Newspace parameters
Level: | \( N \) | \(=\) | \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 390.bb (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.11416567883\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\zeta_{12})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).
\(n\) | \(131\) | \(157\) | \(301\) |
\(\chi(n)\) | \(1\) | \(1\) | \(\zeta_{12}^{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
121.1 |
|
−0.866025 | − | 0.500000i | 0.500000 | − | 0.866025i | 0.500000 | + | 0.866025i | − | 1.00000i | −0.866025 | + | 0.500000i | −2.59808 | + | 1.50000i | − | 1.00000i | −0.500000 | − | 0.866025i | −0.500000 | + | 0.866025i | ||||||||||||||
121.2 | 0.866025 | + | 0.500000i | 0.500000 | − | 0.866025i | 0.500000 | + | 0.866025i | 1.00000i | 0.866025 | − | 0.500000i | 2.59808 | − | 1.50000i | 1.00000i | −0.500000 | − | 0.866025i | −0.500000 | + | 0.866025i | |||||||||||||||||
361.1 | −0.866025 | + | 0.500000i | 0.500000 | + | 0.866025i | 0.500000 | − | 0.866025i | 1.00000i | −0.866025 | − | 0.500000i | −2.59808 | − | 1.50000i | 1.00000i | −0.500000 | + | 0.866025i | −0.500000 | − | 0.866025i | |||||||||||||||||
361.2 | 0.866025 | − | 0.500000i | 0.500000 | + | 0.866025i | 0.500000 | − | 0.866025i | − | 1.00000i | 0.866025 | + | 0.500000i | 2.59808 | + | 1.50000i | − | 1.00000i | −0.500000 | + | 0.866025i | −0.500000 | − | 0.866025i | |||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 390.2.bb.a | ✓ | 4 |
3.b | odd | 2 | 1 | 1170.2.bs.d | 4 | ||
5.b | even | 2 | 1 | 1950.2.bc.a | 4 | ||
5.c | odd | 4 | 1 | 1950.2.y.d | 4 | ||
5.c | odd | 4 | 1 | 1950.2.y.e | 4 | ||
13.c | even | 3 | 1 | 5070.2.b.p | 4 | ||
13.e | even | 6 | 1 | inner | 390.2.bb.a | ✓ | 4 |
13.e | even | 6 | 1 | 5070.2.b.p | 4 | ||
13.f | odd | 12 | 1 | 5070.2.a.ba | 2 | ||
13.f | odd | 12 | 1 | 5070.2.a.be | 2 | ||
39.h | odd | 6 | 1 | 1170.2.bs.d | 4 | ||
65.l | even | 6 | 1 | 1950.2.bc.a | 4 | ||
65.r | odd | 12 | 1 | 1950.2.y.d | 4 | ||
65.r | odd | 12 | 1 | 1950.2.y.e | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
390.2.bb.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
390.2.bb.a | ✓ | 4 | 13.e | even | 6 | 1 | inner |
1170.2.bs.d | 4 | 3.b | odd | 2 | 1 | ||
1170.2.bs.d | 4 | 39.h | odd | 6 | 1 | ||
1950.2.y.d | 4 | 5.c | odd | 4 | 1 | ||
1950.2.y.d | 4 | 65.r | odd | 12 | 1 | ||
1950.2.y.e | 4 | 5.c | odd | 4 | 1 | ||
1950.2.y.e | 4 | 65.r | odd | 12 | 1 | ||
1950.2.bc.a | 4 | 5.b | even | 2 | 1 | ||
1950.2.bc.a | 4 | 65.l | even | 6 | 1 | ||
5070.2.a.ba | 2 | 13.f | odd | 12 | 1 | ||
5070.2.a.be | 2 | 13.f | odd | 12 | 1 | ||
5070.2.b.p | 4 | 13.c | even | 3 | 1 | ||
5070.2.b.p | 4 | 13.e | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{4} - 9T_{7}^{2} + 81 \)
acting on \(S_{2}^{\mathrm{new}}(390, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} - T^{2} + 1 \)
$3$
\( (T^{2} - T + 1)^{2} \)
$5$
\( (T^{2} + 1)^{2} \)
$7$
\( T^{4} - 9T^{2} + 81 \)
$11$
\( T^{4} + 6 T^{3} + 11 T^{2} - 6 T + 1 \)
$13$
\( T^{4} + 23T^{2} + 169 \)
$17$
\( (T^{2} + 4 T + 16)^{2} \)
$19$
\( T^{4} - 6 T^{3} - T^{2} + 78 T + 169 \)
$23$
\( T^{4} + 12T^{2} + 144 \)
$29$
\( T^{4} - 4 T^{3} + 24 T^{2} + 32 T + 64 \)
$31$
\( T^{4} + 104T^{2} + 1936 \)
$37$
\( T^{4} + 24 T^{3} + 239 T^{2} + \cdots + 2209 \)
$41$
\( T^{4} - 16T^{2} + 256 \)
$43$
\( (T^{2} + 6 T + 36)^{2} \)
$47$
\( T^{4} + 42T^{2} + 9 \)
$53$
\( (T^{2} + 4 T + 1)^{2} \)
$59$
\( T^{4} + 12 T^{3} - 4 T^{2} + \cdots + 2704 \)
$61$
\( T^{4} - 8 T^{3} + 60 T^{2} - 32 T + 16 \)
$67$
\( T^{4} - 12 T^{3} + 56 T^{2} - 96 T + 64 \)
$71$
\( T^{4} + 24 T^{3} + 204 T^{2} + \cdots + 144 \)
$73$
\( (T^{2} + 48)^{2} \)
$79$
\( (T^{2} - 20 T + 52)^{2} \)
$83$
\( T^{4} + 96T^{2} + 576 \)
$89$
\( T^{4} + 42 T^{3} + 731 T^{2} + \cdots + 20449 \)
$97$
\( T^{4} - 36 T^{3} + 536 T^{2} + \cdots + 10816 \)
show more
show less