Properties

 Label 390.2.bb.a.121.2 Level $390$ Weight $2$ Character 390.121 Analytic conductor $3.114$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

Learn more

Newspace parameters

 Level: $$N$$ $$=$$ $$390 = 2 \cdot 3 \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 390.bb (of order $$6$$, degree $$2$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$3.11416567883$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

 Embedding label 121.2 Root $$0.866025 + 0.500000i$$ of defining polynomial Character $$\chi$$ $$=$$ 390.121 Dual form 390.2.bb.a.361.2

$q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} +1.00000i q^{5} +(0.866025 - 0.500000i) q^{6} +(2.59808 - 1.50000i) q^{7} +1.00000i q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})$$ $$q+(0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} +1.00000i q^{5} +(0.866025 - 0.500000i) q^{6} +(2.59808 - 1.50000i) q^{7} +1.00000i q^{8} +(-0.500000 - 0.866025i) q^{9} +(-0.500000 + 0.866025i) q^{10} +(0.232051 + 0.133975i) q^{11} +1.00000 q^{12} +(0.866025 + 3.50000i) q^{13} +3.00000 q^{14} +(0.866025 + 0.500000i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.00000 - 3.46410i) q^{17} -1.00000i q^{18} +(4.96410 - 2.86603i) q^{19} +(-0.866025 + 0.500000i) q^{20} -3.00000i q^{21} +(0.133975 + 0.232051i) q^{22} +(-1.73205 + 3.00000i) q^{23} +(0.866025 + 0.500000i) q^{24} -1.00000 q^{25} +(-1.00000 + 3.46410i) q^{26} -1.00000 q^{27} +(2.59808 + 1.50000i) q^{28} +(-0.732051 + 1.26795i) q^{29} +(0.500000 + 0.866025i) q^{30} +4.92820i q^{31} +(-0.866025 + 0.500000i) q^{32} +(0.232051 - 0.133975i) q^{33} -4.00000i q^{34} +(1.50000 + 2.59808i) q^{35} +(0.500000 - 0.866025i) q^{36} +(-5.13397 - 2.96410i) q^{37} +5.73205 q^{38} +(3.46410 + 1.00000i) q^{39} -1.00000 q^{40} +(-3.46410 - 2.00000i) q^{41} +(1.50000 - 2.59808i) q^{42} +(-3.00000 - 5.19615i) q^{43} +0.267949i q^{44} +(0.866025 - 0.500000i) q^{45} +(-3.00000 + 1.73205i) q^{46} -6.46410i q^{47} +(0.500000 + 0.866025i) q^{48} +(1.00000 - 1.73205i) q^{49} +(-0.866025 - 0.500000i) q^{50} -4.00000 q^{51} +(-2.59808 + 2.50000i) q^{52} -0.267949 q^{53} +(-0.866025 - 0.500000i) q^{54} +(-0.133975 + 0.232051i) q^{55} +(1.50000 + 2.59808i) q^{56} -5.73205i q^{57} +(-1.26795 + 0.732051i) q^{58} +(-9.92820 + 5.73205i) q^{59} +1.00000i q^{60} +(0.267949 + 0.464102i) q^{61} +(-2.46410 + 4.26795i) q^{62} +(-2.59808 - 1.50000i) q^{63} -1.00000 q^{64} +(-3.50000 + 0.866025i) q^{65} +0.267949 q^{66} +(1.26795 + 0.732051i) q^{67} +(2.00000 - 3.46410i) q^{68} +(1.73205 + 3.00000i) q^{69} +3.00000i q^{70} +(-11.1962 + 6.46410i) q^{71} +(0.866025 - 0.500000i) q^{72} -6.92820i q^{73} +(-2.96410 - 5.13397i) q^{74} +(-0.500000 + 0.866025i) q^{75} +(4.96410 + 2.86603i) q^{76} +0.803848 q^{77} +(2.50000 + 2.59808i) q^{78} +3.07180 q^{79} +(-0.866025 - 0.500000i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-2.00000 - 3.46410i) q^{82} +9.46410i q^{83} +(2.59808 - 1.50000i) q^{84} +(3.46410 - 2.00000i) q^{85} -6.00000i q^{86} +(0.732051 + 1.26795i) q^{87} +(-0.133975 + 0.232051i) q^{88} +(-12.2321 - 7.06218i) q^{89} +1.00000 q^{90} +(7.50000 + 7.79423i) q^{91} -3.46410 q^{92} +(4.26795 + 2.46410i) q^{93} +(3.23205 - 5.59808i) q^{94} +(2.86603 + 4.96410i) q^{95} +1.00000i q^{96} +(7.26795 - 4.19615i) q^{97} +(1.73205 - 1.00000i) q^{98} -0.267949i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 2q^{3} + 2q^{4} - 2q^{9} + O(q^{10})$$ $$4q + 2q^{3} + 2q^{4} - 2q^{9} - 2q^{10} - 6q^{11} + 4q^{12} + 12q^{14} - 2q^{16} - 8q^{17} + 6q^{19} + 4q^{22} - 4q^{25} - 4q^{26} - 4q^{27} + 4q^{29} + 2q^{30} - 6q^{33} + 6q^{35} + 2q^{36} - 24q^{37} + 16q^{38} - 4q^{40} + 6q^{42} - 12q^{43} - 12q^{46} + 2q^{48} + 4q^{49} - 16q^{51} - 8q^{53} - 4q^{55} + 6q^{56} - 12q^{58} - 12q^{59} + 8q^{61} + 4q^{62} - 4q^{64} - 14q^{65} + 8q^{66} + 12q^{67} + 8q^{68} - 24q^{71} + 2q^{74} - 2q^{75} + 6q^{76} + 24q^{77} + 10q^{78} + 40q^{79} - 2q^{81} - 8q^{82} - 4q^{87} - 4q^{88} - 42q^{89} + 4q^{90} + 30q^{91} + 24q^{93} + 6q^{94} + 8q^{95} + 36q^{97} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/390\mathbb{Z}\right)^\times$$.

 $$n$$ $$131$$ $$157$$ $$301$$ $$\chi(n)$$ $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.866025 + 0.500000i 0.612372 + 0.353553i
$$3$$ 0.500000 0.866025i 0.288675 0.500000i
$$4$$ 0.500000 + 0.866025i 0.250000 + 0.433013i
$$5$$ 1.00000i 0.447214i
$$6$$ 0.866025 0.500000i 0.353553 0.204124i
$$7$$ 2.59808 1.50000i 0.981981 0.566947i 0.0791130 0.996866i $$-0.474791\pi$$
0.902867 + 0.429919i $$0.141458\pi$$
$$8$$ 1.00000i 0.353553i
$$9$$ −0.500000 0.866025i −0.166667 0.288675i
$$10$$ −0.500000 + 0.866025i −0.158114 + 0.273861i
$$11$$ 0.232051 + 0.133975i 0.0699660 + 0.0403949i 0.534575 0.845121i $$-0.320472\pi$$
−0.464609 + 0.885516i $$0.653805\pi$$
$$12$$ 1.00000 0.288675
$$13$$ 0.866025 + 3.50000i 0.240192 + 0.970725i
$$14$$ 3.00000 0.801784
$$15$$ 0.866025 + 0.500000i 0.223607 + 0.129099i
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ −2.00000 3.46410i −0.485071 0.840168i 0.514782 0.857321i $$-0.327873\pi$$
−0.999853 + 0.0171533i $$0.994540\pi$$
$$18$$ 1.00000i 0.235702i
$$19$$ 4.96410 2.86603i 1.13884 0.657511i 0.192699 0.981258i $$-0.438276\pi$$
0.946144 + 0.323747i $$0.104943\pi$$
$$20$$ −0.866025 + 0.500000i −0.193649 + 0.111803i
$$21$$ 3.00000i 0.654654i
$$22$$ 0.133975 + 0.232051i 0.0285635 + 0.0494734i
$$23$$ −1.73205 + 3.00000i −0.361158 + 0.625543i −0.988152 0.153481i $$-0.950952\pi$$
0.626994 + 0.779024i $$0.284285\pi$$
$$24$$ 0.866025 + 0.500000i 0.176777 + 0.102062i
$$25$$ −1.00000 −0.200000
$$26$$ −1.00000 + 3.46410i −0.196116 + 0.679366i
$$27$$ −1.00000 −0.192450
$$28$$ 2.59808 + 1.50000i 0.490990 + 0.283473i
$$29$$ −0.732051 + 1.26795i −0.135938 + 0.235452i −0.925956 0.377633i $$-0.876738\pi$$
0.790017 + 0.613085i $$0.210072\pi$$
$$30$$ 0.500000 + 0.866025i 0.0912871 + 0.158114i
$$31$$ 4.92820i 0.885131i 0.896736 + 0.442566i $$0.145932\pi$$
−0.896736 + 0.442566i $$0.854068\pi$$
$$32$$ −0.866025 + 0.500000i −0.153093 + 0.0883883i
$$33$$ 0.232051 0.133975i 0.0403949 0.0233220i
$$34$$ 4.00000i 0.685994i
$$35$$ 1.50000 + 2.59808i 0.253546 + 0.439155i
$$36$$ 0.500000 0.866025i 0.0833333 0.144338i
$$37$$ −5.13397 2.96410i −0.844020 0.487295i 0.0146085 0.999893i $$-0.495350\pi$$
−0.858629 + 0.512598i $$0.828683\pi$$
$$38$$ 5.73205 0.929861
$$39$$ 3.46410 + 1.00000i 0.554700 + 0.160128i
$$40$$ −1.00000 −0.158114
$$41$$ −3.46410 2.00000i −0.541002 0.312348i 0.204483 0.978870i $$-0.434449\pi$$
−0.745485 + 0.666523i $$0.767782\pi$$
$$42$$ 1.50000 2.59808i 0.231455 0.400892i
$$43$$ −3.00000 5.19615i −0.457496 0.792406i 0.541332 0.840809i $$-0.317920\pi$$
−0.998828 + 0.0484030i $$0.984587\pi$$
$$44$$ 0.267949i 0.0403949i
$$45$$ 0.866025 0.500000i 0.129099 0.0745356i
$$46$$ −3.00000 + 1.73205i −0.442326 + 0.255377i
$$47$$ 6.46410i 0.942886i −0.881897 0.471443i $$-0.843733\pi$$
0.881897 0.471443i $$-0.156267\pi$$
$$48$$ 0.500000 + 0.866025i 0.0721688 + 0.125000i
$$49$$ 1.00000 1.73205i 0.142857 0.247436i
$$50$$ −0.866025 0.500000i −0.122474 0.0707107i
$$51$$ −4.00000 −0.560112
$$52$$ −2.59808 + 2.50000i −0.360288 + 0.346688i
$$53$$ −0.267949 −0.0368057 −0.0184028 0.999831i $$-0.505858\pi$$
−0.0184028 + 0.999831i $$0.505858\pi$$
$$54$$ −0.866025 0.500000i −0.117851 0.0680414i
$$55$$ −0.133975 + 0.232051i −0.0180651 + 0.0312897i
$$56$$ 1.50000 + 2.59808i 0.200446 + 0.347183i
$$57$$ 5.73205i 0.759229i
$$58$$ −1.26795 + 0.732051i −0.166490 + 0.0961230i
$$59$$ −9.92820 + 5.73205i −1.29254 + 0.746249i −0.979104 0.203359i $$-0.934814\pi$$
−0.313438 + 0.949609i $$0.601481\pi$$
$$60$$ 1.00000i 0.129099i
$$61$$ 0.267949 + 0.464102i 0.0343074 + 0.0594221i 0.882669 0.469995i $$-0.155744\pi$$
−0.848362 + 0.529417i $$0.822411\pi$$
$$62$$ −2.46410 + 4.26795i −0.312941 + 0.542030i
$$63$$ −2.59808 1.50000i −0.327327 0.188982i
$$64$$ −1.00000 −0.125000
$$65$$ −3.50000 + 0.866025i −0.434122 + 0.107417i
$$66$$ 0.267949 0.0329823
$$67$$ 1.26795 + 0.732051i 0.154905 + 0.0894342i 0.575449 0.817838i $$-0.304827\pi$$
−0.420544 + 0.907272i $$0.638161\pi$$
$$68$$ 2.00000 3.46410i 0.242536 0.420084i
$$69$$ 1.73205 + 3.00000i 0.208514 + 0.361158i
$$70$$ 3.00000i 0.358569i
$$71$$ −11.1962 + 6.46410i −1.32874 + 0.767148i −0.985105 0.171956i $$-0.944991\pi$$
−0.343634 + 0.939104i $$0.611658\pi$$
$$72$$ 0.866025 0.500000i 0.102062 0.0589256i
$$73$$ 6.92820i 0.810885i −0.914121 0.405442i $$-0.867117\pi$$
0.914121 0.405442i $$-0.132883\pi$$
$$74$$ −2.96410 5.13397i −0.344570 0.596812i
$$75$$ −0.500000 + 0.866025i −0.0577350 + 0.100000i
$$76$$ 4.96410 + 2.86603i 0.569422 + 0.328756i
$$77$$ 0.803848 0.0916069
$$78$$ 2.50000 + 2.59808i 0.283069 + 0.294174i
$$79$$ 3.07180 0.345604 0.172802 0.984957i $$-0.444718\pi$$
0.172802 + 0.984957i $$0.444718\pi$$
$$80$$ −0.866025 0.500000i −0.0968246 0.0559017i
$$81$$ −0.500000 + 0.866025i −0.0555556 + 0.0962250i
$$82$$ −2.00000 3.46410i −0.220863 0.382546i
$$83$$ 9.46410i 1.03882i 0.854525 + 0.519410i $$0.173848\pi$$
−0.854525 + 0.519410i $$0.826152\pi$$
$$84$$ 2.59808 1.50000i 0.283473 0.163663i
$$85$$ 3.46410 2.00000i 0.375735 0.216930i
$$86$$ 6.00000i 0.646997i
$$87$$ 0.732051 + 1.26795i 0.0784841 + 0.135938i
$$88$$ −0.133975 + 0.232051i −0.0142817 + 0.0247367i
$$89$$ −12.2321 7.06218i −1.29659 0.748589i −0.316780 0.948499i $$-0.602602\pi$$
−0.979814 + 0.199910i $$0.935935\pi$$
$$90$$ 1.00000 0.105409
$$91$$ 7.50000 + 7.79423i 0.786214 + 0.817057i
$$92$$ −3.46410 −0.361158
$$93$$ 4.26795 + 2.46410i 0.442566 + 0.255515i
$$94$$ 3.23205 5.59808i 0.333361 0.577397i
$$95$$ 2.86603 + 4.96410i 0.294048 + 0.509306i
$$96$$ 1.00000i 0.102062i
$$97$$ 7.26795 4.19615i 0.737948 0.426055i −0.0833745 0.996518i $$-0.526570\pi$$
0.821323 + 0.570464i $$0.193236\pi$$
$$98$$ 1.73205 1.00000i 0.174964 0.101015i
$$99$$ 0.267949i 0.0269299i
$$100$$ −0.500000 0.866025i −0.0500000 0.0866025i
$$101$$ −6.19615 + 10.7321i −0.616540 + 1.06788i 0.373572 + 0.927601i $$0.378133\pi$$
−0.990112 + 0.140278i $$0.955200\pi$$
$$102$$ −3.46410 2.00000i −0.342997 0.198030i
$$103$$ −11.5885 −1.14184 −0.570922 0.821004i $$-0.693414\pi$$
−0.570922 + 0.821004i $$0.693414\pi$$
$$104$$ −3.50000 + 0.866025i −0.343203 + 0.0849208i
$$105$$ 3.00000 0.292770
$$106$$ −0.232051 0.133975i −0.0225388 0.0130128i
$$107$$ 6.46410 11.1962i 0.624908 1.08237i −0.363650 0.931536i $$-0.618470\pi$$
0.988559 0.150837i $$-0.0481970\pi$$
$$108$$ −0.500000 0.866025i −0.0481125 0.0833333i
$$109$$ 10.3923i 0.995402i −0.867349 0.497701i $$-0.834178\pi$$
0.867349 0.497701i $$-0.165822\pi$$
$$110$$ −0.232051 + 0.133975i −0.0221252 + 0.0127740i
$$111$$ −5.13397 + 2.96410i −0.487295 + 0.281340i
$$112$$ 3.00000i 0.283473i
$$113$$ 6.00000 + 10.3923i 0.564433 + 0.977626i 0.997102 + 0.0760733i $$0.0242383\pi$$
−0.432670 + 0.901553i $$0.642428\pi$$
$$114$$ 2.86603 4.96410i 0.268428 0.464931i
$$115$$ −3.00000 1.73205i −0.279751 0.161515i
$$116$$ −1.46410 −0.135938
$$117$$ 2.59808 2.50000i 0.240192 0.231125i
$$118$$ −11.4641 −1.05536
$$119$$ −10.3923 6.00000i −0.952661 0.550019i
$$120$$ −0.500000 + 0.866025i −0.0456435 + 0.0790569i
$$121$$ −5.46410 9.46410i −0.496737 0.860373i
$$122$$ 0.535898i 0.0485180i
$$123$$ −3.46410 + 2.00000i −0.312348 + 0.180334i
$$124$$ −4.26795 + 2.46410i −0.383273 + 0.221283i
$$125$$ 1.00000i 0.0894427i
$$126$$ −1.50000 2.59808i −0.133631 0.231455i
$$127$$ 6.33013 10.9641i 0.561708 0.972907i −0.435640 0.900121i $$-0.643478\pi$$
0.997348 0.0727855i $$-0.0231889\pi$$
$$128$$ −0.866025 0.500000i −0.0765466 0.0441942i
$$129$$ −6.00000 −0.528271
$$130$$ −3.46410 1.00000i −0.303822 0.0877058i
$$131$$ 14.3205 1.25119 0.625594 0.780149i $$-0.284857\pi$$
0.625594 + 0.780149i $$0.284857\pi$$
$$132$$ 0.232051 + 0.133975i 0.0201974 + 0.0116610i
$$133$$ 8.59808 14.8923i 0.745548 1.29133i
$$134$$ 0.732051 + 1.26795i 0.0632396 + 0.109534i
$$135$$ 1.00000i 0.0860663i
$$136$$ 3.46410 2.00000i 0.297044 0.171499i
$$137$$ 11.6603 6.73205i 0.996203 0.575158i 0.0890802 0.996024i $$-0.471607\pi$$
0.907123 + 0.420867i $$0.138274\pi$$
$$138$$ 3.46410i 0.294884i
$$139$$ 9.89230 + 17.1340i 0.839054 + 1.45328i 0.890686 + 0.454619i $$0.150224\pi$$
−0.0516319 + 0.998666i $$0.516442\pi$$
$$140$$ −1.50000 + 2.59808i −0.126773 + 0.219578i
$$141$$ −5.59808 3.23205i −0.471443 0.272188i
$$142$$ −12.9282 −1.08491
$$143$$ −0.267949 + 0.928203i −0.0224070 + 0.0776203i
$$144$$ 1.00000 0.0833333
$$145$$ −1.26795 0.732051i −0.105297 0.0607935i
$$146$$ 3.46410 6.00000i 0.286691 0.496564i
$$147$$ −1.00000 1.73205i −0.0824786 0.142857i
$$148$$ 5.92820i 0.487295i
$$149$$ 16.2679 9.39230i 1.33272 0.769448i 0.347006 0.937863i $$-0.387198\pi$$
0.985716 + 0.168415i $$0.0538649\pi$$
$$150$$ −0.866025 + 0.500000i −0.0707107 + 0.0408248i
$$151$$ 22.7846i 1.85419i 0.374832 + 0.927093i $$0.377700\pi$$
−0.374832 + 0.927093i $$0.622300\pi$$
$$152$$ 2.86603 + 4.96410i 0.232465 + 0.402642i
$$153$$ −2.00000 + 3.46410i −0.161690 + 0.280056i
$$154$$ 0.696152 + 0.401924i 0.0560976 + 0.0323879i
$$155$$ −4.92820 −0.395843
$$156$$ 0.866025 + 3.50000i 0.0693375 + 0.280224i
$$157$$ 21.1962 1.69164 0.845819 0.533471i $$-0.179113\pi$$
0.845819 + 0.533471i $$0.179113\pi$$
$$158$$ 2.66025 + 1.53590i 0.211638 + 0.122190i
$$159$$ −0.133975 + 0.232051i −0.0106249 + 0.0184028i
$$160$$ −0.500000 0.866025i −0.0395285 0.0684653i
$$161$$ 10.3923i 0.819028i
$$162$$ −0.866025 + 0.500000i −0.0680414 + 0.0392837i
$$163$$ −2.53590 + 1.46410i −0.198627 + 0.114677i −0.596015 0.802973i $$-0.703250\pi$$
0.397388 + 0.917651i $$0.369917\pi$$
$$164$$ 4.00000i 0.312348i
$$165$$ 0.133975 + 0.232051i 0.0104299 + 0.0180651i
$$166$$ −4.73205 + 8.19615i −0.367278 + 0.636145i
$$167$$ −0.401924 0.232051i −0.0311018 0.0179566i 0.484368 0.874864i $$-0.339049\pi$$
−0.515470 + 0.856907i $$0.672383\pi$$
$$168$$ 3.00000 0.231455
$$169$$ −11.5000 + 6.06218i −0.884615 + 0.466321i
$$170$$ 4.00000 0.306786
$$171$$ −4.96410 2.86603i −0.379614 0.219170i
$$172$$ 3.00000 5.19615i 0.228748 0.396203i
$$173$$ 1.06218 + 1.83975i 0.0807559 + 0.139873i 0.903575 0.428430i $$-0.140933\pi$$
−0.822819 + 0.568304i $$0.807600\pi$$
$$174$$ 1.46410i 0.110993i
$$175$$ −2.59808 + 1.50000i −0.196396 + 0.113389i
$$176$$ −0.232051 + 0.133975i −0.0174915 + 0.0100987i
$$177$$ 11.4641i 0.861695i
$$178$$ −7.06218 12.2321i −0.529333 0.916831i
$$179$$ −4.53590 + 7.85641i −0.339029 + 0.587215i −0.984250 0.176780i $$-0.943432\pi$$
0.645221 + 0.763996i $$0.276765\pi$$
$$180$$ 0.866025 + 0.500000i 0.0645497 + 0.0372678i
$$181$$ 16.9282 1.25826 0.629132 0.777299i $$-0.283411\pi$$
0.629132 + 0.777299i $$0.283411\pi$$
$$182$$ 2.59808 + 10.5000i 0.192582 + 0.778312i
$$183$$ 0.535898 0.0396147
$$184$$ −3.00000 1.73205i −0.221163 0.127688i
$$185$$ 2.96410 5.13397i 0.217925 0.377457i
$$186$$ 2.46410 + 4.26795i 0.180677 + 0.312941i
$$187$$ 1.07180i 0.0783775i
$$188$$ 5.59808 3.23205i 0.408282 0.235722i
$$189$$ −2.59808 + 1.50000i −0.188982 + 0.109109i
$$190$$ 5.73205i 0.415847i
$$191$$ 8.66025 + 15.0000i 0.626634 + 1.08536i 0.988222 + 0.153024i $$0.0489012\pi$$
−0.361588 + 0.932338i $$0.617765\pi$$
$$192$$ −0.500000 + 0.866025i −0.0360844 + 0.0625000i
$$193$$ −8.53590 4.92820i −0.614427 0.354740i 0.160269 0.987073i $$-0.448764\pi$$
−0.774696 + 0.632334i $$0.782097\pi$$
$$194$$ 8.39230 0.602532
$$195$$ −1.00000 + 3.46410i −0.0716115 + 0.248069i
$$196$$ 2.00000 0.142857
$$197$$ −9.86603 5.69615i −0.702925 0.405834i 0.105511 0.994418i $$-0.466352\pi$$
−0.808436 + 0.588584i $$0.799686\pi$$
$$198$$ 0.133975 0.232051i 0.00952116 0.0164911i
$$199$$ 12.4641 + 21.5885i 0.883557 + 1.53037i 0.847359 + 0.531021i $$0.178191\pi$$
0.0361978 + 0.999345i $$0.488475\pi$$
$$200$$ 1.00000i 0.0707107i
$$201$$ 1.26795 0.732051i 0.0894342 0.0516349i
$$202$$ −10.7321 + 6.19615i −0.755104 + 0.435960i
$$203$$ 4.39230i 0.308279i
$$204$$ −2.00000 3.46410i −0.140028 0.242536i
$$205$$ 2.00000 3.46410i 0.139686 0.241943i
$$206$$ −10.0359 5.79423i −0.699234 0.403703i
$$207$$ 3.46410 0.240772
$$208$$ −3.46410 1.00000i −0.240192 0.0693375i
$$209$$ 1.53590 0.106240
$$210$$ 2.59808 + 1.50000i 0.179284 + 0.103510i
$$211$$ 4.03590 6.99038i 0.277843 0.481238i −0.693006 0.720932i $$-0.743714\pi$$
0.970848 + 0.239694i $$0.0770473\pi$$
$$212$$ −0.133975 0.232051i −0.00920141 0.0159373i
$$213$$ 12.9282i 0.885826i
$$214$$ 11.1962 6.46410i 0.765353 0.441877i
$$215$$ 5.19615 3.00000i 0.354375 0.204598i
$$216$$ 1.00000i 0.0680414i
$$217$$ 7.39230 + 12.8038i 0.501822 + 0.869182i
$$218$$ 5.19615 9.00000i 0.351928 0.609557i
$$219$$ −6.00000 3.46410i −0.405442 0.234082i
$$220$$ −0.267949 −0.0180651
$$221$$ 10.3923 10.0000i 0.699062 0.672673i
$$222$$ −5.92820 −0.397875
$$223$$ −16.3301 9.42820i −1.09355 0.631359i −0.159028 0.987274i $$-0.550836\pi$$
−0.934518 + 0.355915i $$0.884169\pi$$
$$224$$ −1.50000 + 2.59808i −0.100223 + 0.173591i
$$225$$ 0.500000 + 0.866025i 0.0333333 + 0.0577350i
$$226$$ 12.0000i 0.798228i
$$227$$ 5.66025 3.26795i 0.375684 0.216901i −0.300255 0.953859i $$-0.597072\pi$$
0.675939 + 0.736958i $$0.263738\pi$$
$$228$$ 4.96410 2.86603i 0.328756 0.189807i
$$229$$ 4.53590i 0.299741i 0.988706 + 0.149870i $$0.0478856\pi$$
−0.988706 + 0.149870i $$0.952114\pi$$
$$230$$ −1.73205 3.00000i −0.114208 0.197814i
$$231$$ 0.401924 0.696152i 0.0264446 0.0458035i
$$232$$ −1.26795 0.732051i −0.0832449 0.0480615i
$$233$$ 18.0000 1.17922 0.589610 0.807688i $$-0.299282\pi$$
0.589610 + 0.807688i $$0.299282\pi$$
$$234$$ 3.50000 0.866025i 0.228802 0.0566139i
$$235$$ 6.46410 0.421671
$$236$$ −9.92820 5.73205i −0.646271 0.373125i
$$237$$ 1.53590 2.66025i 0.0997673 0.172802i
$$238$$ −6.00000 10.3923i −0.388922 0.673633i
$$239$$ 3.46410i 0.224074i −0.993704 0.112037i $$-0.964262\pi$$
0.993704 0.112037i $$-0.0357375\pi$$
$$240$$ −0.866025 + 0.500000i −0.0559017 + 0.0322749i
$$241$$ −21.8205 + 12.5981i −1.40558 + 0.811513i −0.994958 0.100291i $$-0.968023\pi$$
−0.410624 + 0.911805i $$0.634689\pi$$
$$242$$ 10.9282i 0.702492i
$$243$$ 0.500000 + 0.866025i 0.0320750 + 0.0555556i
$$244$$ −0.267949 + 0.464102i −0.0171537 + 0.0297111i
$$245$$ 1.73205 + 1.00000i 0.110657 + 0.0638877i
$$246$$ −4.00000 −0.255031
$$247$$ 14.3301 + 14.8923i 0.911804 + 0.947575i
$$248$$ −4.92820 −0.312941
$$249$$ 8.19615 + 4.73205i 0.519410 + 0.299882i
$$250$$ 0.500000 0.866025i 0.0316228 0.0547723i
$$251$$ −9.76795 16.9186i −0.616547 1.06789i −0.990111 0.140287i $$-0.955198\pi$$
0.373563 0.927605i $$-0.378136\pi$$
$$252$$ 3.00000i 0.188982i
$$253$$ −0.803848 + 0.464102i −0.0505375 + 0.0291778i
$$254$$ 10.9641 6.33013i 0.687949 0.397187i
$$255$$ 4.00000i 0.250490i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ −7.26795 + 12.5885i −0.453362 + 0.785246i −0.998592 0.0530400i $$-0.983109\pi$$
0.545230 + 0.838286i $$0.316442\pi$$
$$258$$ −5.19615 3.00000i −0.323498 0.186772i
$$259$$ −17.7846 −1.10508
$$260$$ −2.50000 2.59808i −0.155043 0.161126i
$$261$$ 1.46410 0.0906256
$$262$$ 12.4019 + 7.16025i 0.766193 + 0.442362i
$$263$$ 12.2583 21.2321i 0.755881 1.30922i −0.189054 0.981967i $$-0.560542\pi$$
0.944935 0.327258i $$-0.106125\pi$$
$$264$$ 0.133975 + 0.232051i 0.00824557 + 0.0142817i
$$265$$ 0.267949i 0.0164600i
$$266$$ 14.8923 8.59808i 0.913106 0.527182i
$$267$$ −12.2321 + 7.06218i −0.748589 + 0.432198i
$$268$$ 1.46410i 0.0894342i
$$269$$ 8.53590 + 14.7846i 0.520443 + 0.901434i 0.999717 + 0.0237685i $$0.00756648\pi$$
−0.479275 + 0.877665i $$0.659100\pi$$
$$270$$ 0.500000 0.866025i 0.0304290 0.0527046i
$$271$$ 21.1244 + 12.1962i 1.28321 + 0.740863i 0.977434 0.211239i $$-0.0677499\pi$$
0.305779 + 0.952103i $$0.401083\pi$$
$$272$$ 4.00000 0.242536
$$273$$ 10.5000 2.59808i 0.635489 0.157243i
$$274$$ 13.4641 0.813396
$$275$$ −0.232051 0.133975i −0.0139932 0.00807897i
$$276$$ −1.73205 + 3.00000i −0.104257 + 0.180579i
$$277$$ −5.79423 10.0359i −0.348141 0.602999i 0.637778 0.770220i $$-0.279854\pi$$
−0.985919 + 0.167222i $$0.946520\pi$$
$$278$$ 19.7846i 1.18660i
$$279$$ 4.26795 2.46410i 0.255515 0.147522i
$$280$$ −2.59808 + 1.50000i −0.155265 + 0.0896421i
$$281$$ 6.92820i 0.413302i −0.978415 0.206651i $$-0.933744\pi$$
0.978415 0.206651i $$-0.0662565\pi$$
$$282$$ −3.23205 5.59808i −0.192466 0.333361i
$$283$$ 3.19615 5.53590i 0.189992 0.329075i −0.755256 0.655430i $$-0.772487\pi$$
0.945247 + 0.326355i $$0.105821\pi$$
$$284$$ −11.1962 6.46410i −0.664369 0.383574i
$$285$$ 5.73205 0.339537
$$286$$ −0.696152 + 0.669873i −0.0411644 + 0.0396104i
$$287$$ −12.0000 −0.708338
$$288$$ 0.866025 + 0.500000i 0.0510310 + 0.0294628i
$$289$$ 0.500000 0.866025i 0.0294118 0.0509427i
$$290$$ −0.732051 1.26795i −0.0429875 0.0744565i
$$291$$ 8.39230i 0.491966i
$$292$$ 6.00000 3.46410i 0.351123 0.202721i
$$293$$ 25.3301 14.6244i 1.47980 0.854364i 0.480063 0.877234i $$-0.340614\pi$$
0.999738 + 0.0228698i $$0.00728033\pi$$
$$294$$ 2.00000i 0.116642i
$$295$$ −5.73205 9.92820i −0.333733 0.578042i
$$296$$ 2.96410 5.13397i 0.172285 0.298406i
$$297$$ −0.232051 0.133975i −0.0134650 0.00777399i
$$298$$ 18.7846 1.08816
$$299$$ −12.0000 3.46410i −0.693978 0.200334i
$$300$$ −1.00000 −0.0577350
$$301$$ −15.5885 9.00000i −0.898504 0.518751i
$$302$$ −11.3923 + 19.7321i −0.655553 + 1.13545i
$$303$$ 6.19615 + 10.7321i 0.355960 + 0.616540i
$$304$$ 5.73205i 0.328756i
$$305$$ −0.464102 + 0.267949i −0.0265744 + 0.0153427i
$$306$$ −3.46410 + 2.00000i −0.198030 + 0.114332i
$$307$$ 28.2487i 1.61224i 0.591753 + 0.806120i $$0.298436\pi$$
−0.591753 + 0.806120i $$0.701564\pi$$
$$308$$ 0.401924 + 0.696152i 0.0229017 + 0.0396670i
$$309$$ −5.79423 + 10.0359i −0.329622 + 0.570922i
$$310$$ −4.26795 2.46410i −0.242403 0.139952i
$$311$$ 18.9282 1.07332 0.536660 0.843799i $$-0.319686\pi$$
0.536660 + 0.843799i $$0.319686\pi$$
$$312$$ −1.00000 + 3.46410i −0.0566139 + 0.196116i
$$313$$ −33.3205 −1.88339 −0.941693 0.336473i $$-0.890766\pi$$
−0.941693 + 0.336473i $$0.890766\pi$$
$$314$$ 18.3564 + 10.5981i 1.03591 + 0.598084i
$$315$$ 1.50000 2.59808i 0.0845154 0.146385i
$$316$$ 1.53590 + 2.66025i 0.0864010 + 0.149651i
$$317$$ 30.4641i 1.71103i −0.517774 0.855517i $$-0.673239\pi$$
0.517774 0.855517i $$-0.326761\pi$$
$$318$$ −0.232051 + 0.133975i −0.0130128 + 0.00751292i
$$319$$ −0.339746 + 0.196152i −0.0190221 + 0.0109824i
$$320$$ 1.00000i 0.0559017i
$$321$$ −6.46410 11.1962i −0.360791 0.624908i
$$322$$ −5.19615 + 9.00000i −0.289570 + 0.501550i
$$323$$ −19.8564 11.4641i −1.10484 0.637880i
$$324$$ −1.00000 −0.0555556
$$325$$ −0.866025 3.50000i −0.0480384 0.194145i
$$326$$ −2.92820 −0.162178
$$327$$ −9.00000 5.19615i −0.497701 0.287348i
$$328$$ 2.00000 3.46410i 0.110432 0.191273i
$$329$$ −9.69615 16.7942i −0.534566 0.925896i
$$330$$ 0.267949i 0.0147501i
$$331$$ 12.4641 7.19615i 0.685089 0.395536i −0.116681 0.993169i $$-0.537225\pi$$
0.801770 + 0.597633i $$0.203892\pi$$
$$332$$ −8.19615 + 4.73205i −0.449822 + 0.259705i
$$333$$ 5.92820i 0.324864i
$$334$$ −0.232051 0.401924i −0.0126973 0.0219923i
$$335$$ −0.732051 + 1.26795i −0.0399962 + 0.0692755i
$$336$$ 2.59808 + 1.50000i 0.141737 + 0.0818317i
$$337$$ −26.3923 −1.43768 −0.718840 0.695175i $$-0.755327\pi$$
−0.718840 + 0.695175i $$0.755327\pi$$
$$338$$ −12.9904 0.500000i −0.706584 0.0271964i
$$339$$ 12.0000 0.651751
$$340$$ 3.46410 + 2.00000i 0.187867 + 0.108465i
$$341$$ −0.660254 + 1.14359i −0.0357548 + 0.0619291i
$$342$$ −2.86603 4.96410i −0.154977 0.268428i
$$343$$ 15.0000i 0.809924i
$$344$$ 5.19615 3.00000i 0.280158 0.161749i
$$345$$ −3.00000 + 1.73205i −0.161515 + 0.0932505i
$$346$$ 2.12436i 0.114206i
$$347$$ −2.19615 3.80385i −0.117896 0.204201i 0.801038 0.598614i $$-0.204281\pi$$
−0.918934 + 0.394412i $$0.870948\pi$$
$$348$$ −0.732051 + 1.26795i −0.0392420 + 0.0679692i
$$349$$ −9.12436 5.26795i −0.488416 0.281987i 0.235501 0.971874i $$-0.424327\pi$$
−0.723917 + 0.689887i $$0.757660\pi$$
$$350$$ −3.00000 −0.160357
$$351$$ −0.866025 3.50000i −0.0462250 0.186816i
$$352$$ −0.267949 −0.0142817
$$353$$ 6.58846 + 3.80385i 0.350668 + 0.202458i 0.664980 0.746862i $$-0.268440\pi$$
−0.314311 + 0.949320i $$0.601774\pi$$
$$354$$ −5.73205 + 9.92820i −0.304655 + 0.527678i
$$355$$ −6.46410 11.1962i −0.343079 0.594230i
$$356$$ 14.1244i 0.748589i
$$357$$ −10.3923 + 6.00000i −0.550019 + 0.317554i
$$358$$ −7.85641 + 4.53590i −0.415224 + 0.239730i
$$359$$ 0.928203i 0.0489887i −0.999700 0.0244943i $$-0.992202\pi$$
0.999700 0.0244943i $$-0.00779757\pi$$
$$360$$ 0.500000 + 0.866025i 0.0263523 + 0.0456435i
$$361$$ 6.92820 12.0000i 0.364642 0.631579i
$$362$$ 14.6603 + 8.46410i 0.770526 + 0.444863i
$$363$$ −10.9282 −0.573582
$$364$$ −3.00000 + 10.3923i −0.157243 + 0.544705i
$$365$$ 6.92820 0.362639
$$366$$ 0.464102 + 0.267949i 0.0242590 + 0.0140059i
$$367$$ −10.6603 + 18.4641i −0.556461 + 0.963818i 0.441328 + 0.897346i $$0.354508\pi$$
−0.997788 + 0.0664722i $$0.978826\pi$$
$$368$$ −1.73205 3.00000i −0.0902894 0.156386i
$$369$$ 4.00000i 0.208232i
$$370$$ 5.13397 2.96410i 0.266903 0.154096i
$$371$$ −0.696152 + 0.401924i −0.0361424 + 0.0208668i
$$372$$ 4.92820i 0.255515i
$$373$$ −4.53590 7.85641i −0.234860 0.406789i 0.724372 0.689409i $$-0.242130\pi$$
−0.959232 + 0.282620i $$0.908796\pi$$
$$374$$ 0.535898 0.928203i 0.0277106 0.0479962i
$$375$$ −0.866025 0.500000i −0.0447214 0.0258199i
$$376$$ 6.46410 0.333361
$$377$$ −5.07180 1.46410i −0.261211 0.0754051i
$$378$$ −3.00000 −0.154303
$$379$$ −8.42820 4.86603i −0.432928 0.249951i 0.267665 0.963512i $$-0.413748\pi$$
−0.700593 + 0.713561i $$0.747081\pi$$
$$380$$ −2.86603 + 4.96410i −0.147024 + 0.254653i
$$381$$ −6.33013 10.9641i −0.324302 0.561708i
$$382$$ 17.3205i 0.886194i
$$383$$ 4.14359 2.39230i 0.211728 0.122241i −0.390386 0.920651i $$-0.627659\pi$$
0.602114 + 0.798410i $$0.294325\pi$$
$$384$$ −0.866025 + 0.500000i −0.0441942 + 0.0255155i
$$385$$ 0.803848i 0.0409679i
$$386$$ −4.92820 8.53590i −0.250839 0.434466i
$$387$$ −3.00000 + 5.19615i −0.152499 + 0.264135i
$$388$$ 7.26795 + 4.19615i 0.368974 + 0.213027i
$$389$$ 17.8564 0.905356 0.452678 0.891674i $$-0.350469\pi$$
0.452678 + 0.891674i $$0.350469\pi$$
$$390$$ −2.59808 + 2.50000i −0.131559 + 0.126592i
$$391$$ 13.8564 0.700749
$$392$$ 1.73205 + 1.00000i 0.0874818 + 0.0505076i
$$393$$ 7.16025 12.4019i 0.361187 0.625594i
$$394$$ −5.69615 9.86603i −0.286968 0.497043i
$$395$$ 3.07180i 0.154559i
$$396$$ 0.232051 0.133975i 0.0116610 0.00673248i
$$397$$ −5.13397 + 2.96410i −0.257667 + 0.148764i −0.623270 0.782007i $$-0.714196\pi$$
0.365603 + 0.930771i $$0.380863\pi$$
$$398$$ 24.9282i 1.24954i
$$399$$ −8.59808 14.8923i −0.430442 0.745548i
$$400$$ 0.500000 0.866025i 0.0250000 0.0433013i
$$401$$ −19.1603 11.0622i −0.956817 0.552419i −0.0616254 0.998099i $$-0.519628\pi$$
−0.895192 + 0.445681i $$0.852962\pi$$
$$402$$ 1.46410 0.0730228
$$403$$ −17.2487 + 4.26795i −0.859220 + 0.212602i
$$404$$ −12.3923 −0.616540
$$405$$ −0.866025 0.500000i −0.0430331 0.0248452i
$$406$$ −2.19615 + 3.80385i −0.108993 + 0.188782i
$$407$$ −0.794229 1.37564i −0.0393685 0.0681882i
$$408$$ 4.00000i 0.198030i
$$409$$ −33.8205 + 19.5263i −1.67232 + 0.965512i −0.705980 + 0.708232i $$0.749493\pi$$
−0.966337 + 0.257280i $$0.917174\pi$$
$$410$$ 3.46410 2.00000i 0.171080 0.0987730i
$$411$$ 13.4641i 0.664135i
$$412$$ −5.79423 10.0359i −0.285461 0.494433i
$$413$$ −17.1962 + 29.7846i −0.846167 + 1.46560i
$$414$$ 3.00000 + 1.73205i 0.147442 + 0.0851257i
$$415$$ −9.46410 −0.464574
$$416$$ −2.50000 2.59808i −0.122573 0.127381i
$$417$$ 19.7846 0.968857
$$418$$ 1.33013 + 0.767949i 0.0650586 + 0.0375616i
$$419$$ −4.92820 + 8.53590i −0.240758 + 0.417006i −0.960931 0.276790i $$-0.910730\pi$$
0.720172 + 0.693795i $$0.244063\pi$$
$$420$$ 1.50000 + 2.59808i 0.0731925 + 0.126773i
$$421$$ 21.8564i 1.06522i −0.846362 0.532608i $$-0.821212\pi$$
0.846362 0.532608i $$-0.178788\pi$$
$$422$$ 6.99038 4.03590i 0.340286 0.196464i
$$423$$ −5.59808 + 3.23205i −0.272188 + 0.157148i
$$424$$ 0.267949i 0.0130128i
$$425$$ 2.00000 + 3.46410i 0.0970143 + 0.168034i
$$426$$ −6.46410 + 11.1962i −0.313187 + 0.542455i
$$427$$ 1.39230 + 0.803848i 0.0673784 + 0.0389009i
$$428$$ 12.9282 0.624908
$$429$$ 0.669873 + 0.696152i 0.0323418 + 0.0336106i
$$430$$ 6.00000 0.289346
$$431$$ −12.0000 6.92820i −0.578020 0.333720i 0.182326 0.983238i $$-0.441637\pi$$
−0.760346 + 0.649518i $$0.774971\pi$$
$$432$$ 0.500000 0.866025i 0.0240563 0.0416667i
$$433$$ 4.39230 + 7.60770i 0.211081 + 0.365602i 0.952053 0.305933i $$-0.0989684\pi$$
−0.740972 + 0.671536i $$0.765635\pi$$
$$434$$ 14.7846i 0.709684i
$$435$$ −1.26795 + 0.732051i −0.0607935 + 0.0350991i
$$436$$ 9.00000 5.19615i 0.431022 0.248851i
$$437$$ 19.8564i 0.949861i
$$438$$ −3.46410 6.00000i −0.165521 0.286691i
$$439$$ 6.66025 11.5359i 0.317877 0.550578i −0.662168 0.749355i $$-0.730364\pi$$
0.980045 + 0.198777i $$0.0636969\pi$$
$$440$$ −0.232051 0.133975i −0.0110626 0.00638699i
$$441$$ −2.00000 −0.0952381
$$442$$ 14.0000 3.46410i 0.665912 0.164771i
$$443$$ −19.8564 −0.943406 −0.471703 0.881757i $$-0.656361\pi$$
−0.471703 + 0.881757i $$0.656361\pi$$
$$444$$ −5.13397 2.96410i −0.243648 0.140670i
$$445$$ 7.06218 12.2321i 0.334779 0.579855i
$$446$$ −9.42820 16.3301i −0.446438 0.773254i
$$447$$ 18.7846i 0.888482i
$$448$$ −2.59808 + 1.50000i −0.122748 + 0.0708683i
$$449$$ −5.30385 + 3.06218i −0.250304 + 0.144513i −0.619903 0.784678i $$-0.712828\pi$$
0.369599 + 0.929191i $$0.379495\pi$$
$$450$$ 1.00000i 0.0471405i
$$451$$ −0.535898 0.928203i −0.0252345 0.0437074i
$$452$$ −6.00000 + 10.3923i −0.282216 + 0.488813i
$$453$$ 19.7321 + 11.3923i 0.927093 + 0.535257i
$$454$$ 6.53590 0.306745
$$455$$ −7.79423 + 7.50000i −0.365399 + 0.351605i
$$456$$ 5.73205 0.268428
$$457$$ −6.46410 3.73205i −0.302378 0.174578i 0.341133 0.940015i $$-0.389189\pi$$
−0.643511 + 0.765437i $$0.722523\pi$$
$$458$$ −2.26795 + 3.92820i −0.105974 + 0.183553i
$$459$$ 2.00000 + 3.46410i 0.0933520 + 0.161690i
$$460$$ 3.46410i 0.161515i
$$461$$ −10.0526 + 5.80385i −0.468194 + 0.270312i −0.715484 0.698630i $$-0.753794\pi$$
0.247289 + 0.968942i $$0.420460\pi$$
$$462$$ 0.696152 0.401924i 0.0323879 0.0186992i
$$463$$ 40.7846i 1.89542i 0.319131 + 0.947711i $$0.396609\pi$$
−0.319131 + 0.947711i $$0.603391\pi$$
$$464$$ −0.732051 1.26795i −0.0339846 0.0588631i
$$465$$ −2.46410 + 4.26795i −0.114270 + 0.197921i
$$466$$ 15.5885 + 9.00000i 0.722121 + 0.416917i
$$467$$ 24.3923 1.12874 0.564371 0.825522i $$-0.309119\pi$$
0.564371 + 0.825522i $$0.309119\pi$$
$$468$$ 3.46410 + 1.00000i 0.160128 + 0.0462250i
$$469$$ 4.39230 0.202818
$$470$$ 5.59808 + 3.23205i 0.258220 + 0.149083i
$$471$$ 10.5981 18.3564i 0.488334 0.845819i
$$472$$ −5.73205 9.92820i −0.263839 0.456983i
$$473$$ 1.60770i 0.0739219i
$$474$$ 2.66025 1.53590i 0.122190 0.0705461i
$$475$$ −4.96410 + 2.86603i −0.227769 + 0.131502i
$$476$$ 12.0000i 0.550019i
$$477$$ 0.133975 + 0.232051i 0.00613428 + 0.0106249i
$$478$$ 1.73205 3.00000i 0.0792222 0.137217i
$$479$$ −19.2679 11.1244i −0.880375 0.508285i −0.00959301 0.999954i $$-0.503054\pi$$
−0.870782 + 0.491669i $$0.836387\pi$$
$$480$$ −1.00000 −0.0456435
$$481$$ 5.92820 20.5359i 0.270303 0.936356i
$$482$$ −25.1962 −1.14765
$$483$$ 9.00000 + 5.19615i 0.409514 + 0.236433i
$$484$$ 5.46410 9.46410i 0.248368 0.430186i
$$485$$ 4.19615 + 7.26795i 0.190537 + 0.330021i
$$486$$ 1.00000i 0.0453609i
$$487$$ 18.1865 10.5000i 0.824110 0.475800i −0.0277214 0.999616i $$-0.508825\pi$$
0.851832 + 0.523815i $$0.175492\pi$$
$$488$$ −0.464102 + 0.267949i −0.0210089 + 0.0121295i
$$489$$ 2.92820i 0.132418i
$$490$$ 1.00000 + 1.73205i 0.0451754 + 0.0782461i
$$491$$ −2.69615 + 4.66987i −0.121676 + 0.210748i −0.920429 0.390911i $$-0.872160\pi$$
0.798753 + 0.601659i $$0.205493\pi$$
$$492$$ −3.46410 2.00000i −0.156174 0.0901670i
$$493$$ 5.85641 0.263759
$$494$$ 4.96410 + 20.0622i 0.223345 + 0.902640i
$$495$$ 0.267949 0.0120434
$$496$$ −4.26795 2.46410i −0.191637 0.110641i
$$497$$ −19.3923 + 33.5885i −0.869864 + 1.50665i
$$498$$ 4.73205 + 8.19615i 0.212048 + 0.367278i
$$499$$ 33.3205i 1.49163i −0.666153 0.745815i $$-0.732060\pi$$
0.666153 0.745815i $$-0.267940\pi$$
$$500$$ 0.866025 0.500000i 0.0387298 0.0223607i
$$501$$ −0.401924 + 0.232051i −0.0179566 + 0.0103673i
$$502$$ 19.5359i 0.871930i
$$503$$ −1.86603 3.23205i −0.0832020 0.144110i 0.821422 0.570321i $$-0.193181\pi$$
−0.904624 + 0.426211i $$0.859848\pi$$
$$504$$ 1.50000 2.59808i 0.0668153 0.115728i
$$505$$ −10.7321 6.19615i −0.477570 0.275725i
$$506$$ −0.928203 −0.0412637
$$507$$ −0.500000 + 12.9904i −0.0222058 + 0.576923i
$$508$$ 12.6603 0.561708
$$509$$ 25.3923 + 14.6603i 1.12549 + 0.649804i 0.942798 0.333365i $$-0.108184\pi$$
0.182696 + 0.983169i $$0.441517\pi$$
$$510$$ 2.00000 3.46410i 0.0885615 0.153393i
$$511$$ −10.3923 18.0000i −0.459728 0.796273i
$$512$$ 1.00000i 0.0441942i
$$513$$ −4.96410 + 2.86603i −0.219170 + 0.126538i
$$514$$ −12.5885 + 7.26795i −0.555253 + 0.320575i
$$515$$ 11.5885i 0.510648i
$$516$$ −3.00000 5.19615i −0.132068 0.228748i
$$517$$ 0.866025 1.50000i 0.0380878 0.0659699i
$$518$$ −15.4019 8.89230i −0.676722 0.390705i
$$519$$ 2.12436 0.0932489
$$520$$ −0.866025 3.50000i −0.0379777 0.153485i
$$521$$ −6.60770 −0.289488 −0.144744 0.989469i $$-0.546236\pi$$
−0.144744 + 0.989469i $$0.546236\pi$$
$$522$$ 1.26795 + 0.732051i 0.0554966 + 0.0320410i
$$523$$ 20.8564 36.1244i 0.911987 1.57961i 0.100733 0.994913i $$-0.467881\pi$$
0.811254 0.584694i $$-0.198786\pi$$
$$524$$ 7.16025 + 12.4019i 0.312797 + 0.541781i
$$525$$ 3.00000i 0.130931i
$$526$$ 21.2321 12.2583i 0.925761 0.534489i
$$527$$ 17.0718 9.85641i 0.743659 0.429352i
$$528$$ 0.267949i 0.0116610i
$$529$$ 5.50000 + 9.52628i 0.239130 + 0.414186i
$$530$$ 0.133975 0.232051i 0.00581948 0.0100796i
$$531$$ 9.92820 + 5.73205i 0.430847 + 0.248750i
$$532$$ 17.1962 0.745548
$$533$$ 4.00000 13.8564i 0.173259 0.600188i
$$534$$ −14.1244 −0.611221
$$535$$ 11.1962 + 6.46410i 0.484052 + 0.279467i
$$536$$ −0.732051 + 1.26795i −0.0316198 + 0.0547671i
$$537$$ 4.53590 + 7.85641i 0.195738 + 0.339029i
$$538$$ 17.0718i 0.736017i
$$539$$ 0.464102 0.267949i 0.0199903 0.0115414i
$$540$$ 0.866025 0.500000i 0.0372678 0.0215166i
$$541$$ 14.7846i 0.635640i −0.948151 0.317820i $$-0.897049\pi$$
0.948151 0.317820i $$-0.102951\pi$$
$$542$$ 12.1962 + 21.1244i 0.523870 + 0.907369i
$$543$$ 8.46410 14.6603i 0.363229 0.629132i
$$544$$ 3.46410 + 2.00000i 0.148522 + 0.0857493i
$$545$$ 10.3923 0.445157
$$546$$ 10.3923 + 3.00000i 0.444750 + 0.128388i
$$547$$ −5.32051 −0.227488 −0.113744 0.993510i $$-0.536284\pi$$
−0.113744 + 0.993510i $$0.536284\pi$$
$$548$$ 11.6603 + 6.73205i 0.498101 + 0.287579i
$$549$$ 0.267949 0.464102i 0.0114358 0.0198074i
$$550$$ −0.133975 0.232051i −0.00571270 0.00989468i
$$551$$ 8.39230i 0.357524i
$$552$$ −3.00000 + 1.73205i −0.127688 + 0.0737210i
$$553$$ 7.98076 4.60770i 0.339377 0.195939i
$$554$$ 11.5885i 0.492346i
$$555$$ −2.96410 5.13397i −0.125819 0.217925i
$$556$$ −9.89230 + 17.1340i −0.419527 + 0.726642i
$$557$$ −19.5788 11.3038i −0.829582 0.478959i 0.0241275 0.999709i $$-0.492319\pi$$
−0.853710 + 0.520749i $$0.825653\pi$$
$$558$$ 4.92820 0.208627
$$559$$ 15.5885 15.0000i 0.659321 0.634432i
$$560$$ −3.00000 −0.126773
$$561$$ −0.928203 0.535898i −0.0391888 0.0226256i
$$562$$ 3.46410 6.00000i 0.146124 0.253095i
$$563$$ 7.66025 + 13.2679i 0.322841 + 0.559177i 0.981073 0.193638i $$-0.0620287\pi$$
−0.658232 + 0.752815i $$0.728695\pi$$
$$564$$ 6.46410i 0.272188i
$$565$$ −10.3923 + 6.00000i −0.437208 + 0.252422i
$$566$$ 5.53590 3.19615i 0.232691 0.134344i
$$567$$ 3.00000i 0.125988i
$$568$$ −6.46410 11.1962i −0.271228 0.469780i
$$569$$ 8.16025 14.1340i 0.342096 0.592527i −0.642726 0.766096i $$-0.722197\pi$$
0.984822 + 0.173569i $$0.0555300\pi$$
$$570$$ 4.96410 + 2.86603i 0.207923 + 0.120045i
$$571$$ 10.8564 0.454326 0.227163 0.973857i $$-0.427055\pi$$
0.227163 + 0.973857i $$0.427055\pi$$
$$572$$ −0.937822 + 0.232051i −0.0392123 + 0.00970253i
$$573$$ 17.3205 0.723575
$$574$$ −10.3923 6.00000i −0.433766 0.250435i
$$575$$ 1.73205 3.00000i 0.0722315 0.125109i
$$576$$ 0.500000 + 0.866025i 0.0208333 + 0.0360844i
$$577$$ 9.32051i 0.388018i 0.981000 + 0.194009i $$0.0621491\pi$$
−0.981000 + 0.194009i $$0.937851\pi$$
$$578$$ 0.866025 0.500000i 0.0360219 0.0207973i
$$579$$ −8.53590 + 4.92820i −0.354740 + 0.204809i
$$580$$ 1.46410i 0.0607935i
$$581$$ 14.1962 + 24.5885i 0.588956 + 1.02010i
$$582$$ 4.19615 7.26795i 0.173936 0.301266i
$$583$$ −0.0621778 0.0358984i −0.00257514 0.00148676i
$$584$$ 6.92820 0.286691
$$585$$ 2.50000 + 2.59808i 0.103362 + 0.107417i
$$586$$ 29.2487 1.20825
$$587$$ −7.73205 4.46410i −0.319136 0.184253i 0.331871 0.943325i $$-0.392320\pi$$
−0.651007 + 0.759071i $$0.725653\pi$$
$$588$$ 1.00000 1.73205i 0.0412393 0.0714286i
$$589$$ 14.1244 + 24.4641i 0.581984 + 1.00803i
$$590$$ 11.4641i 0.471970i
$$591$$ −9.86603 + 5.69615i −0.405834 + 0.234308i
$$592$$ 5.13397 2.96410i 0.211005 0.121824i
$$593$$ 44.7846i 1.83908i 0.392992 + 0.919542i $$0.371440\pi$$
−0.392992 + 0.919542i $$0.628560\pi$$
$$594$$ −0.133975 0.232051i −0.00549704 0.00952116i
$$595$$ 6.00000 10.3923i 0.245976 0.426043i
$$596$$ 16.2679 + 9.39230i 0.666361 + 0.384724i
$$597$$ 24.9282 1.02024
$$598$$ −8.66025 9.00000i −0.354144 0.368037i
$$599$$ 28.9282 1.18197 0.590987 0.806681i $$-0.298738\pi$$
0.590987 + 0.806681i $$0.298738\pi$$
$$600$$ −0.866025 0.500000i −0.0353553 0.0204124i
$$601$$ −15.3564 + 26.5981i −0.626401 + 1.08496i 0.361867 + 0.932230i $$0.382139\pi$$
−0.988268 + 0.152729i $$0.951194\pi$$
$$602$$ −9.00000 15.5885i −0.366813 0.635338i
$$603$$ 1.46410i 0.0596228i
$$604$$ −19.7321 + 11.3923i −0.802886 + 0.463546i
$$605$$ 9.46410 5.46410i 0.384770 0.222147i
$$606$$ 12.3923i 0.503403i
$$607$$ 10.7224 + 18.5718i 0.435210 + 0.753806i 0.997313 0.0732615i $$-0.0233408\pi$$
−0.562103 + 0.827067i $$0.690007\pi$$
$$608$$ −2.86603 + 4.96410i −0.116233 + 0.201321i
$$609$$ 3.80385 + 2.19615i 0.154140 + 0.0889926i
$$610$$ −0.535898 −0.0216979
$$611$$ 22.6244 5.59808i 0.915283 0.226474i
$$612$$ −4.00000 −0.161690
$$613$$ 38.9711 + 22.5000i 1.57403 + 0.908766i 0.995667 + 0.0929864i $$0.0296413\pi$$
0.578362 + 0.815780i $$0.303692\pi$$
$$614$$ −14.1244 + 24.4641i −0.570013 + 0.987291i
$$615$$ −2.00000 3.46410i −0.0806478 0.139686i
$$616$$ 0.803848i 0.0323879i
$$617$$ −30.7128 + 17.7321i −1.23645 + 0.713865i −0.968367 0.249530i $$-0.919724\pi$$
−0.268084 + 0.963395i $$0.586391\pi$$
$$618$$ −10.0359 + 5.79423i −0.403703 + 0.233078i
$$619$$ 2.51666i 0.101153i −0.998720 0.0505766i $$-0.983894\pi$$
0.998720 0.0505766i $$-0.0161059\pi$$
$$620$$ −2.46410 4.26795i −0.0989607 0.171405i
$$621$$ 1.73205 3.00000i 0.0695048 0.120386i
$$622$$ 16.3923 + 9.46410i 0.657272 + 0.379476i
$$623$$ −42.3731 −1.69764
$$624$$ −2.59808 + 2.50000i −0.104006 + 0.100080i
$$625$$ 1.00000 0.0400000
$$626$$ −28.8564 16.6603i −1.15333 0.665878i
$$627$$ 0.767949 1.33013i 0.0306689 0.0531202i
$$628$$ 10.5981 + 18.3564i 0.422909 + 0.732500i
$$629$$ 23.7128i 0.945492i
$$630$$ 2.59808 1.50000i 0.103510 0.0597614i
$$631$$ −6.92820 + 4.00000i −0.275807 + 0.159237i −0.631524 0.775356i $$-0.717570\pi$$
0.355716 + 0.934594i $$0.384237\pi$$
$$632$$ 3.07180i 0.122190i
$$633$$ −4.03590 6.99038i −0.160413 0.277843i
$$634$$ 15.2321 26.3827i 0.604942 1.04779i
$$635$$ 10.9641 + 6.33013i 0.435097 + 0.251203i
$$636$$ −0.267949 −0.0106249
$$637$$ 6.92820 + 2.00000i 0.274505 + 0.0792429i
$$638$$ −0.392305 −0.0155315
$$639$$ 11.1962 + 6.46410i 0.442913 + 0.255716i
$$640$$ 0.500000 0.866025i 0.0197642 0.0342327i
$$641$$ −7.23205 12.5263i −0.285649 0.494758i 0.687117 0.726546i $$-0.258876\pi$$
−0.972766 + 0.231788i $$0.925542\pi$$
$$642$$ 12.9282i 0.510235i
$$643$$ 11.0718 6.39230i 0.436629 0.252088i −0.265538 0.964100i $$-0.585549\pi$$
0.702167 + 0.712013i $$0.252216\pi$$
$$644$$ −9.00000 + 5.19615i −0.354650 + 0.204757i
$$645$$ 6.00000i 0.236250i
$$646$$ −11.4641 19.8564i −0.451049 0.781240i
$$647$$ 17.8660 30.9449i 0.702386 1.21657i −0.265241 0.964182i $$-0.585451\pi$$
0.967627 0.252386i $$-0.0812152\pi$$
$$648$$ −0.866025 0.500000i −0.0340207 0.0196419i
$$649$$ −3.07180 −0.120579
$$650$$ 1.00000 3.46410i 0.0392232 0.135873i
$$651$$ 14.7846 0.579455
$$652$$ −2.53590 1.46410i −0.0993134 0.0573386i
$$653$$ 0.794229 1.37564i 0.0310806 0.0538331i −0.850067 0.526675i $$-0.823438\pi$$
0.881147 + 0.472842i $$0.156772\pi$$
$$654$$ −5.19615 9.00000i −0.203186 0.351928i
$$655$$ 14.3205i 0.559549i
$$656$$ 3.46410 2.00000i 0.135250 0.0780869i
$$657$$ −6.00000 + 3.46410i −0.234082 + 0.135147i
$$658$$ 19.3923i 0.755991i
$$659$$ 19.8564 + 34.3923i 0.773496 + 1.33973i 0.935636 + 0.352966i $$0.114827\pi$$
−0.162140 + 0.986768i $$0.551840\pi$$
$$660$$ −0.133975 + 0.232051i −0.00521495 + 0.00903257i
$$661$$ −18.7128 10.8038i −0.727844 0.420221i 0.0897889 0.995961i $$-0.471381\pi$$
−0.817633 + 0.575740i $$0.804714\pi$$
$$662$$ 14.3923 0.559373
$$663$$ −3.46410 14.0000i −0.134535 0.543715i
$$664$$ −9.46410 −0.367278
$$665$$ 14.8923 + 8.59808i 0.577499 + 0.333419i
$$666$$ −2.96410 + 5.13397i −0.114857 + 0.198937i
$$667$$ −2.53590 4.39230i −0.0981904 0.170071i
$$668$$ 0.464102i 0.0179566i
$$669$$ −16.3301 + 9.42820i −0.631359 + 0.364515i
$$670$$ −1.26795 + 0.732051i −0.0489852 + 0.0282816i
$$671$$ 0.143594i 0.00554337i
$$672$$ 1.50000 + 2.59808i 0.0578638 + 0.100223i
$$673$$ 8.39230 14.5359i 0.323500 0.560318i −0.657708 0.753273i $$-0.728474\pi$$
0.981208 + 0.192955i $$0.0618072\pi$$
$$674$$ −22.8564 13.1962i −0.880396 0.508297i
$$675$$ 1.00000 0.0384900
$$676$$ −11.0000 6.92820i −0.423077 0.266469i
$$677$$ 10.9282 0.420005 0.210002 0.977701i $$-0.432653\pi$$
0.210002 + 0.977701i $$0.432653\pi$$
$$678$$ 10.3923 + 6.00000i 0.399114 + 0.230429i
$$679$$ 12.5885 21.8038i 0.483101 0.836755i
$$680$$ 2.00000 + 3.46410i 0.0766965 + 0.132842i
$$681$$ 6.53590i 0.250456i
$$682$$ −1.14359 + 0.660254i −0.0437905 + 0.0252824i
$$683$$ 35.7846 20.6603i 1.36926 0.790543i 0.378427 0.925631i $$-0.376465\pi$$
0.990834 + 0.135089i $$0.0431319\pi$$
$$684$$ 5.73205i 0.219170i
$$685$$ 6.73205 + 11.6603i 0.257218 + 0.445515i
$$686$$ −7.50000 + 12.9904i −0.286351 + 0.495975i
$$687$$ 3.92820 + 2.26795i 0.149870 + 0.0865277i
$$688$$ 6.00000 0.228748
$$689$$ −0.232051 0.937822i −0.00884043 0.0357282i
$$690$$ −3.46410 −0.131876
$$691$$ 13.0359 + 7.52628i 0.495909 + 0.286313i 0.727023 0.686614i $$-0.240904\pi$$
−0.231114 + 0.972927i $$0.574237\pi$$
$$692$$ −1.06218 + 1.83975i −0.0403779 + 0.0699366i
$$693$$ −0.401924 0.696152i −0.0152678 0.0264446i
$$694$$ 4.39230i 0.166730i
$$695$$ −17.1340 + 9.89230i −0.649929 + 0.375237i
$$696$$ −1.26795 + 0.732051i −0.0480615 + 0.0277483i
$$697$$ 16.0000i 0.606043i
$$698$$ −5.26795 9.12436i −0.199395 0.345362i
$$699$$ 9.00000 15.5885i 0.340411 0.589610i
$$700$$ −2.59808 1.50000i −0.0981981 0.0566947i
$$701$$ −4.39230 −0.165895 −0.0829475 0.996554i $$-0.526433\pi$$
−0.0829475 + 0.996554i $$0.526433\pi$$
$$702$$ 1.00000 3.46410i 0.0377426 0.130744i
$$703$$ −33.9808 −1.28161
$$704$$ −0.232051 0.133975i −0.00874574 0.00504936i
$$705$$ 3.23205 5.59808i 0.121726 0.210836i
$$706$$ 3.80385 + 6.58846i 0.143160 + 0.247960i
$$707$$ 37.1769i 1.39818i
$$708$$ −9.92820 + 5.73205i −0.373125 + 0.215424i
$$709$$ −23.6603 + 13.6603i −0.888579 + 0.513022i −0.873478 0.486864i $$-0.838141\pi$$
−0.0151019 + 0.999886i $$0.504807\pi$$
$$710$$ 12.9282i 0.485187i
$$711$$ −1.53590 2.66025i −0.0576007 0.0997673i
$$712$$ 7.06218 12.2321i 0.264666 0.458415i
$$713$$ −14.7846 8.53590i −0.553688 0.319672i
$$714$$ −12.0000 −0.449089
$$715$$ −0.928203 0.267949i −0.0347128 0.0100207i
$$716$$ −9.07180 −0.339029
$$717$$ −3.00000 1.73205i −0.112037 0.0646846i
$$718$$ 0.464102 0.803848i 0.0173201 0.0299993i
$$719$$ −8.00000 13.8564i −0.298350 0.516757i 0.677409 0.735607i $$-0.263103\pi$$
−0.975759 + 0.218850i $$0.929769\pi$$
$$720$$ 1.00000i 0.0372678i
$$721$$ −30.1077 + 17.3827i −1.12127 + 0.647365i
$$722$$ 12.0000 6.92820i 0.446594 0.257841i
$$723$$ 25.1962i 0.937055i
$$724$$ 8.46410 + 14.6603i 0.314566 + 0.544844i
$$725$$ 0.732051 1.26795i 0.0271877 0.0470905i
$$726$$ −9.46410 5.46410i −0.351246 0.202792i
$$727$$ −4.66025 −0.172839 −0.0864196 0.996259i $$-0.527543\pi$$
−0.0864196 + 0.996259i $$0.527543\pi$$
$$728$$ −7.79423 + 7.50000i −0.288873 + 0.277968i
$$729$$ 1.00000 0.0370370
$$730$$ 6.00000 + 3.46410i 0.222070 + 0.128212i
$$731$$ −12.0000 + 20.7846i −0.443836 + 0.768747i
$$732$$ 0.267949 + 0.464102i 0.00990369 + 0.0171537i
$$733$$ 20.8564i 0.770349i −0.922844 0.385174i $$-0.874141\pi$$
0.922844 0.385174i $$-0.125859\pi$$
$$734$$ −18.4641 + 10.6603i −0.681522 + 0.393477i
$$735$$ 1.73205 1.00000i 0.0638877 0.0368856i
$$736$$ 3.46410i 0.127688i
$$737$$ 0.196152 + 0.339746i 0.00722537 + 0.0125147i
$$738$$ −2.00000 + 3.46410i −0.0736210 + 0.127515i
$$739$$ 31.0359 + 17.9186i 1.14167 + 0.659146i 0.946845 0.321691i $$-0.104251\pi$$
0.194829 + 0.980837i $$0.437585\pi$$
$$740$$ 5.92820 0.217925
$$741$$ 20.0622 4.96410i 0.737003 0.182361i
$$742$$ −0.803848 −0.0295102
$$743$$ −9.46410 5.46410i −0.347204 0.200458i 0.316249 0.948676i $$-0.397576\pi$$
−0.663453 + 0.748218i $$0.730910\pi$$
$$744$$ −2.46410 + 4.26795i −0.0903383 + 0.156471i
$$745$$ 9.39230 + 16.2679i 0.344107 + 0.596012i
$$746$$ 9.07180i 0.332142i
$$747$$ 8.19615 4.73205i 0.299882 0.173137i
$$748$$ 0.928203 0.535898i 0.0339385 0.0195944i
$$749$$ 38.7846i 1.41716i
$$750$$ −0.500000 0.866025i −0.0182574 0.0316228i
$$751$$ 10.5885 18.3397i 0.386378 0.669227i −0.605581 0.795784i $$-0.707059\pi$$
0.991959 + 0.126557i $$0.0403926\pi$$
$$752$$ 5.59808 + 3.23205i 0.204141 + 0.117861i
$$753$$ −19.5359 −0.711928
$$754$$ −3.66025 3.80385i −0.133299 0.138528i
$$755$$ −22.7846 −0.829217
$$756$$ −2.59808 1.50000i −0.0944911 0.0545545i
$$757$$ −10.8660 + 18.8205i −0.394932 + 0.684043i −0.993093 0.117334i $$-0.962565\pi$$
0.598160 + 0.801377i $$0.295899\pi$$
$$758$$ −4.86603 8.42820i −0.176742 0.306126i
$$759$$ 0.928203i 0.0336916i
$$760$$ −4.96410 + 2.86603i −0.180067 + 0.103962i
$$761$$ 6.91154 3.99038i 0.250543 0.144651i −0.369470 0.929243i $$-0.620461\pi$$
0.620013 + 0.784592i $$0.287127\pi$$
$$762$$ 12.6603i 0.458633i
$$763$$ −15.5885 27.0000i −0.564340 0.977466i
$$764$$ −8.66025 + 15.0000i −0.313317 + 0.542681i
$$765$$ −3.46410 2.00000i −0.125245 0.0723102i
$$766$$ 4.78461 0.172875
$$767$$ −28.6603 29.7846i −1.03486 1.07546i
$$768$$ −1.00000 −0.0360844
$$769$$ 13.6077 + 7.85641i 0.490706 + 0.283309i 0.724867 0.688889i $$-0.241901\pi$$
−0.234161 + 0.972198i $$0.575234\pi$$
$$770$$ −0.401924 + 0.696152i −0.0144843 + 0.0250876i
$$771$$ 7.26795 + 12.5885i 0.261749 + 0.453362i
$$772$$ 9.85641i 0.354740i
$$773$$ −28.2391 + 16.3038i −1.01569 + 0.586409i −0.912852 0.408290i $$-0.866125\pi$$
−0.102837 + 0.994698i $$0.532792\pi$$
$$774$$ −5.19615 + 3.00000i −0.186772 + 0.107833i
$$775$$ 4.92820i 0.177026i
$$776$$ 4.19615 + 7.26795i