# Properties

 Label 390.2.bb.a.121.1 Level $390$ Weight $2$ Character 390.121 Analytic conductor $3.114$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$390 = 2 \cdot 3 \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 390.bb (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.11416567883$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 121.1 Root $$-0.866025 - 0.500000i$$ of defining polynomial Character $$\chi$$ $$=$$ 390.121 Dual form 390.2.bb.a.361.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} -1.00000i q^{5} +(-0.866025 + 0.500000i) q^{6} +(-2.59808 + 1.50000i) q^{7} -1.00000i q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})$$ $$q+(-0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} -1.00000i q^{5} +(-0.866025 + 0.500000i) q^{6} +(-2.59808 + 1.50000i) q^{7} -1.00000i q^{8} +(-0.500000 - 0.866025i) q^{9} +(-0.500000 + 0.866025i) q^{10} +(-3.23205 - 1.86603i) q^{11} +1.00000 q^{12} +(-0.866025 - 3.50000i) q^{13} +3.00000 q^{14} +(-0.866025 - 0.500000i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.00000 - 3.46410i) q^{17} +1.00000i q^{18} +(-1.96410 + 1.13397i) q^{19} +(0.866025 - 0.500000i) q^{20} +3.00000i q^{21} +(1.86603 + 3.23205i) q^{22} +(1.73205 - 3.00000i) q^{23} +(-0.866025 - 0.500000i) q^{24} -1.00000 q^{25} +(-1.00000 + 3.46410i) q^{26} -1.00000 q^{27} +(-2.59808 - 1.50000i) q^{28} +(2.73205 - 4.73205i) q^{29} +(0.500000 + 0.866025i) q^{30} +8.92820i q^{31} +(0.866025 - 0.500000i) q^{32} +(-3.23205 + 1.86603i) q^{33} +4.00000i q^{34} +(1.50000 + 2.59808i) q^{35} +(0.500000 - 0.866025i) q^{36} +(-6.86603 - 3.96410i) q^{37} +2.26795 q^{38} +(-3.46410 - 1.00000i) q^{39} -1.00000 q^{40} +(3.46410 + 2.00000i) q^{41} +(1.50000 - 2.59808i) q^{42} +(-3.00000 - 5.19615i) q^{43} -3.73205i q^{44} +(-0.866025 + 0.500000i) q^{45} +(-3.00000 + 1.73205i) q^{46} -0.464102i q^{47} +(0.500000 + 0.866025i) q^{48} +(1.00000 - 1.73205i) q^{49} +(0.866025 + 0.500000i) q^{50} -4.00000 q^{51} +(2.59808 - 2.50000i) q^{52} -3.73205 q^{53} +(0.866025 + 0.500000i) q^{54} +(-1.86603 + 3.23205i) q^{55} +(1.50000 + 2.59808i) q^{56} +2.26795i q^{57} +(-4.73205 + 2.73205i) q^{58} +(3.92820 - 2.26795i) q^{59} -1.00000i q^{60} +(3.73205 + 6.46410i) q^{61} +(4.46410 - 7.73205i) q^{62} +(2.59808 + 1.50000i) q^{63} -1.00000 q^{64} +(-3.50000 + 0.866025i) q^{65} +3.73205 q^{66} +(4.73205 + 2.73205i) q^{67} +(2.00000 - 3.46410i) q^{68} +(-1.73205 - 3.00000i) q^{69} -3.00000i q^{70} +(-0.803848 + 0.464102i) q^{71} +(-0.866025 + 0.500000i) q^{72} -6.92820i q^{73} +(3.96410 + 6.86603i) q^{74} +(-0.500000 + 0.866025i) q^{75} +(-1.96410 - 1.13397i) q^{76} +11.1962 q^{77} +(2.50000 + 2.59808i) q^{78} +16.9282 q^{79} +(0.866025 + 0.500000i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-2.00000 - 3.46410i) q^{82} -2.53590i q^{83} +(-2.59808 + 1.50000i) q^{84} +(-3.46410 + 2.00000i) q^{85} +6.00000i q^{86} +(-2.73205 - 4.73205i) q^{87} +(-1.86603 + 3.23205i) q^{88} +(-8.76795 - 5.06218i) q^{89} +1.00000 q^{90} +(7.50000 + 7.79423i) q^{91} +3.46410 q^{92} +(7.73205 + 4.46410i) q^{93} +(-0.232051 + 0.401924i) q^{94} +(1.13397 + 1.96410i) q^{95} -1.00000i q^{96} +(10.7321 - 6.19615i) q^{97} +(-1.73205 + 1.00000i) q^{98} +3.73205i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 2q^{3} + 2q^{4} - 2q^{9} + O(q^{10})$$ $$4q + 2q^{3} + 2q^{4} - 2q^{9} - 2q^{10} - 6q^{11} + 4q^{12} + 12q^{14} - 2q^{16} - 8q^{17} + 6q^{19} + 4q^{22} - 4q^{25} - 4q^{26} - 4q^{27} + 4q^{29} + 2q^{30} - 6q^{33} + 6q^{35} + 2q^{36} - 24q^{37} + 16q^{38} - 4q^{40} + 6q^{42} - 12q^{43} - 12q^{46} + 2q^{48} + 4q^{49} - 16q^{51} - 8q^{53} - 4q^{55} + 6q^{56} - 12q^{58} - 12q^{59} + 8q^{61} + 4q^{62} - 4q^{64} - 14q^{65} + 8q^{66} + 12q^{67} + 8q^{68} - 24q^{71} + 2q^{74} - 2q^{75} + 6q^{76} + 24q^{77} + 10q^{78} + 40q^{79} - 2q^{81} - 8q^{82} - 4q^{87} - 4q^{88} - 42q^{89} + 4q^{90} + 30q^{91} + 24q^{93} + 6q^{94} + 8q^{95} + 36q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/390\mathbb{Z}\right)^\times$$.

 $$n$$ $$131$$ $$157$$ $$301$$ $$\chi(n)$$ $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.866025 0.500000i −0.612372 0.353553i
$$3$$ 0.500000 0.866025i 0.288675 0.500000i
$$4$$ 0.500000 + 0.866025i 0.250000 + 0.433013i
$$5$$ 1.00000i 0.447214i
$$6$$ −0.866025 + 0.500000i −0.353553 + 0.204124i
$$7$$ −2.59808 + 1.50000i −0.981981 + 0.566947i −0.902867 0.429919i $$-0.858542\pi$$
−0.0791130 + 0.996866i $$0.525209\pi$$
$$8$$ 1.00000i 0.353553i
$$9$$ −0.500000 0.866025i −0.166667 0.288675i
$$10$$ −0.500000 + 0.866025i −0.158114 + 0.273861i
$$11$$ −3.23205 1.86603i −0.974500 0.562628i −0.0738948 0.997266i $$-0.523543\pi$$
−0.900605 + 0.434638i $$0.856876\pi$$
$$12$$ 1.00000 0.288675
$$13$$ −0.866025 3.50000i −0.240192 0.970725i
$$14$$ 3.00000 0.801784
$$15$$ −0.866025 0.500000i −0.223607 0.129099i
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ −2.00000 3.46410i −0.485071 0.840168i 0.514782 0.857321i $$-0.327873\pi$$
−0.999853 + 0.0171533i $$0.994540\pi$$
$$18$$ 1.00000i 0.235702i
$$19$$ −1.96410 + 1.13397i −0.450596 + 0.260152i −0.708082 0.706130i $$-0.750439\pi$$
0.257486 + 0.966282i $$0.417106\pi$$
$$20$$ 0.866025 0.500000i 0.193649 0.111803i
$$21$$ 3.00000i 0.654654i
$$22$$ 1.86603 + 3.23205i 0.397838 + 0.689076i
$$23$$ 1.73205 3.00000i 0.361158 0.625543i −0.626994 0.779024i $$-0.715715\pi$$
0.988152 + 0.153481i $$0.0490483\pi$$
$$24$$ −0.866025 0.500000i −0.176777 0.102062i
$$25$$ −1.00000 −0.200000
$$26$$ −1.00000 + 3.46410i −0.196116 + 0.679366i
$$27$$ −1.00000 −0.192450
$$28$$ −2.59808 1.50000i −0.490990 0.283473i
$$29$$ 2.73205 4.73205i 0.507329 0.878720i −0.492635 0.870236i $$-0.663966\pi$$
0.999964 0.00848369i $$-0.00270048\pi$$
$$30$$ 0.500000 + 0.866025i 0.0912871 + 0.158114i
$$31$$ 8.92820i 1.60355i 0.597624 + 0.801776i $$0.296111\pi$$
−0.597624 + 0.801776i $$0.703889\pi$$
$$32$$ 0.866025 0.500000i 0.153093 0.0883883i
$$33$$ −3.23205 + 1.86603i −0.562628 + 0.324833i
$$34$$ 4.00000i 0.685994i
$$35$$ 1.50000 + 2.59808i 0.253546 + 0.439155i
$$36$$ 0.500000 0.866025i 0.0833333 0.144338i
$$37$$ −6.86603 3.96410i −1.12877 0.651694i −0.185143 0.982712i $$-0.559275\pi$$
−0.943625 + 0.331017i $$0.892608\pi$$
$$38$$ 2.26795 0.367910
$$39$$ −3.46410 1.00000i −0.554700 0.160128i
$$40$$ −1.00000 −0.158114
$$41$$ 3.46410 + 2.00000i 0.541002 + 0.312348i 0.745485 0.666523i $$-0.232218\pi$$
−0.204483 + 0.978870i $$0.565551\pi$$
$$42$$ 1.50000 2.59808i 0.231455 0.400892i
$$43$$ −3.00000 5.19615i −0.457496 0.792406i 0.541332 0.840809i $$-0.317920\pi$$
−0.998828 + 0.0484030i $$0.984587\pi$$
$$44$$ 3.73205i 0.562628i
$$45$$ −0.866025 + 0.500000i −0.129099 + 0.0745356i
$$46$$ −3.00000 + 1.73205i −0.442326 + 0.255377i
$$47$$ 0.464102i 0.0676962i −0.999427 0.0338481i $$-0.989224\pi$$
0.999427 0.0338481i $$-0.0107762\pi$$
$$48$$ 0.500000 + 0.866025i 0.0721688 + 0.125000i
$$49$$ 1.00000 1.73205i 0.142857 0.247436i
$$50$$ 0.866025 + 0.500000i 0.122474 + 0.0707107i
$$51$$ −4.00000 −0.560112
$$52$$ 2.59808 2.50000i 0.360288 0.346688i
$$53$$ −3.73205 −0.512637 −0.256318 0.966592i $$-0.582510\pi$$
−0.256318 + 0.966592i $$0.582510\pi$$
$$54$$ 0.866025 + 0.500000i 0.117851 + 0.0680414i
$$55$$ −1.86603 + 3.23205i −0.251615 + 0.435810i
$$56$$ 1.50000 + 2.59808i 0.200446 + 0.347183i
$$57$$ 2.26795i 0.300397i
$$58$$ −4.73205 + 2.73205i −0.621349 + 0.358736i
$$59$$ 3.92820 2.26795i 0.511409 0.295262i −0.222004 0.975046i $$-0.571260\pi$$
0.733412 + 0.679784i $$0.237926\pi$$
$$60$$ 1.00000i 0.129099i
$$61$$ 3.73205 + 6.46410i 0.477840 + 0.827643i 0.999677 0.0254017i $$-0.00808648\pi$$
−0.521837 + 0.853045i $$0.674753\pi$$
$$62$$ 4.46410 7.73205i 0.566941 0.981971i
$$63$$ 2.59808 + 1.50000i 0.327327 + 0.188982i
$$64$$ −1.00000 −0.125000
$$65$$ −3.50000 + 0.866025i −0.434122 + 0.107417i
$$66$$ 3.73205 0.459384
$$67$$ 4.73205 + 2.73205i 0.578112 + 0.333773i 0.760383 0.649475i $$-0.225011\pi$$
−0.182271 + 0.983248i $$0.558345\pi$$
$$68$$ 2.00000 3.46410i 0.242536 0.420084i
$$69$$ −1.73205 3.00000i −0.208514 0.361158i
$$70$$ 3.00000i 0.358569i
$$71$$ −0.803848 + 0.464102i −0.0953992 + 0.0550787i −0.546941 0.837171i $$-0.684208\pi$$
0.451541 + 0.892250i $$0.350874\pi$$
$$72$$ −0.866025 + 0.500000i −0.102062 + 0.0589256i
$$73$$ 6.92820i 0.810885i −0.914121 0.405442i $$-0.867117\pi$$
0.914121 0.405442i $$-0.132883\pi$$
$$74$$ 3.96410 + 6.86603i 0.460817 + 0.798159i
$$75$$ −0.500000 + 0.866025i −0.0577350 + 0.100000i
$$76$$ −1.96410 1.13397i −0.225298 0.130076i
$$77$$ 11.1962 1.27592
$$78$$ 2.50000 + 2.59808i 0.283069 + 0.294174i
$$79$$ 16.9282 1.90457 0.952286 0.305208i $$-0.0987259\pi$$
0.952286 + 0.305208i $$0.0987259\pi$$
$$80$$ 0.866025 + 0.500000i 0.0968246 + 0.0559017i
$$81$$ −0.500000 + 0.866025i −0.0555556 + 0.0962250i
$$82$$ −2.00000 3.46410i −0.220863 0.382546i
$$83$$ 2.53590i 0.278351i −0.990268 0.139176i $$-0.955555\pi$$
0.990268 0.139176i $$-0.0444452\pi$$
$$84$$ −2.59808 + 1.50000i −0.283473 + 0.163663i
$$85$$ −3.46410 + 2.00000i −0.375735 + 0.216930i
$$86$$ 6.00000i 0.646997i
$$87$$ −2.73205 4.73205i −0.292907 0.507329i
$$88$$ −1.86603 + 3.23205i −0.198919 + 0.344538i
$$89$$ −8.76795 5.06218i −0.929401 0.536590i −0.0427788 0.999085i $$-0.513621\pi$$
−0.886622 + 0.462495i $$0.846954\pi$$
$$90$$ 1.00000 0.105409
$$91$$ 7.50000 + 7.79423i 0.786214 + 0.817057i
$$92$$ 3.46410 0.361158
$$93$$ 7.73205 + 4.46410i 0.801776 + 0.462906i
$$94$$ −0.232051 + 0.401924i −0.0239342 + 0.0414553i
$$95$$ 1.13397 + 1.96410i 0.116343 + 0.201513i
$$96$$ 1.00000i 0.102062i
$$97$$ 10.7321 6.19615i 1.08967 0.629124i 0.156185 0.987728i $$-0.450080\pi$$
0.933490 + 0.358604i $$0.116747\pi$$
$$98$$ −1.73205 + 1.00000i −0.174964 + 0.101015i
$$99$$ 3.73205i 0.375085i
$$100$$ −0.500000 0.866025i −0.0500000 0.0866025i
$$101$$ 4.19615 7.26795i 0.417533 0.723188i −0.578158 0.815925i $$-0.696228\pi$$
0.995691 + 0.0927369i $$0.0295616\pi$$
$$102$$ 3.46410 + 2.00000i 0.342997 + 0.198030i
$$103$$ 19.5885 1.93011 0.965054 0.262051i $$-0.0843989\pi$$
0.965054 + 0.262051i $$0.0843989\pi$$
$$104$$ −3.50000 + 0.866025i −0.343203 + 0.0849208i
$$105$$ 3.00000 0.292770
$$106$$ 3.23205 + 1.86603i 0.313925 + 0.181244i
$$107$$ −0.464102 + 0.803848i −0.0448664 + 0.0777109i −0.887587 0.460641i $$-0.847620\pi$$
0.842720 + 0.538352i $$0.180953\pi$$
$$108$$ −0.500000 0.866025i −0.0481125 0.0833333i
$$109$$ 10.3923i 0.995402i −0.867349 0.497701i $$-0.834178\pi$$
0.867349 0.497701i $$-0.165822\pi$$
$$110$$ 3.23205 1.86603i 0.308164 0.177919i
$$111$$ −6.86603 + 3.96410i −0.651694 + 0.376256i
$$112$$ 3.00000i 0.283473i
$$113$$ 6.00000 + 10.3923i 0.564433 + 0.977626i 0.997102 + 0.0760733i $$0.0242383\pi$$
−0.432670 + 0.901553i $$0.642428\pi$$
$$114$$ 1.13397 1.96410i 0.106206 0.183955i
$$115$$ −3.00000 1.73205i −0.279751 0.161515i
$$116$$ 5.46410 0.507329
$$117$$ −2.59808 + 2.50000i −0.240192 + 0.231125i
$$118$$ −4.53590 −0.417563
$$119$$ 10.3923 + 6.00000i 0.952661 + 0.550019i
$$120$$ −0.500000 + 0.866025i −0.0456435 + 0.0790569i
$$121$$ 1.46410 + 2.53590i 0.133100 + 0.230536i
$$122$$ 7.46410i 0.675768i
$$123$$ 3.46410 2.00000i 0.312348 0.180334i
$$124$$ −7.73205 + 4.46410i −0.694359 + 0.400888i
$$125$$ 1.00000i 0.0894427i
$$126$$ −1.50000 2.59808i −0.133631 0.231455i
$$127$$ −2.33013 + 4.03590i −0.206765 + 0.358128i −0.950694 0.310131i $$-0.899627\pi$$
0.743928 + 0.668259i $$0.232960\pi$$
$$128$$ 0.866025 + 0.500000i 0.0765466 + 0.0441942i
$$129$$ −6.00000 −0.528271
$$130$$ 3.46410 + 1.00000i 0.303822 + 0.0877058i
$$131$$ −20.3205 −1.77541 −0.887706 0.460412i $$-0.847702\pi$$
−0.887706 + 0.460412i $$0.847702\pi$$
$$132$$ −3.23205 1.86603i −0.281314 0.162417i
$$133$$ 3.40192 5.89230i 0.294984 0.510928i
$$134$$ −2.73205 4.73205i −0.236013 0.408787i
$$135$$ 1.00000i 0.0860663i
$$136$$ −3.46410 + 2.00000i −0.297044 + 0.171499i
$$137$$ −5.66025 + 3.26795i −0.483588 + 0.279200i −0.721911 0.691986i $$-0.756736\pi$$
0.238322 + 0.971186i $$0.423402\pi$$
$$138$$ 3.46410i 0.294884i
$$139$$ −10.8923 18.8660i −0.923873 1.60020i −0.793363 0.608748i $$-0.791672\pi$$
−0.130510 0.991447i $$-0.541661\pi$$
$$140$$ −1.50000 + 2.59808i −0.126773 + 0.219578i
$$141$$ −0.401924 0.232051i −0.0338481 0.0195422i
$$142$$ 0.928203 0.0778931
$$143$$ −3.73205 + 12.9282i −0.312090 + 1.08111i
$$144$$ 1.00000 0.0833333
$$145$$ −4.73205 2.73205i −0.392975 0.226884i
$$146$$ −3.46410 + 6.00000i −0.286691 + 0.496564i
$$147$$ −1.00000 1.73205i −0.0824786 0.142857i
$$148$$ 7.92820i 0.651694i
$$149$$ 19.7321 11.3923i 1.61651 0.933294i 0.628700 0.777648i $$-0.283587\pi$$
0.987813 0.155646i $$-0.0497458\pi$$
$$150$$ 0.866025 0.500000i 0.0707107 0.0408248i
$$151$$ 18.7846i 1.52867i 0.644819 + 0.764335i $$0.276933\pi$$
−0.644819 + 0.764335i $$0.723067\pi$$
$$152$$ 1.13397 + 1.96410i 0.0919775 + 0.159310i
$$153$$ −2.00000 + 3.46410i −0.161690 + 0.280056i
$$154$$ −9.69615 5.59808i −0.781338 0.451106i
$$155$$ 8.92820 0.717131
$$156$$ −0.866025 3.50000i −0.0693375 0.280224i
$$157$$ 10.8038 0.862241 0.431120 0.902294i $$-0.358118\pi$$
0.431120 + 0.902294i $$0.358118\pi$$
$$158$$ −14.6603 8.46410i −1.16631 0.673368i
$$159$$ −1.86603 + 3.23205i −0.147985 + 0.256318i
$$160$$ −0.500000 0.866025i −0.0395285 0.0684653i
$$161$$ 10.3923i 0.819028i
$$162$$ 0.866025 0.500000i 0.0680414 0.0392837i
$$163$$ −9.46410 + 5.46410i −0.741286 + 0.427981i −0.822537 0.568712i $$-0.807442\pi$$
0.0812509 + 0.996694i $$0.474108\pi$$
$$164$$ 4.00000i 0.312348i
$$165$$ 1.86603 + 3.23205i 0.145270 + 0.251615i
$$166$$ −1.26795 + 2.19615i −0.0984119 + 0.170454i
$$167$$ −5.59808 3.23205i −0.433192 0.250104i 0.267513 0.963554i $$-0.413798\pi$$
−0.700706 + 0.713451i $$0.747131\pi$$
$$168$$ 3.00000 0.231455
$$169$$ −11.5000 + 6.06218i −0.884615 + 0.466321i
$$170$$ 4.00000 0.306786
$$171$$ 1.96410 + 1.13397i 0.150199 + 0.0867172i
$$172$$ 3.00000 5.19615i 0.228748 0.396203i
$$173$$ −11.0622 19.1603i −0.841042 1.45673i −0.889015 0.457879i $$-0.848609\pi$$
0.0479730 0.998849i $$-0.484724\pi$$
$$174$$ 5.46410i 0.414232i
$$175$$ 2.59808 1.50000i 0.196396 0.113389i
$$176$$ 3.23205 1.86603i 0.243625 0.140657i
$$177$$ 4.53590i 0.340939i
$$178$$ 5.06218 + 8.76795i 0.379426 + 0.657186i
$$179$$ −11.4641 + 19.8564i −0.856867 + 1.48414i 0.0180347 + 0.999837i $$0.494259\pi$$
−0.874902 + 0.484300i $$0.839074\pi$$
$$180$$ −0.866025 0.500000i −0.0645497 0.0372678i
$$181$$ 3.07180 0.228325 0.114162 0.993462i $$-0.463582\pi$$
0.114162 + 0.993462i $$0.463582\pi$$
$$182$$ −2.59808 10.5000i −0.192582 0.778312i
$$183$$ 7.46410 0.551762
$$184$$ −3.00000 1.73205i −0.221163 0.127688i
$$185$$ −3.96410 + 6.86603i −0.291447 + 0.504800i
$$186$$ −4.46410 7.73205i −0.327324 0.566941i
$$187$$ 14.9282i 1.09166i
$$188$$ 0.401924 0.232051i 0.0293133 0.0169240i
$$189$$ 2.59808 1.50000i 0.188982 0.109109i
$$190$$ 2.26795i 0.164534i
$$191$$ −8.66025 15.0000i −0.626634 1.08536i −0.988222 0.153024i $$-0.951099\pi$$
0.361588 0.932338i $$-0.382235\pi$$
$$192$$ −0.500000 + 0.866025i −0.0360844 + 0.0625000i
$$193$$ −15.4641 8.92820i −1.11313 0.642666i −0.173492 0.984835i $$-0.555505\pi$$
−0.939638 + 0.342169i $$0.888838\pi$$
$$194$$ −12.3923 −0.889716
$$195$$ −1.00000 + 3.46410i −0.0716115 + 0.248069i
$$196$$ 2.00000 0.142857
$$197$$ −8.13397 4.69615i −0.579522 0.334587i 0.181422 0.983405i $$-0.441930\pi$$
−0.760943 + 0.648818i $$0.775263\pi$$
$$198$$ 1.86603 3.23205i 0.132613 0.229692i
$$199$$ 5.53590 + 9.58846i 0.392429 + 0.679708i 0.992769 0.120037i $$-0.0383014\pi$$
−0.600340 + 0.799745i $$0.704968\pi$$
$$200$$ 1.00000i 0.0707107i
$$201$$ 4.73205 2.73205i 0.333773 0.192704i
$$202$$ −7.26795 + 4.19615i −0.511371 + 0.295240i
$$203$$ 16.3923i 1.15051i
$$204$$ −2.00000 3.46410i −0.140028 0.242536i
$$205$$ 2.00000 3.46410i 0.139686 0.241943i
$$206$$ −16.9641 9.79423i −1.18194 0.682396i
$$207$$ −3.46410 −0.240772
$$208$$ 3.46410 + 1.00000i 0.240192 + 0.0693375i
$$209$$ 8.46410 0.585474
$$210$$ −2.59808 1.50000i −0.179284 0.103510i
$$211$$ 10.9641 18.9904i 0.754800 1.30735i −0.190674 0.981653i $$-0.561067\pi$$
0.945474 0.325698i $$-0.105599\pi$$
$$212$$ −1.86603 3.23205i −0.128159 0.221978i
$$213$$ 0.928203i 0.0635994i
$$214$$ 0.803848 0.464102i 0.0549499 0.0317253i
$$215$$ −5.19615 + 3.00000i −0.354375 + 0.204598i
$$216$$ 1.00000i 0.0680414i
$$217$$ −13.3923 23.1962i −0.909129 1.57466i
$$218$$ −5.19615 + 9.00000i −0.351928 + 0.609557i
$$219$$ −6.00000 3.46410i −0.405442 0.234082i
$$220$$ −3.73205 −0.251615
$$221$$ −10.3923 + 10.0000i −0.699062 + 0.672673i
$$222$$ 7.92820 0.532106
$$223$$ −7.66987 4.42820i −0.513613 0.296534i 0.220705 0.975341i $$-0.429164\pi$$
−0.734317 + 0.678806i $$0.762498\pi$$
$$224$$ −1.50000 + 2.59808i −0.100223 + 0.173591i
$$225$$ 0.500000 + 0.866025i 0.0333333 + 0.0577350i
$$226$$ 12.0000i 0.798228i
$$227$$ −11.6603 + 6.73205i −0.773918 + 0.446822i −0.834271 0.551355i $$-0.814111\pi$$
0.0603523 + 0.998177i $$0.480778\pi$$
$$228$$ −1.96410 + 1.13397i −0.130076 + 0.0750993i
$$229$$ 11.4641i 0.757569i −0.925485 0.378785i $$-0.876342\pi$$
0.925485 0.378785i $$-0.123658\pi$$
$$230$$ 1.73205 + 3.00000i 0.114208 + 0.197814i
$$231$$ 5.59808 9.69615i 0.368326 0.637960i
$$232$$ −4.73205 2.73205i −0.310674 0.179368i
$$233$$ 18.0000 1.17922 0.589610 0.807688i $$-0.299282\pi$$
0.589610 + 0.807688i $$0.299282\pi$$
$$234$$ 3.50000 0.866025i 0.228802 0.0566139i
$$235$$ −0.464102 −0.0302747
$$236$$ 3.92820 + 2.26795i 0.255704 + 0.147631i
$$237$$ 8.46410 14.6603i 0.549802 0.952286i
$$238$$ −6.00000 10.3923i −0.388922 0.673633i
$$239$$ 3.46410i 0.224074i −0.993704 0.112037i $$-0.964262\pi$$
0.993704 0.112037i $$-0.0357375\pi$$
$$240$$ 0.866025 0.500000i 0.0559017 0.0322749i
$$241$$ 12.8205 7.40192i 0.825842 0.476800i −0.0265852 0.999647i $$-0.508463\pi$$
0.852427 + 0.522847i $$0.175130\pi$$
$$242$$ 2.92820i 0.188232i
$$243$$ 0.500000 + 0.866025i 0.0320750 + 0.0555556i
$$244$$ −3.73205 + 6.46410i −0.238920 + 0.413822i
$$245$$ −1.73205 1.00000i −0.110657 0.0638877i
$$246$$ −4.00000 −0.255031
$$247$$ 5.66987 + 5.89230i 0.360765 + 0.374918i
$$248$$ 8.92820 0.566941
$$249$$ −2.19615 1.26795i −0.139176 0.0803530i
$$250$$ 0.500000 0.866025i 0.0316228 0.0547723i
$$251$$ −13.2321 22.9186i −0.835200 1.44661i −0.893868 0.448331i $$-0.852019\pi$$
0.0586681 0.998278i $$-0.481315\pi$$
$$252$$ 3.00000i 0.188982i
$$253$$ −11.1962 + 6.46410i −0.703896 + 0.406395i
$$254$$ 4.03590 2.33013i 0.253235 0.146205i
$$255$$ 4.00000i 0.250490i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ −10.7321 + 18.5885i −0.669447 + 1.15952i 0.308612 + 0.951188i $$0.400136\pi$$
−0.978059 + 0.208328i $$0.933198\pi$$
$$258$$ 5.19615 + 3.00000i 0.323498 + 0.186772i
$$259$$ 23.7846 1.47790
$$260$$ −2.50000 2.59808i −0.155043 0.161126i
$$261$$ −5.46410 −0.338219
$$262$$ 17.5981 + 10.1603i 1.08721 + 0.627703i
$$263$$ −10.2583 + 17.7679i −0.632556 + 1.09562i 0.354472 + 0.935067i $$0.384661\pi$$
−0.987027 + 0.160552i $$0.948673\pi$$
$$264$$ 1.86603 + 3.23205i 0.114846 + 0.198919i
$$265$$ 3.73205i 0.229258i
$$266$$ −5.89230 + 3.40192i −0.361280 + 0.208585i
$$267$$ −8.76795 + 5.06218i −0.536590 + 0.309800i
$$268$$ 5.46410i 0.333773i
$$269$$ 15.4641 + 26.7846i 0.942863 + 1.63309i 0.759975 + 0.649953i $$0.225211\pi$$
0.182888 + 0.983134i $$0.441455\pi$$
$$270$$ 0.500000 0.866025i 0.0304290 0.0527046i
$$271$$ −3.12436 1.80385i −0.189791 0.109576i 0.402094 0.915599i $$-0.368283\pi$$
−0.591885 + 0.806023i $$0.701616\pi$$
$$272$$ 4.00000 0.242536
$$273$$ 10.5000 2.59808i 0.635489 0.157243i
$$274$$ 6.53590 0.394848
$$275$$ 3.23205 + 1.86603i 0.194900 + 0.112526i
$$276$$ 1.73205 3.00000i 0.104257 0.180579i
$$277$$ 9.79423 + 16.9641i 0.588478 + 1.01927i 0.994432 + 0.105380i $$0.0336060\pi$$
−0.405954 + 0.913894i $$0.633061\pi$$
$$278$$ 21.7846i 1.30655i
$$279$$ 7.73205 4.46410i 0.462906 0.267259i
$$280$$ 2.59808 1.50000i 0.155265 0.0896421i
$$281$$ 6.92820i 0.413302i −0.978415 0.206651i $$-0.933744\pi$$
0.978415 0.206651i $$-0.0662565\pi$$
$$282$$ 0.232051 + 0.401924i 0.0138184 + 0.0239342i
$$283$$ −7.19615 + 12.4641i −0.427767 + 0.740914i −0.996674 0.0814876i $$-0.974033\pi$$
0.568907 + 0.822402i $$0.307366\pi$$
$$284$$ −0.803848 0.464102i −0.0476996 0.0275394i
$$285$$ 2.26795 0.134342
$$286$$ 9.69615 9.33013i 0.573346 0.551702i
$$287$$ −12.0000 −0.708338
$$288$$ −0.866025 0.500000i −0.0510310 0.0294628i
$$289$$ 0.500000 0.866025i 0.0294118 0.0509427i
$$290$$ 2.73205 + 4.73205i 0.160432 + 0.277876i
$$291$$ 12.3923i 0.726450i
$$292$$ 6.00000 3.46410i 0.351123 0.202721i
$$293$$ 16.6699 9.62436i 0.973864 0.562261i 0.0734522 0.997299i $$-0.476598\pi$$
0.900412 + 0.435038i $$0.143265\pi$$
$$294$$ 2.00000i 0.116642i
$$295$$ −2.26795 3.92820i −0.132045 0.228709i
$$296$$ −3.96410 + 6.86603i −0.230409 + 0.399080i
$$297$$ 3.23205 + 1.86603i 0.187543 + 0.108278i
$$298$$ −22.7846 −1.31988
$$299$$ −12.0000 3.46410i −0.693978 0.200334i
$$300$$ −1.00000 −0.0577350
$$301$$ 15.5885 + 9.00000i 0.898504 + 0.518751i
$$302$$ 9.39230 16.2679i 0.540466 0.936115i
$$303$$ −4.19615 7.26795i −0.241063 0.417533i
$$304$$ 2.26795i 0.130076i
$$305$$ 6.46410 3.73205i 0.370133 0.213697i
$$306$$ 3.46410 2.00000i 0.198030 0.114332i
$$307$$ 20.2487i 1.15565i 0.816159 + 0.577827i $$0.196099\pi$$
−0.816159 + 0.577827i $$0.803901\pi$$
$$308$$ 5.59808 + 9.69615i 0.318980 + 0.552490i
$$309$$ 9.79423 16.9641i 0.557174 0.965054i
$$310$$ −7.73205 4.46410i −0.439151 0.253544i
$$311$$ 5.07180 0.287595 0.143798 0.989607i $$-0.454069\pi$$
0.143798 + 0.989607i $$0.454069\pi$$
$$312$$ −1.00000 + 3.46410i −0.0566139 + 0.196116i
$$313$$ 1.32051 0.0746395 0.0373198 0.999303i $$-0.488118\pi$$
0.0373198 + 0.999303i $$0.488118\pi$$
$$314$$ −9.35641 5.40192i −0.528013 0.304848i
$$315$$ 1.50000 2.59808i 0.0845154 0.146385i
$$316$$ 8.46410 + 14.6603i 0.476143 + 0.824704i
$$317$$ 23.5359i 1.32191i 0.750427 + 0.660954i $$0.229848\pi$$
−0.750427 + 0.660954i $$0.770152\pi$$
$$318$$ 3.23205 1.86603i 0.181244 0.104642i
$$319$$ −17.6603 + 10.1962i −0.988784 + 0.570875i
$$320$$ 1.00000i 0.0559017i
$$321$$ 0.464102 + 0.803848i 0.0259036 + 0.0448664i
$$322$$ 5.19615 9.00000i 0.289570 0.501550i
$$323$$ 7.85641 + 4.53590i 0.437142 + 0.252384i
$$324$$ −1.00000 −0.0555556
$$325$$ 0.866025 + 3.50000i 0.0480384 + 0.194145i
$$326$$ 10.9282 0.605257
$$327$$ −9.00000 5.19615i −0.497701 0.287348i
$$328$$ 2.00000 3.46410i 0.110432 0.191273i
$$329$$ 0.696152 + 1.20577i 0.0383801 + 0.0664763i
$$330$$ 3.73205i 0.205443i
$$331$$ 5.53590 3.19615i 0.304280 0.175676i −0.340084 0.940395i $$-0.610455\pi$$
0.644364 + 0.764719i $$0.277122\pi$$
$$332$$ 2.19615 1.26795i 0.120530 0.0695878i
$$333$$ 7.92820i 0.434463i
$$334$$ 3.23205 + 5.59808i 0.176850 + 0.306313i
$$335$$ 2.73205 4.73205i 0.149268 0.258540i
$$336$$ −2.59808 1.50000i −0.141737 0.0818317i
$$337$$ −5.60770 −0.305471 −0.152735 0.988267i $$-0.548808\pi$$
−0.152735 + 0.988267i $$0.548808\pi$$
$$338$$ 12.9904 + 0.500000i 0.706584 + 0.0271964i
$$339$$ 12.0000 0.651751
$$340$$ −3.46410 2.00000i −0.187867 0.108465i
$$341$$ 16.6603 28.8564i 0.902203 1.56266i
$$342$$ −1.13397 1.96410i −0.0613183 0.106206i
$$343$$ 15.0000i 0.809924i
$$344$$ −5.19615 + 3.00000i −0.280158 + 0.161749i
$$345$$ −3.00000 + 1.73205i −0.161515 + 0.0932505i
$$346$$ 22.1244i 1.18941i
$$347$$ 8.19615 + 14.1962i 0.439993 + 0.762089i 0.997688 0.0679560i $$-0.0216478\pi$$
−0.557696 + 0.830045i $$0.688314\pi$$
$$348$$ 2.73205 4.73205i 0.146453 0.253665i
$$349$$ 15.1244 + 8.73205i 0.809588 + 0.467416i 0.846813 0.531891i $$-0.178518\pi$$
−0.0372247 + 0.999307i $$0.511852\pi$$
$$350$$ −3.00000 −0.160357
$$351$$ 0.866025 + 3.50000i 0.0462250 + 0.186816i
$$352$$ −3.73205 −0.198919
$$353$$ −24.5885 14.1962i −1.30871 0.755585i −0.326830 0.945083i $$-0.605981\pi$$
−0.981881 + 0.189498i $$0.939314\pi$$
$$354$$ −2.26795 + 3.92820i −0.120540 + 0.208782i
$$355$$ 0.464102 + 0.803848i 0.0246320 + 0.0426638i
$$356$$ 10.1244i 0.536590i
$$357$$ 10.3923 6.00000i 0.550019 0.317554i
$$358$$ 19.8564 11.4641i 1.04944 0.605897i
$$359$$ 12.9282i 0.682324i −0.940004 0.341162i $$-0.889179\pi$$
0.940004 0.341162i $$-0.110821\pi$$
$$360$$ 0.500000 + 0.866025i 0.0263523 + 0.0456435i
$$361$$ −6.92820 + 12.0000i −0.364642 + 0.631579i
$$362$$ −2.66025 1.53590i −0.139820 0.0807250i
$$363$$ 2.92820 0.153691
$$364$$ −3.00000 + 10.3923i −0.157243 + 0.544705i
$$365$$ −6.92820 −0.362639
$$366$$ −6.46410 3.73205i −0.337884 0.195077i
$$367$$ 6.66025 11.5359i 0.347662 0.602169i −0.638171 0.769894i $$-0.720309\pi$$
0.985834 + 0.167725i $$0.0536422\pi$$
$$368$$ 1.73205 + 3.00000i 0.0902894 + 0.156386i
$$369$$ 4.00000i 0.208232i
$$370$$ 6.86603 3.96410i 0.356948 0.206084i
$$371$$ 9.69615 5.59808i 0.503399 0.290638i
$$372$$ 8.92820i 0.462906i
$$373$$ −11.4641 19.8564i −0.593589 1.02813i −0.993744 0.111679i $$-0.964377\pi$$
0.400156 0.916447i $$-0.368956\pi$$
$$374$$ 7.46410 12.9282i 0.385960 0.668501i
$$375$$ 0.866025 + 0.500000i 0.0447214 + 0.0258199i
$$376$$ −0.464102 −0.0239342
$$377$$ −18.9282 5.46410i −0.974852 0.281416i
$$378$$ −3.00000 −0.154303
$$379$$ 5.42820 + 3.13397i 0.278828 + 0.160981i 0.632893 0.774239i $$-0.281867\pi$$
−0.354065 + 0.935221i $$0.615201\pi$$
$$380$$ −1.13397 + 1.96410i −0.0581717 + 0.100756i
$$381$$ 2.33013 + 4.03590i 0.119376 + 0.206765i
$$382$$ 17.3205i 0.886194i
$$383$$ 31.8564 18.3923i 1.62779 0.939803i 0.643035 0.765837i $$-0.277675\pi$$
0.984752 0.173966i $$-0.0556582\pi$$
$$384$$ 0.866025 0.500000i 0.0441942 0.0255155i
$$385$$ 11.1962i 0.570609i
$$386$$ 8.92820 + 15.4641i 0.454434 + 0.787102i
$$387$$ −3.00000 + 5.19615i −0.152499 + 0.264135i
$$388$$ 10.7321 + 6.19615i 0.544837 + 0.314562i
$$389$$ −9.85641 −0.499740 −0.249870 0.968279i $$-0.580388\pi$$
−0.249870 + 0.968279i $$0.580388\pi$$
$$390$$ 2.59808 2.50000i 0.131559 0.126592i
$$391$$ −13.8564 −0.700749
$$392$$ −1.73205 1.00000i −0.0874818 0.0505076i
$$393$$ −10.1603 + 17.5981i −0.512517 + 0.887706i
$$394$$ 4.69615 + 8.13397i 0.236589 + 0.409784i
$$395$$ 16.9282i 0.851750i
$$396$$ −3.23205 + 1.86603i −0.162417 + 0.0937713i
$$397$$ −6.86603 + 3.96410i −0.344596 + 0.198953i −0.662303 0.749237i $$-0.730421\pi$$
0.317707 + 0.948189i $$0.397087\pi$$
$$398$$ 11.0718i 0.554979i
$$399$$ −3.40192 5.89230i −0.170309 0.294984i
$$400$$ 0.500000 0.866025i 0.0250000 0.0433013i
$$401$$ −1.83975 1.06218i −0.0918725 0.0530426i 0.453360 0.891328i $$-0.350225\pi$$
−0.545232 + 0.838285i $$0.683559\pi$$
$$402$$ −5.46410 −0.272525
$$403$$ 31.2487 7.73205i 1.55661 0.385161i
$$404$$ 8.39230 0.417533
$$405$$ 0.866025 + 0.500000i 0.0430331 + 0.0248452i
$$406$$ 8.19615 14.1962i 0.406768 0.704543i
$$407$$ 14.7942 + 25.6244i 0.733323 + 1.27015i
$$408$$ 4.00000i 0.198030i
$$409$$ 0.820508 0.473721i 0.0405715 0.0234240i −0.479577 0.877500i $$-0.659210\pi$$
0.520149 + 0.854076i $$0.325877\pi$$
$$410$$ −3.46410 + 2.00000i −0.171080 + 0.0987730i
$$411$$ 6.53590i 0.322392i
$$412$$ 9.79423 + 16.9641i 0.482527 + 0.835761i
$$413$$ −6.80385 + 11.7846i −0.334795 + 0.579883i
$$414$$ 3.00000 + 1.73205i 0.147442 + 0.0851257i
$$415$$ −2.53590 −0.124482
$$416$$ −2.50000 2.59808i −0.122573 0.127381i
$$417$$ −21.7846 −1.06680
$$418$$ −7.33013 4.23205i −0.358528 0.206996i
$$419$$ 8.92820 15.4641i 0.436171 0.755471i −0.561219 0.827667i $$-0.689668\pi$$
0.997390 + 0.0721964i $$0.0230008\pi$$
$$420$$ 1.50000 + 2.59808i 0.0731925 + 0.126773i
$$421$$ 5.85641i 0.285424i −0.989764 0.142712i $$-0.954418\pi$$
0.989764 0.142712i $$-0.0455822\pi$$
$$422$$ −18.9904 + 10.9641i −0.924437 + 0.533724i
$$423$$ −0.401924 + 0.232051i −0.0195422 + 0.0112827i
$$424$$ 3.73205i 0.181244i
$$425$$ 2.00000 + 3.46410i 0.0970143 + 0.168034i
$$426$$ 0.464102 0.803848i 0.0224858 0.0389465i
$$427$$ −19.3923 11.1962i −0.938459 0.541820i
$$428$$ −0.928203 −0.0448664
$$429$$ 9.33013 + 9.69615i 0.450463 + 0.468135i
$$430$$ 6.00000 0.289346
$$431$$ −12.0000 6.92820i −0.578020 0.333720i 0.182326 0.983238i $$-0.441637\pi$$
−0.760346 + 0.649518i $$0.774971\pi$$
$$432$$ 0.500000 0.866025i 0.0240563 0.0416667i
$$433$$ −16.3923 28.3923i −0.787764 1.36445i −0.927334 0.374235i $$-0.877905\pi$$
0.139570 0.990212i $$-0.455428\pi$$
$$434$$ 26.7846i 1.28570i
$$435$$ −4.73205 + 2.73205i −0.226884 + 0.130992i
$$436$$ 9.00000 5.19615i 0.431022 0.248851i
$$437$$ 7.85641i 0.375823i
$$438$$ 3.46410 + 6.00000i 0.165521 + 0.286691i
$$439$$ −10.6603 + 18.4641i −0.508786 + 0.881243i 0.491162 + 0.871068i $$0.336572\pi$$
−0.999948 + 0.0101753i $$0.996761\pi$$
$$440$$ 3.23205 + 1.86603i 0.154082 + 0.0889593i
$$441$$ −2.00000 −0.0952381
$$442$$ 14.0000 3.46410i 0.665912 0.164771i
$$443$$ 7.85641 0.373269 0.186635 0.982429i $$-0.440242\pi$$
0.186635 + 0.982429i $$0.440242\pi$$
$$444$$ −6.86603 3.96410i −0.325847 0.188128i
$$445$$ −5.06218 + 8.76795i −0.239970 + 0.415641i
$$446$$ 4.42820 + 7.66987i 0.209682 + 0.363179i
$$447$$ 22.7846i 1.07768i
$$448$$ 2.59808 1.50000i 0.122748 0.0708683i
$$449$$ −15.6962 + 9.06218i −0.740747 + 0.427671i −0.822341 0.568995i $$-0.807332\pi$$
0.0815937 + 0.996666i $$0.473999\pi$$
$$450$$ 1.00000i 0.0471405i
$$451$$ −7.46410 12.9282i −0.351471 0.608765i
$$452$$ −6.00000 + 10.3923i −0.282216 + 0.488813i
$$453$$ 16.2679 + 9.39230i 0.764335 + 0.441289i
$$454$$ 13.4641 0.631902
$$455$$ 7.79423 7.50000i 0.365399 0.351605i
$$456$$ 2.26795 0.106206
$$457$$ 0.464102 + 0.267949i 0.0217098 + 0.0125341i 0.510816 0.859690i $$-0.329343\pi$$
−0.489106 + 0.872224i $$0.662677\pi$$
$$458$$ −5.73205 + 9.92820i −0.267841 + 0.463914i
$$459$$ 2.00000 + 3.46410i 0.0933520 + 0.161690i
$$460$$ 3.46410i 0.161515i
$$461$$ 28.0526 16.1962i 1.30654 0.754330i 0.325021 0.945707i $$-0.394629\pi$$
0.981517 + 0.191377i $$0.0612952\pi$$
$$462$$ −9.69615 + 5.59808i −0.451106 + 0.260446i
$$463$$ 0.784610i 0.0364639i 0.999834 + 0.0182320i $$0.00580373\pi$$
−0.999834 + 0.0182320i $$0.994196\pi$$
$$464$$ 2.73205 + 4.73205i 0.126832 + 0.219680i
$$465$$ 4.46410 7.73205i 0.207018 0.358565i
$$466$$ −15.5885 9.00000i −0.722121 0.416917i
$$467$$ 3.60770 0.166944 0.0834721 0.996510i $$-0.473399\pi$$
0.0834721 + 0.996510i $$0.473399\pi$$
$$468$$ −3.46410 1.00000i −0.160128 0.0462250i
$$469$$ −16.3923 −0.756926
$$470$$ 0.401924 + 0.232051i 0.0185394 + 0.0107037i
$$471$$ 5.40192 9.35641i 0.248908 0.431120i
$$472$$ −2.26795 3.92820i −0.104391 0.180810i
$$473$$ 22.3923i 1.02960i
$$474$$ −14.6603 + 8.46410i −0.673368 + 0.388769i
$$475$$ 1.96410 1.13397i 0.0901192 0.0520303i
$$476$$ 12.0000i 0.550019i
$$477$$ 1.86603 + 3.23205i 0.0854394 + 0.147985i
$$478$$ −1.73205 + 3.00000i −0.0792222 + 0.137217i
$$479$$ −22.7321 13.1244i −1.03865 0.599667i −0.119202 0.992870i $$-0.538034\pi$$
−0.919452 + 0.393203i $$0.871367\pi$$
$$480$$ −1.00000 −0.0456435
$$481$$ −7.92820 + 27.4641i −0.361495 + 1.25226i
$$482$$ −14.8038 −0.674297
$$483$$ 9.00000 + 5.19615i 0.409514 + 0.236433i
$$484$$ −1.46410 + 2.53590i −0.0665501 + 0.115268i
$$485$$ −6.19615 10.7321i −0.281353 0.487317i
$$486$$ 1.00000i 0.0453609i
$$487$$ −18.1865 + 10.5000i −0.824110 + 0.475800i −0.851832 0.523815i $$-0.824508\pi$$
0.0277214 + 0.999616i $$0.491175\pi$$
$$488$$ 6.46410 3.73205i 0.292616 0.168942i
$$489$$ 10.9282i 0.494190i
$$490$$ 1.00000 + 1.73205i 0.0451754 + 0.0782461i
$$491$$ 7.69615 13.3301i 0.347322 0.601580i −0.638450 0.769663i $$-0.720424\pi$$
0.985773 + 0.168083i $$0.0537576\pi$$
$$492$$ 3.46410 + 2.00000i 0.156174 + 0.0901670i
$$493$$ −21.8564 −0.984363
$$494$$ −1.96410 7.93782i −0.0883691 0.357140i
$$495$$ 3.73205 0.167743
$$496$$ −7.73205 4.46410i −0.347179 0.200444i
$$497$$ 1.39230 2.41154i 0.0624534 0.108172i
$$498$$ 1.26795 + 2.19615i 0.0568182 + 0.0984119i
$$499$$ 1.32051i 0.0591141i −0.999563 0.0295570i $$-0.990590\pi$$
0.999563 0.0295570i $$-0.00940967\pi$$
$$500$$ −0.866025 + 0.500000i −0.0387298 + 0.0223607i
$$501$$ −5.59808 + 3.23205i −0.250104 + 0.144397i
$$502$$ 26.4641i 1.18115i
$$503$$ −0.133975 0.232051i −0.00597363 0.0103466i 0.863023 0.505164i $$-0.168568\pi$$
−0.868997 + 0.494818i $$0.835235\pi$$
$$504$$ 1.50000 2.59808i 0.0668153 0.115728i
$$505$$ −7.26795 4.19615i −0.323419 0.186726i
$$506$$ 12.9282 0.574729
$$507$$ −0.500000 + 12.9904i −0.0222058 + 0.576923i
$$508$$ −4.66025 −0.206765
$$509$$ 4.60770 + 2.66025i 0.204232 + 0.117914i 0.598628 0.801027i $$-0.295713\pi$$
−0.394396 + 0.918941i $$0.629046\pi$$
$$510$$ 2.00000 3.46410i 0.0885615 0.153393i
$$511$$ 10.3923 + 18.0000i 0.459728 + 0.796273i
$$512$$ 1.00000i 0.0441942i
$$513$$ 1.96410 1.13397i 0.0867172 0.0500662i
$$514$$ 18.5885 10.7321i 0.819902 0.473370i
$$515$$ 19.5885i 0.863171i
$$516$$ −3.00000 5.19615i −0.132068 0.228748i
$$517$$ −0.866025 + 1.50000i −0.0380878 + 0.0659699i
$$518$$ −20.5981 11.8923i −0.905028 0.522518i
$$519$$ −22.1244 −0.971151
$$520$$ 0.866025 + 3.50000i 0.0379777 + 0.153485i
$$521$$ −27.3923 −1.20008 −0.600039 0.799970i $$-0.704848\pi$$
−0.600039 + 0.799970i $$0.704848\pi$$
$$522$$ 4.73205 + 2.73205i 0.207116 + 0.119579i
$$523$$ −6.85641 + 11.8756i −0.299810 + 0.519286i −0.976092 0.217357i $$-0.930257\pi$$
0.676283 + 0.736642i $$0.263590\pi$$
$$524$$ −10.1603 17.5981i −0.443853 0.768776i
$$525$$ 3.00000i 0.130931i
$$526$$ 17.7679 10.2583i 0.774719 0.447284i
$$527$$ 30.9282 17.8564i 1.34725 0.777837i
$$528$$ 3.73205i 0.162417i
$$529$$ 5.50000 + 9.52628i 0.239130 + 0.414186i
$$530$$ 1.86603 3.23205i 0.0810550 0.140391i
$$531$$ −3.92820 2.26795i −0.170470 0.0984206i
$$532$$ 6.80385 0.294984
$$533$$ 4.00000 13.8564i 0.173259 0.600188i
$$534$$ 10.1244 0.438124
$$535$$ 0.803848 + 0.464102i 0.0347534 + 0.0200649i
$$536$$ 2.73205 4.73205i 0.118007 0.204393i
$$537$$ 11.4641 + 19.8564i 0.494713 + 0.856867i
$$538$$ 30.9282i 1.33341i
$$539$$ −6.46410 + 3.73205i −0.278429 + 0.160751i
$$540$$ −0.866025 + 0.500000i −0.0372678 + 0.0215166i
$$541$$ 26.7846i 1.15156i −0.817605 0.575780i $$-0.804698\pi$$
0.817605 0.575780i $$-0.195302\pi$$
$$542$$ 1.80385 + 3.12436i 0.0774819 + 0.134203i
$$543$$ 1.53590 2.66025i 0.0659117 0.114162i
$$544$$ −3.46410 2.00000i −0.148522 0.0857493i
$$545$$ −10.3923 −0.445157
$$546$$ −10.3923 3.00000i −0.444750 0.128388i
$$547$$ 29.3205 1.25365 0.626827 0.779158i $$-0.284353\pi$$
0.626827 + 0.779158i $$0.284353\pi$$
$$548$$ −5.66025 3.26795i −0.241794 0.139600i
$$549$$ 3.73205 6.46410i 0.159280 0.275881i
$$550$$ −1.86603 3.23205i −0.0795676 0.137815i
$$551$$ 12.3923i 0.527930i
$$552$$ −3.00000 + 1.73205i −0.127688 + 0.0737210i
$$553$$ −43.9808 + 25.3923i −1.87025 + 1.07979i
$$554$$ 19.5885i 0.832234i
$$555$$ 3.96410 + 6.86603i 0.168267 + 0.291447i
$$556$$ 10.8923 18.8660i 0.461937 0.800098i
$$557$$ 37.5788 + 21.6962i 1.59227 + 0.919295i 0.992917 + 0.118808i $$0.0379072\pi$$
0.599349 + 0.800488i $$0.295426\pi$$
$$558$$ −8.92820 −0.377961
$$559$$ −15.5885 + 15.0000i −0.659321 + 0.634432i
$$560$$ −3.00000 −0.126773
$$561$$ 12.9282 + 7.46410i 0.545829 + 0.315135i
$$562$$ −3.46410 + 6.00000i −0.146124 + 0.253095i
$$563$$ −9.66025 16.7321i −0.407131 0.705172i 0.587436 0.809271i $$-0.300137\pi$$
−0.994567 + 0.104099i $$0.966804\pi$$
$$564$$ 0.464102i 0.0195422i
$$565$$ 10.3923 6.00000i 0.437208 0.252422i
$$566$$ 12.4641 7.19615i 0.523905 0.302477i
$$567$$ 3.00000i 0.125988i
$$568$$ 0.464102 + 0.803848i 0.0194733 + 0.0337287i
$$569$$ −9.16025 + 15.8660i −0.384018 + 0.665138i −0.991632 0.129094i $$-0.958793\pi$$
0.607615 + 0.794232i $$0.292127\pi$$
$$570$$ −1.96410 1.13397i −0.0822672 0.0474970i
$$571$$ −16.8564 −0.705419 −0.352709 0.935733i $$-0.614740\pi$$
−0.352709 + 0.935733i $$0.614740\pi$$
$$572$$ −13.0622 + 3.23205i −0.546157 + 0.135139i
$$573$$ −17.3205 −0.723575
$$574$$ 10.3923 + 6.00000i 0.433766 + 0.250435i
$$575$$ −1.73205 + 3.00000i −0.0722315 + 0.125109i
$$576$$ 0.500000 + 0.866025i 0.0208333 + 0.0360844i
$$577$$ 25.3205i 1.05411i 0.849832 + 0.527053i $$0.176703\pi$$
−0.849832 + 0.527053i $$0.823297\pi$$
$$578$$ −0.866025 + 0.500000i −0.0360219 + 0.0207973i
$$579$$ −15.4641 + 8.92820i −0.642666 + 0.371043i
$$580$$ 5.46410i 0.226884i
$$581$$ 3.80385 + 6.58846i 0.157810 + 0.273335i
$$582$$ −6.19615 + 10.7321i −0.256839 + 0.444858i
$$583$$ 12.0622 + 6.96410i 0.499564 + 0.288424i
$$584$$ −6.92820 −0.286691
$$585$$ 2.50000 + 2.59808i 0.103362 + 0.107417i
$$586$$ −19.2487 −0.795157
$$587$$ −4.26795 2.46410i −0.176157 0.101704i 0.409329 0.912387i $$-0.365763\pi$$
−0.585486 + 0.810683i $$0.699096\pi$$
$$588$$ 1.00000 1.73205i 0.0412393 0.0714286i
$$589$$ −10.1244 17.5359i −0.417167 0.722554i
$$590$$ 4.53590i 0.186740i
$$591$$ −8.13397 + 4.69615i −0.334587 + 0.193174i
$$592$$ 6.86603 3.96410i 0.282192 0.162924i
$$593$$ 3.21539i 0.132040i −0.997818 0.0660201i $$-0.978970\pi$$
0.997818 0.0660201i $$-0.0210302\pi$$
$$594$$ −1.86603 3.23205i −0.0765639 0.132613i
$$595$$ 6.00000 10.3923i 0.245976 0.426043i
$$596$$ 19.7321 + 11.3923i 0.808256 + 0.466647i
$$597$$ 11.0718 0.453138
$$598$$ 8.66025 + 9.00000i 0.354144 + 0.368037i
$$599$$ 15.0718 0.615817 0.307908 0.951416i $$-0.400371\pi$$
0.307908 + 0.951416i $$0.400371\pi$$
$$600$$ 0.866025 + 0.500000i 0.0353553 + 0.0204124i
$$601$$ 12.3564 21.4019i 0.504028 0.873003i −0.495961 0.868345i $$-0.665184\pi$$
0.999989 0.00465778i $$-0.00148262\pi$$
$$602$$ −9.00000 15.5885i −0.366813 0.635338i
$$603$$ 5.46410i 0.222515i
$$604$$ −16.2679 + 9.39230i −0.661933 + 0.382167i
$$605$$ 2.53590 1.46410i 0.103099 0.0595242i
$$606$$ 8.39230i 0.340914i
$$607$$ −18.7224 32.4282i −0.759920 1.31622i −0.942891 0.333102i $$-0.891905\pi$$
0.182971 0.983118i $$-0.441429\pi$$
$$608$$ −1.13397 + 1.96410i −0.0459887 + 0.0796548i
$$609$$ 14.1962 + 8.19615i 0.575257 + 0.332125i
$$610$$ −7.46410 −0.302213
$$611$$ −1.62436 + 0.401924i −0.0657144 + 0.0162601i
$$612$$ −4.00000 −0.161690
$$613$$ −38.9711 22.5000i −1.57403 0.908766i −0.995667 0.0929864i $$-0.970359\pi$$
−0.578362 0.815780i $$-0.696308\pi$$
$$614$$ 10.1244 17.5359i 0.408586 0.707691i
$$615$$ −2.00000 3.46410i −0.0806478 0.139686i
$$616$$ 11.1962i 0.451106i
$$617$$ 24.7128 14.2679i 0.994900 0.574406i 0.0881649 0.996106i $$-0.471900\pi$$
0.906735 + 0.421700i $$0.138566\pi$$
$$618$$ −16.9641 + 9.79423i −0.682396 + 0.393982i
$$619$$ 42.5167i 1.70889i −0.519543 0.854444i $$-0.673898\pi$$
0.519543 0.854444i $$-0.326102\pi$$
$$620$$ 4.46410 + 7.73205i 0.179283 + 0.310527i
$$621$$ −1.73205 + 3.00000i −0.0695048 + 0.120386i
$$622$$ −4.39230 2.53590i −0.176115 0.101680i
$$623$$ 30.3731 1.21687
$$624$$ 2.59808 2.50000i 0.104006 0.100080i
$$625$$ 1.00000 0.0400000
$$626$$ −1.14359 0.660254i −0.0457072 0.0263891i
$$627$$ 4.23205 7.33013i 0.169012 0.292737i
$$628$$ 5.40192 + 9.35641i 0.215560 + 0.373361i
$$629$$ 31.7128i 1.26447i
$$630$$ −2.59808 + 1.50000i −0.103510 + 0.0597614i
$$631$$ 6.92820 4.00000i 0.275807 0.159237i −0.355716 0.934594i $$-0.615763\pi$$
0.631524 + 0.775356i $$0.282430\pi$$
$$632$$ 16.9282i 0.673368i
$$633$$ −10.9641 18.9904i −0.435784 0.754800i
$$634$$ 11.7679 20.3827i 0.467365 0.809500i
$$635$$ 4.03590 + 2.33013i 0.160160 + 0.0924683i
$$636$$ −3.73205 −0.147985
$$637$$ −6.92820 2.00000i −0.274505 0.0792429i
$$638$$ 20.3923 0.807339
$$639$$ 0.803848 + 0.464102i 0.0317997 + 0.0183596i
$$640$$ 0.500000 0.866025i 0.0197642 0.0342327i
$$641$$ −3.76795 6.52628i −0.148825 0.257773i 0.781968 0.623318i $$-0.214216\pi$$
−0.930793 + 0.365546i $$0.880882\pi$$
$$642$$ 0.928203i 0.0366333i
$$643$$ 24.9282 14.3923i 0.983072 0.567577i 0.0798761 0.996805i $$-0.474548\pi$$
0.903196 + 0.429228i $$0.141214\pi$$
$$644$$ −9.00000 + 5.19615i −0.354650 + 0.204757i
$$645$$ 6.00000i 0.236250i
$$646$$ −4.53590 7.85641i −0.178463 0.309106i
$$647$$ 16.1340 27.9449i 0.634292 1.09863i −0.352373 0.935860i $$-0.614625\pi$$
0.986665 0.162766i $$-0.0520416\pi$$
$$648$$ 0.866025 + 0.500000i 0.0340207 + 0.0196419i
$$649$$ −16.9282 −0.664490
$$650$$ 1.00000 3.46410i 0.0392232 0.135873i
$$651$$ −26.7846 −1.04977
$$652$$ −9.46410 5.46410i −0.370643 0.213991i
$$653$$ −14.7942 + 25.6244i −0.578943 + 1.00276i 0.416658 + 0.909063i $$0.363201\pi$$
−0.995601 + 0.0936952i $$0.970132\pi$$
$$654$$ 5.19615 + 9.00000i 0.203186 + 0.351928i
$$655$$ 20.3205i 0.793988i
$$656$$ −3.46410 + 2.00000i −0.135250 + 0.0780869i
$$657$$ −6.00000 + 3.46410i −0.234082 + 0.135147i
$$658$$ 1.39230i 0.0542777i
$$659$$ −7.85641 13.6077i −0.306042 0.530081i 0.671451 0.741049i $$-0.265672\pi$$
−0.977493 + 0.210969i $$0.932338\pi$$
$$660$$ −1.86603 + 3.23205i −0.0726349 + 0.125807i
$$661$$ 36.7128 + 21.1962i 1.42796 + 0.824435i 0.996960 0.0779157i $$-0.0248265\pi$$
0.431003 + 0.902351i $$0.358160\pi$$
$$662$$ −6.39230 −0.248444
$$663$$ 3.46410 + 14.0000i 0.134535 + 0.543715i
$$664$$ −2.53590 −0.0984119
$$665$$ −5.89230 3.40192i −0.228494 0.131921i
$$666$$ 3.96410 6.86603i 0.153606 0.266053i
$$667$$ −9.46410 16.3923i −0.366451 0.634713i
$$668$$ 6.46410i 0.250104i
$$669$$ −7.66987 + 4.42820i −0.296534 + 0.171204i
$$670$$ −4.73205 + 2.73205i −0.182815 + 0.105548i
$$671$$ 27.8564i 1.07538i
$$672$$ 1.50000 + 2.59808i 0.0578638 + 0.100223i
$$673$$ −12.3923 + 21.4641i −0.477688 + 0.827380i −0.999673 0.0255746i $$-0.991858\pi$$
0.521985 + 0.852955i $$0.325192\pi$$
$$674$$ 4.85641 + 2.80385i 0.187062 + 0.108000i
$$675$$ 1.00000 0.0384900
$$676$$ −11.0000 6.92820i −0.423077 0.266469i
$$677$$ −2.92820 −0.112540 −0.0562700 0.998416i $$-0.517921\pi$$
−0.0562700 + 0.998416i $$0.517921\pi$$
$$678$$ −10.3923 6.00000i −0.399114 0.230429i
$$679$$ −18.5885 + 32.1962i −0.713360 + 1.23557i
$$680$$ 2.00000 + 3.46410i 0.0766965 + 0.132842i
$$681$$ 13.4641i 0.515945i
$$682$$ −28.8564 + 16.6603i −1.10497 + 0.637954i
$$683$$ −5.78461 + 3.33975i −0.221342 + 0.127792i −0.606571 0.795029i $$-0.707456\pi$$
0.385230 + 0.922821i $$0.374122\pi$$
$$684$$ 2.26795i 0.0867172i
$$685$$ 3.26795 + 5.66025i 0.124862 + 0.216267i
$$686$$ −7.50000 + 12.9904i −0.286351 + 0.495975i
$$687$$ −9.92820 5.73205i −0.378785 0.218691i
$$688$$ 6.00000 0.228748
$$689$$ 3.23205 + 13.0622i 0.123131 + 0.497629i
$$690$$ 3.46410 0.131876
$$691$$ 19.9641 + 11.5263i 0.759470 + 0.438480i 0.829106 0.559092i $$-0.188850\pi$$
−0.0696353 + 0.997573i $$0.522184\pi$$
$$692$$ 11.0622 19.1603i 0.420521 0.728364i
$$693$$ −5.59808 9.69615i −0.212653 0.368326i
$$694$$ 16.3923i 0.622243i
$$695$$ −18.8660 + 10.8923i −0.715629 + 0.413169i
$$696$$ −4.73205 + 2.73205i −0.179368 + 0.103558i
$$697$$ 16.0000i 0.606043i
$$698$$ −8.73205 15.1244i −0.330513 0.572465i
$$699$$ 9.00000 15.5885i 0.340411 0.589610i
$$700$$ 2.59808 + 1.50000i 0.0981981 + 0.0566947i
$$701$$ 16.3923 0.619129 0.309564 0.950878i $$-0.399817\pi$$
0.309564 + 0.950878i $$0.399817\pi$$
$$702$$ 1.00000 3.46410i 0.0377426 0.130744i
$$703$$ 17.9808 0.678157
$$704$$ 3.23205 + 1.86603i 0.121812 + 0.0703285i
$$705$$ −0.232051 + 0.401924i −0.00873954 + 0.0151373i
$$706$$ 14.1962 + 24.5885i 0.534279 + 0.925399i
$$707$$ 25.1769i 0.946875i
$$708$$ 3.92820 2.26795i 0.147631 0.0852348i
$$709$$ −6.33975 + 3.66025i −0.238094 + 0.137464i −0.614300 0.789072i $$-0.710562\pi$$
0.376206 + 0.926536i $$0.377228\pi$$
$$710$$ 0.928203i 0.0348348i
$$711$$ −8.46410 14.6603i −0.317429 0.549802i
$$712$$ −5.06218 + 8.76795i −0.189713 + 0.328593i
$$713$$ 26.7846 + 15.4641i 1.00309 + 0.579135i
$$714$$ −12.0000 −0.449089
$$715$$ 12.9282 + 3.73205i 0.483487 + 0.139571i
$$716$$ −22.9282 −0.856867
$$717$$ −3.00000 1.73205i −0.112037 0.0646846i
$$718$$ −6.46410 + 11.1962i −0.241238 + 0.417837i
$$719$$ −8.00000 13.8564i −0.298350 0.516757i 0.677409 0.735607i $$-0.263103\pi$$
−0.975759 + 0.218850i $$0.929769\pi$$
$$720$$ 1.00000i 0.0372678i
$$721$$ −50.8923 + 29.3827i −1.89533 + 1.09427i
$$722$$ 12.0000 6.92820i 0.446594 0.257841i
$$723$$ 14.8038i 0.550561i
$$724$$ 1.53590 + 2.66025i 0.0570812 + 0.0988676i
$$725$$ −2.73205 + 4.73205i −0.101466 + 0.175744i
$$726$$ −2.53590 1.46410i −0.0941160 0.0543379i
$$727$$ 12.6603 0.469543 0.234771 0.972051i $$-0.424566\pi$$
0.234771 + 0.972051i $$0.424566\pi$$
$$728$$ 7.79423 7.50000i 0.288873 0.277968i
$$729$$ 1.00000 0.0370370
$$730$$ 6.00000 + 3.46410i 0.222070 + 0.128212i
$$731$$ −12.0000 + 20.7846i −0.443836 + 0.768747i
$$732$$ 3.73205 + 6.46410i 0.137941 + 0.238920i
$$733$$ 6.85641i 0.253247i −0.991951 0.126624i $$-0.959586\pi$$
0.991951 0.126624i $$-0.0404140\pi$$
$$734$$ −11.5359 + 6.66025i −0.425798 + 0.245834i
$$735$$ −1.73205 + 1.00000i −0.0638877 + 0.0368856i
$$736$$ 3.46410i 0.127688i
$$737$$ −10.1962 17.6603i −0.375580 0.650524i
$$738$$ −2.00000 + 3.46410i −0.0736210 + 0.127515i
$$739$$ 37.9641 + 21.9186i 1.39653 + 0.806288i 0.994028 0.109130i $$-0.0348064\pi$$
0.402505 + 0.915418i $$0.368140\pi$$
$$740$$ −7.92820 −0.291447
$$741$$ 7.93782 1.96410i 0.291603 0.0721531i
$$742$$ −11.1962 −0.411024
$$743$$ −2.53590 1.46410i −0.0930331 0.0537127i 0.452762 0.891632i $$-0.350439\pi$$
−0.545795 + 0.837919i $$0.683772\pi$$
$$744$$ 4.46410 7.73205i 0.163662 0.283471i
$$745$$ −11.3923 19.7321i −0.417382 0.722926i
$$746$$ 22.9282i 0.839461i
$$747$$ −2.19615 + 1.26795i −0.0803530 + 0.0463918i
$$748$$ −12.9282 + 7.46410i −0.472702 + 0.272915i
$$749$$ 2.78461i 0.101747i
$$750$$ −0.500000 0.866025i −0.0182574 0.0316228i
$$751$$ −20.5885 + 35.6603i −0.751283 + 1.30126i 0.195917 + 0.980620i $$0.437232\pi$$
−0.947201 + 0.320641i $$0.896102\pi$$
$$752$$ 0.401924 + 0.232051i 0.0146567 + 0.00846202i
$$753$$ −26.4641 −0.964405
$$754$$ 13.6603 + 14.1962i 0.497477 + 0.516993i
$$755$$ 18.7846 0.683642
$$756$$ 2.59808 + 1.50000i 0.0944911 + 0.0545545i
$$757$$ −9.13397 + 15.8205i −0.331980 + 0.575006i −0.982900 0.184140i $$-0.941050\pi$$
0.650920 + 0.759146i $$0.274383\pi$$
$$758$$ −3.13397 5.42820i −0.113831 0.197161i
$$759$$ 12.9282i 0.469264i
$$760$$ 1.96410 1.13397i 0.0712455 0.0411336i
$$761$$ 38.0885 21.9904i 1.38071 0.797151i 0.388463 0.921465i $$-0.373006\pi$$
0.992243 + 0.124314i $$0.0396730\pi$$
$$762$$ 4.66025i 0.168823i
$$763$$ 15.5885 + 27.0000i 0.564340 + 0.977466i
$$764$$ 8.66025 15.0000i 0.313317 0.542681i
$$765$$ 3.46410 + 2.00000i 0.125245 + 0.0723102i
$$766$$ −36.7846 −1.32908
$$767$$ −11.3397 11.7846i −0.409454 0.425518i
$$768$$ −1.00000 −0.0360844
$$769$$ 34.3923 + 19.8564i 1.24022 + 0.716040i 0.969139 0.246517i $$-0.0792860\pi$$
0.271080 + 0.962557i $$0.412619\pi$$
$$770$$ −5.59808 + 9.69615i −0.201741 + 0.349425i
$$771$$ 10.7321 + 18.5885i 0.386505 + 0.669447i
$$772$$ 17.8564i 0.642666i
$$773$$ 46.2391 26.6962i 1.66310 0.960194i 0.691885 0.722008i $$-0.256780\pi$$
0.971220 0.238186i $$-0.0765528\pi$$
$$774$$ 5.19615 3.00000i 0.186772 0.107833i
$$775$$ 8.92820i 0.320711i
$$776$$ −6.19615 10.7321i −0.222429 0.385258i