Defining parameters
Level: | \( N \) | \(=\) | \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 390.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(168\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(390, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 92 | 12 | 80 |
Cusp forms | 76 | 12 | 64 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(390, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
390.2.b.a | $2$ | $3.114$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-2\) | \(0\) | \(0\) | \(q-iq^{2}-q^{3}-q^{4}+iq^{5}+iq^{6}+iq^{8}+\cdots\) |
390.2.b.b | $2$ | $3.114$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-2\) | \(0\) | \(0\) | \(q-iq^{2}-q^{3}-q^{4}+iq^{5}+iq^{6}+iq^{8}+\cdots\) |
390.2.b.c | $4$ | $3.114$ | \(\Q(i, \sqrt{13})\) | None | \(0\) | \(-4\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}-q^{3}-q^{4}+\beta _{1}q^{5}-\beta _{1}q^{6}+\cdots\) |
390.2.b.d | $4$ | $3.114$ | \(\Q(i, \sqrt{17})\) | None | \(0\) | \(4\) | \(0\) | \(0\) | \(q-\beta _{1}q^{2}+q^{3}-q^{4}+\beta _{1}q^{5}-\beta _{1}q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(390, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(390, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)