$ 18.5885 + 10.7321i 0.819902 + 0.473370i
$$515$$ 19.5885i 0.863171i
$$516$$ −3.00000 + 5.19615i −0.132068 + 0.228748i
$$517$$ −0.866025 1.50000i −0.0380878 0.0659699i
$$518$$ −20.5981 + 11.8923i −0.905028 + 0.522518i
$$519$$ −22.1244 −0.971151
$$520$$ 0.866025 3.50000i 0.0379777 0.153485i
$$521$$ −27.3923 −1.20008 −0.600039 0.799970i $$-0.704848\pi$$
−0.600039 + 0.799970i $$0.704848\pi$$
$$522$$ 4.73205 2.73205i 0.207116 0.119579i
$$523$$ −6.85641 11.8756i −0.299810 0.519286i 0.676283 0.736642i $$-0.263590\pi$$
−0.976092 + 0.217357i $$0.930257\pi$$
$$524$$ −10.1603 + 17.5981i −0.443853 + 0.768776i
$$525$$ 3.00000i 0.130931i
$$526$$ 17.7679 + 10.2583i 0.774719 + 0.447284i
$$527$$ 30.9282 + 17.8564i 1.34725 + 0.777837i
$$528$$ 3.73205i 0.162417i
$$529$$ 5.50000 9.52628i 0.239130 0.414186i
$$530$$ 1.86603 + 3.23205i 0.0810550 + 0.140391i
$$531$$ −3.92820 + 2.26795i −0.170470 + 0.0984206i
$$532$$ 6.80385 0.294984
$$533$$ 4.00000 + 13.8564i 0.173259 + 0.600188i
$$534$$ 10.1244 0.438124
$$535$$ 0.803848 0.464102i 0.0347534 0.0200649i
$$536$$ 2.73205 + 4.73205i 0.118007 + 0.204393i
$$537$$ 11.4641 19.8564i 0.494713 0.856867i
$$538$$ 30.9282i 1.33341i
$$539$$ −6.46410 3.73205i −0.278429 0.160751i
$$540$$ −0.866025 0.500000i −0.0372678 0.0215166i
$$541$$ 26.7846i 1.15156i 0.817605 + 0.575780i $$0.195302\pi$$
−0.817605 + 0.575780i $$0.804698\pi$$
$$542$$ 1.80385 3.12436i 0.0774819 0.134203i
$$543$$ 1.53590 + 2.66025i 0.0659117 + 0.114162i
$$544$$ −3.46410 + 2.00000i −0.148522 + 0.0857493i
$$545$$ −10.3923 −0.445157
$$546$$ −10.3923 + 3.00000i −0.444750 + 0.128388i
$$547$$ 29.3205 1.25365 0.626827 0.779158i $$-0.284353\pi$$
0.626827 + 0.779158i $$0.284353\pi$$
$$548$$ −5.66025 + 3.26795i −0.241794 + 0.139600i
$$549$$ 3.73205 + 6.46410i 0.159280 + 0.275881i
$$550$$ −1.86603 + 3.23205i −0.0795676 + 0.137815i
$$551$$ 12.3923i 0.527930i
$$552$$ −3.00000 1.73205i −0.127688 0.0737210i
$$553$$ −43.9808 25.3923i −1.87025 1.07979i
$$554$$ 19.5885i 0.832234i
$$555$$ 3.96410 6.86603i 0.168267 0.291447i
$$556$$ 10.8923 + 18.8660i 0.461937 + 0.800098i
$$557$$ 37.5788 21.6962i 1.59227 0.919295i 0.599349 0.800488i $$-0.295426\pi$$
0.992917 0.118808i $$-0.0379072\pi$$
$$558$$ −8.92820 −0.377961
$$559$$ −15.5885 15.0000i −0.659321 0.634432i
$$560$$ −3.00000 −0.126773
$$561$$ 12.9282 7.46410i 0.545829 0.315135i
$$562$$ −3.46410 6.00000i −0.146124 0.253095i
$$563$$ −9.66025 + 16.7321i −0.407131 + 0.705172i −0.994567 0.104099i $$-0.966804\pi$$
0.587436 + 0.809271i $$0.300137\pi$$
$$564$$ 0.464102i 0.0195422i
$$565$$ 10.3923 + 6.00000i 0.437208 + 0.252422i
$$566$$ 12.4641 + 7.19615i 0.523905 + 0.302477i
$$567$$ 3.00000i 0.125988i
$$568$$ 0.464102 0.803848i 0.0194733 0.0337287i
$$569$$ −9.16025 15.8660i −0.384018 0.665138i 0.607615 0.794232i $$-0.292127\pi$$
−0.991632 + 0.129094i $$0.958793\pi$$
$$570$$ −1.96410 + 1.13397i −0.0822672 + 0.0474970i
$$571$$ −16.8564 −0.705419 −0.352709 0.935733i $$-0.614740\pi$$
−0.352709 + 0.935733i $$0.614740\pi$$
$$572$$ −13.0622 3.23205i −0.546157 0.135139i
$$573$$ −17.3205 −0.723575
$$574$$ 10.3923 6.00000i 0.433766 0.250435i
$$575$$ −1.73205 3.00000i −0.0722315 0.125109i
$$576$$ 0.500000 0.866025i 0.0208333 0.0360844i
$$577$$ 25.3205i 1.05411i −0.849832 0.527053i $$-0.823297\pi$$
0.849832 0.527053i $$-0.176703\pi$$
$$578$$ −0.866025 0.500000i −0.0360219 0.0207973i
$$579$$ −15.4641 8.92820i −0.642666 0.371043i
$$580$$ 5.46410i 0.226884i
$$581$$ 3.80385 6.58846i 0.157810 0.273335i
$$582$$ −6.19615 10.7321i −0.256839 0.444858i
$$583$$ 12.0622 6.96410i 0.499564 0.288424i
$$584$$ −6.92820 −0.286691
$$585$$ 2.50000 2.59808i 0.103362 0.107417i
$$586$$ −19.2487 −0.795157
$$587$$ −4.26795 + 2.46410i −0.176157 + 0.101704i −0.585486 0.810683i $$-0.699096\pi$$
0.409329 + 0.912387i $$0.365763\pi$$
$$588$$ 1.00000 + 1.73205i 0.0412393 + 0.0714286i
$$589$$ −10.1244 + 17.5359i −0.417167 + 0.722554i
$$590$$ 4.53590i 0.186740i
$$591$$ −8.13397 4.69615i −0.334587 0.193174i
$$592$$ 6.86603 + 3.96410i 0.282192 + 0.162924i
$$593$$ 3.21539i 0.132040i 0.997818 + 0.0660201i $$0.0210302\pi$$
−0.997818 + 0.0660201i $$0.978970\pi$$
$$594$$ −1.86603 + 3.23205i −0.0765639 + 0.132613i
$$595$$ 6.00000 + 10.3923i 0.245976 + 0.426043i
$$596$$ 19.7321 11.3923i 0.808256 0.466647i
$$597$$ 11.0718 0.453138
$$598$$ 8.66025 9.00000i 0.354144 0.368037i
$$599$$ 15.0718 0.615817 0.307908 0.951416i $$-0.400371\pi$$
0.307908 + 0.951416i $$0.400371\pi$$
$$600$$ 0.866025 0.500000i 0.0353553 0.0204124i
$$601$$ 12.3564 + 21.4019i 0.504028 + 0.873003i 0.999989 + 0.00465778i $$0.00148262\pi$$
−0.495961 + 0.868345i $$0.665184\pi$$
$$602$$ −9.00000 + 15.5885i −0.366813 + 0.635338i
$$603$$ 5.46410i 0.222515i
$$604$$ −16.2679 9.39230i −0.661933 0.382167i
$$605$$ 2.53590 + 1.46410i 0.103099 + 0.0595242i
$$606$$ 8.39230i 0.340914i
$$607$$ −18.7224 + 32.4282i −0.759920 + 1.31622i 0.182971 + 0.983118i $$0.441429\pi$$
−0.942891 + 0.333102i $$0.891905\pi$$
$$608$$ −1.13397 1.96410i −0.0459887 0.0796548i
$$609$$ 14.1962 8.19615i 0.575257 0.332125i
$$610$$ −7.46410 −0.302213
$$611$$ −1.62436 0.401924i −0.0657144 0.0162601i
$$612$$ −4.00000 −0.161690
$$613$$ −38.9711 + 22.5000i −1.57403 + 0.908766i −0.578362 + 0.815780i $$0.696308\pi$$
−0.995667 + 0.0929864i $$0.970359\pi$$
$$614$$ 10.1244 + 17.5359i 0.408586 + 0.707691i
$$615$$ −2.00000 + 3.46410i −0.0806478 + 0.139686i
$$616$$ 11.1962i 0.451106i
$$617$$ 24.7128 + 14.2679i 0.994900 + 0.574406i 0.906735 0.421700i $$-0.138566\pi$$
0.0881649 + 0.996106i $$0.471900\pi$$
$$618$$ −16.9641 9.79423i −0.682396 0.393982i
$$619$$ 42.5167i 1.70889i 0.519543 + 0.854444i $$0.326102\pi$$
−0.519543 + 0.854444i $$0.673898\pi$$
$$620$$ 4.46410 7.73205i 0.179283 0.310527i
$$621$$ −1.73205 3.00000i −0.0695048 0.120386i
$$622$$ −4.39230 + 2.53590i −0.176115 + 0.101680i
$$623$$ 30.3731 1.21687
$$624$$ 2.59808 + 2.50000i 0.104006 + 0.100080i
$$625$$ 1.00000 0.0400000
$$626$$ −1.14359 + 0.660254i −0.0457072 + 0.0263891i
$$627$$ 4.23205 + 7.33013i 0.169012 + 0.292737i
$$628$$ 5.40192 9.35641i 0.215560 0.373361i
$$629$$ 31.7128i 1.26447i
$$630$$ −2.59808 1.50000i −0.103510 0.0597614i
$$631$$ 6.92820 + 4.00000i 0.275807 + 0.159237i 0.631524 0.775356i $$-0.282430\pi$$
−0.355716 + 0.934594i $$0.615763\pi$$
$$632$$ 16.9282i 0.673368i
$$633$$ −10.9641 + 18.9904i −0.435784 + 0.754800i
$$634$$ 11.7679 + 20.3827i 0.467365 + 0.809500i
$$635$$ 4.03590 2.33013i 0.160160 0.0924683i
$$636$$ −3.73205 −0.147985
$$637$$ −6.92820 + 2.00000i −0.274505 + 0.0792429i
$$638$$ 20.3923 0.807339
$$639$$ 0.803848 0.464102i 0.0317997 0.0183596i
$$640$$ 0.500000 + 0.866025i 0.0197642 + 0.0342327i
$$641$$ −3.76795 + 6.52628i −0.148825 + 0.257773i −0.930793 0.365546i $$-0.880882\pi$$
0.781968 + 0.623318i $$0.214216\pi$$
$$642$$ 0.928203i 0.0366333i
$$643$$ 24.9282 + 14.3923i 0.983072 + 0.567577i 0.903196 0.429228i $$-0.141214\pi$$
0.0798761 + 0.996805i $$0.474548\pi$$
$$644$$ −9.00000 5.19615i −0.354650 0.204757i
$$645$$ 6.00000i 0.236250i
$$646$$ −4.53590 + 7.85641i −0.178463 + 0.309106i
$$647$$ 16.1340 + 27.9449i 0.634292 + 1.09863i 0.986665 + 0.162766i $$0.0520416\pi$$
−0.352373 + 0.935860i $$0.614625\pi$$
$$648$$ 0.866025 0.500000i 0.0340207 0.0196419i
$$649$$ −16.9282 −0.664490
$$650$$ 1.00000 + 3.46410i 0.0392232 + 0.135873i
$$651$$ −26.7846 −1.04977
$$652$$ −9.46410 + 5.46410i −0.370643 + 0.213991i
$$653$$ −14.7942 25.6244i −0.578943 1.00276i −0.995601 0.0936952i $$-0.970132\pi$$
0.416658 0.909063i $$-0.363201\pi$$
$$654$$ 5.19615 9.00000i 0.203186 0.351928i
$$655$$ 20.3205i 0.793988i
$$656$$ −3.46410 2.00000i −0.135250 0.0780869i
$$657$$ −6.00000 3.46410i −0.234082 0.135147i
$$658$$ 1.39230i 0.0542777i
$$659$$ −7.85641 + 13.6077i −0.306042 + 0.530081i −0.977493 0.210969i $$-0.932338\pi$$
0.671451 + 0.741049i $$0.265672\pi$$
$$660$$ −1.86603 3.23205i −0.0726349 0.125807i
$$661$$ 36.7128 21.1962i 1.42796 0.824435i 0.431003 0.902351i $$-0.358160\pi$$
0.996960 + 0.0779157i $$0.0248265\pi$$
$$662$$ −6.39230 −0.248444
$$663$$ 3.46410 14.0000i 0.134535 0.543715i
$$664$$ −2.53590 −0.0984119
$$665$$ −5.89230 + 3.40192i −0.228494 + 0.131921i
$$666$$ 3.96410 + 6.86603i 0.153606 + 0.266053i
$$667$$ −9.46410 + 16.3923i −0.366451 + 0.634713i
$$668$$ 6.46410i 0.250104i
$$669$$ −7.66987 4.42820i −0.296534 0.171204i
$$670$$ −4.73205 2.73205i −0.182815 0.105548i
$$671$$ 27.8564i 1.07538i
$$672$$ 1.50000 2.59808i 0.0578638 0.100223i
$$673$$ −12.3923 21.4641i −0.477688 0.827380i 0.521985 0.852955i $$-0.325192\pi$$
−0.999673 + 0.0255746i $$0.991858\pi$$
$$674$$ 4.85641 2.80385i 0.187062 0.108000i
$$675$$ 1.00000 0.0384900
$$676$$ −11.0000 + 6.92820i −0.423077 + 0.266469i
$$677$$ −2.92820 −0.112540 −0.0562700 0.998416i $$-0.517921\pi$$
−0.0562700 + 0.998416i $$0.517921\pi$$
$$678$$ −10.3923 + 6.00000i −0.399114 + 0.230429i
$$679$$ −18.5885 32.1962i −0.713360 1.23557i
$$680$$ 2.00000 3.46410i 0.0766965 0.132842i
$$681$$ 13.4641i 0.515945i
$$682$$ −28.8564 16.6603i −1.10497 0.637954i
$$683$$ −5.78461 3.33975i −0.221342 0.127792i 0.385230 0.922821i $$-0.374122\pi$$
−0.606571 + 0.795029i $$0.707456\pi$$
$$684$$ 2.26795i 0.0867172i
$$685$$ 3.26795 5.66025i 0.124862 0.216267i
$$686$$ −7.50000 12.9904i −0.286351 0.495975i
$$687$$ −9.92820 + 5.73205i −0.378785 + 0.218691i
$$688$$ 6.00000 0.228748
$$689$$ 3.23205 13.0622i 0.123131 0.497629i
$$690$$ 3.46410 0.131876
$$691$$ 19.9641 11.5263i 0.759470 0.438480i −0.0696353 0.997573i $$-0.522184\pi$$
0.829106 + 0.559092i $$0.188850\pi$$
$$692$$ 11.0622 + 19.1603i 0.420521 + 0.728364i
$$693$$ −5.59808 + 9.69615i −0.212653 + 0.368326i
$$694$$ 16.3923i 0.622243i
$$695$$ −18.8660 10.8923i −0.715629 0.413169i
$$696$$ −4.73205 2.73205i −0.179368 0.103558i
$$697$$ 16.0000i 0.606043i
$$698$$ −8.73205 + 15.1244i −0.330513 + 0.572465i
$$699$$ 9.00000 + 15.5885i 0.340411 + 0.589610i
$$700$$ 2.59808 1.50000i 0.0981981 0.0566947i
$$701$$ 16.3923 0.619129 0.309564 0.950878i $$-0.399817\pi$$
0.309564 + 0.950878i $$0.399817\pi$$
$$702$$ 1.00000 + 3.46410i 0.0377426 + 0.130744i
$$703$$ 17.9808 0.678157
$$704$$ 3.23205 1.86603i 0.121812 0.0703285i
$$705$$ −0.232051 0.401924i −0.00873954 0.0151373i
$$706$$ 14.1962 24.5885i 0.534279 0.925399i
$$707$$ 25.1769i 0.946875i
$$708$$ 3.92820 + 2.26795i 0.147631 + 0.0852348i
$$709$$ −6.33975 3.66025i −0.238094 0.137464i 0.376206 0.926536i $$-0.377228\pi$$
−0.614300 + 0.789072i $$0.710562\pi$$
$$710$$ 0.928203i 0.0348348i
$$711$$ −8.46410 + 14.6603i −0.317429 + 0.549802i
$$712$$ −5.06218 8.76795i −0.189713 0.328593i
$$713$$ 26.7846 15.4641i 1.00309 0.579135i
$$714$$ −12.0000 −0.449089
$$715$$ 12.9282 3.73205i 0.483487 0.139571i
$$716$$ −22.9282 −0.856867
$$717$$ −3.00000 + 1.73205i −0.112037 + 0.0646846i
$$718$$ −6.46410 11.1962i −0.241238 0.417837i
$$719$$ −8.00000 + 13.8564i −0.298350 + 0.516757i −0.975759 0.218850i $$-0.929769\pi$$
0.677409 + 0.735607i $$0.263103\pi$$
$$720$$ 1.00000i 0.0372678i
$$721$$ −50.8923 29.3827i −1.89533 1.09427i
$$722$$ 12.0000 + 6.92820i 0.446594 + 0.257841i
$$723$$ 14.8038i 0.550561i
$$724$$ 1.53590 2.66025i 0.0570812 0.0988676i
$$725$$ −2.73205 4.73205i −0.101466 0.175744i
$$726$$ −2.53590 + 1.46410i −0.0941160 + 0.0543379i
$$727$$ 12.6603 0.469543 0.234771 0.972051i $$-0.424566\pi$$
0.234771 + 0.972051i $$0.424566\pi$$
$$728$$ 7.79423 + 7.50000i 0.288873 + 0.277968i
$$729$$ 1.00000 0.0370370
$$730$$ 6.00000 3.46410i 0.222070 0.128212i
$$731$$ −12.0000 20.7846i −0.443836 0.768747i
$$732$$ 3.73205 6.46410i 0.137941 0.238920i
$$733$$ 6.85641i 0.253247i 0.991951 + 0.126624i $$0.0404140\pi$$
−0.991951 + 0.126624i $$0.959586\pi$$
$$734$$ −11.5359 6.66025i −0.425798 0.245834i
$$735$$ −1.73205 1.00000i −0.0638877 0.0368856i
$$736$$ 3.46410i 0.127688i
$$737$$ −10.1962 + 17.6603i −0.375580 + 0.650524i
$$738$$ −2.00000 3.46410i −0.0736210 0.127515i
$$739$$ 37.9641 21.9186i 1.39653 0.806288i 0.402505 0.915418i $$-0.368140\pi$$
0.994028 + 0.109130i $$0.0348064\pi$$
$$740$$ −7.92820 −0.291447
$$741$$ 7.93782 + 1.96410i 0.291603 + 0.0721531i
$$742$$ −11.1962 −0.411024
$$743$$ −2.53590 + 1.46410i −0.0930331 + 0.0537127i −0.545795 0.837919i $$-0.683772\pi$$
0.452762 + 0.891632i $$0.350439\pi$$
$$744$$ 4.46410 + 7.73205i 0.163662 + 0.283471i
$$745$$ −11.3923 + 19.7321i −0.417382 + 0.722926i
$$746$$ 22.9282i 0.839461i
$$747$$ −2.19615 1.26795i −0.0803530 0.0463918i
$$748$$ −12.9282 7.46410i −0.472702 0.272915i
$$749$$ 2.78461i 0.101747i
$$750$$ −0.500000 + 0.866025i −0.0182574 + 0.0316228i
$$751$$ −20.5885 35.6603i −0.751283 1.30126i −0.947201 0.320641i $$-0.896102\pi$$
0.195917 0.980620i $$-0.437232\pi$$
$$752$$ 0.401924 0.232051i 0.0146567 0.00846202i
$$753$$ −26.4641 −0.964405
$$754$$ 13.6603 14.1962i 0.497477 0.516993i
$$755$$ 18.7846 0.683642
$$756$$ 2.59808 1.50000i 0.0944911 0.0545545i
$$757$$ −9.13397 15.8205i −0.331980 0.575006i 0.650920 0.759146i $$-0.274383\pi$$
−0.982900 + 0.184140i $$0.941050\pi$$
$$758$$ −3.13397 + 5.42820i −0.113831 + 0.197161i
$$759$$ 12.9282i 0.469264i
$$760$$ 1.96410 + 1.13397i 0.0712455 + 0.0411336i
$$761$$ 38.0885 + 21.9904i 1.38071 + 0.797151i 0.992243 0.124314i $$-0.0396730\pi$$
0.388463 + 0.921465i $$0.373006\pi$$
$$762$$ 4.66025i 0.168823i
$$763$$ 15.5885 27.0000i 0.564340 0.977466i
$$764$$ 8.66025 + 15.0000i 0.313317 + 0.542681i
$$765$$ 3.46410 2.00000i 0.125245 0.0723102i
$$766$$ −36.7846 −1.32908
$$767$$ −11.3397 + 11.7846i −0.409454 + 0.425518i
$$768$$ −1.00000 −0.0360844
$$769$$ 34.3923 19.8564i 1.24022 0.716040i 0.271080 0.962557i $$-0.412619\pi$$
0.969139 + 0.246517i $$0.0792860\pi$$
$$770$$ −5.59808 9.69615i −0.201741 0.349425i
$$771$$ 10.7321 18.5885i 0.386505 0.669447i
$$772$$ 17.8564i 0.642666i
$$773$$ 46.2391 + 26.6962i 1.66310 + 0.960194i 0.971220 + 0.238186i $$0.0765528\pi$$
0.691885 + 0.722008i $$0.256780\pi$$
$$774$$ 5.19615 + 3.00000i 0.186772 + 0.107833i