Properties

Label 390.2.a.e.1.1
Level $390$
Weight $2$
Character 390.1
Self dual yes
Analytic conductor $3.114$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 390.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} -1.00000 q^{6} +2.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} -1.00000 q^{6} +2.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{10} +4.00000 q^{11} -1.00000 q^{12} -1.00000 q^{13} +2.00000 q^{14} +1.00000 q^{15} +1.00000 q^{16} +8.00000 q^{17} +1.00000 q^{18} -6.00000 q^{19} -1.00000 q^{20} -2.00000 q^{21} +4.00000 q^{22} +6.00000 q^{23} -1.00000 q^{24} +1.00000 q^{25} -1.00000 q^{26} -1.00000 q^{27} +2.00000 q^{28} -4.00000 q^{29} +1.00000 q^{30} +1.00000 q^{32} -4.00000 q^{33} +8.00000 q^{34} -2.00000 q^{35} +1.00000 q^{36} -2.00000 q^{37} -6.00000 q^{38} +1.00000 q^{39} -1.00000 q^{40} -2.00000 q^{41} -2.00000 q^{42} -4.00000 q^{43} +4.00000 q^{44} -1.00000 q^{45} +6.00000 q^{46} -1.00000 q^{48} -3.00000 q^{49} +1.00000 q^{50} -8.00000 q^{51} -1.00000 q^{52} -10.0000 q^{53} -1.00000 q^{54} -4.00000 q^{55} +2.00000 q^{56} +6.00000 q^{57} -4.00000 q^{58} +4.00000 q^{59} +1.00000 q^{60} -10.0000 q^{61} +2.00000 q^{63} +1.00000 q^{64} +1.00000 q^{65} -4.00000 q^{66} +12.0000 q^{67} +8.00000 q^{68} -6.00000 q^{69} -2.00000 q^{70} -8.00000 q^{71} +1.00000 q^{72} -8.00000 q^{73} -2.00000 q^{74} -1.00000 q^{75} -6.00000 q^{76} +8.00000 q^{77} +1.00000 q^{78} +8.00000 q^{79} -1.00000 q^{80} +1.00000 q^{81} -2.00000 q^{82} +12.0000 q^{83} -2.00000 q^{84} -8.00000 q^{85} -4.00000 q^{86} +4.00000 q^{87} +4.00000 q^{88} -14.0000 q^{89} -1.00000 q^{90} -2.00000 q^{91} +6.00000 q^{92} +6.00000 q^{95} -1.00000 q^{96} -16.0000 q^{97} -3.00000 q^{98} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) −1.00000 −0.408248
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −1.00000 −0.316228
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) −1.00000 −0.288675
\(13\) −1.00000 −0.277350
\(14\) 2.00000 0.534522
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) 8.00000 1.94029 0.970143 0.242536i \(-0.0779791\pi\)
0.970143 + 0.242536i \(0.0779791\pi\)
\(18\) 1.00000 0.235702
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) −1.00000 −0.223607
\(21\) −2.00000 −0.436436
\(22\) 4.00000 0.852803
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) −1.00000 −0.204124
\(25\) 1.00000 0.200000
\(26\) −1.00000 −0.196116
\(27\) −1.00000 −0.192450
\(28\) 2.00000 0.377964
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 1.00000 0.182574
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.00000 0.176777
\(33\) −4.00000 −0.696311
\(34\) 8.00000 1.37199
\(35\) −2.00000 −0.338062
\(36\) 1.00000 0.166667
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) −6.00000 −0.973329
\(39\) 1.00000 0.160128
\(40\) −1.00000 −0.158114
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) −2.00000 −0.308607
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 4.00000 0.603023
\(45\) −1.00000 −0.149071
\(46\) 6.00000 0.884652
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −1.00000 −0.144338
\(49\) −3.00000 −0.428571
\(50\) 1.00000 0.141421
\(51\) −8.00000 −1.12022
\(52\) −1.00000 −0.138675
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) −1.00000 −0.136083
\(55\) −4.00000 −0.539360
\(56\) 2.00000 0.267261
\(57\) 6.00000 0.794719
\(58\) −4.00000 −0.525226
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 1.00000 0.129099
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 0 0
\(63\) 2.00000 0.251976
\(64\) 1.00000 0.125000
\(65\) 1.00000 0.124035
\(66\) −4.00000 −0.492366
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 8.00000 0.970143
\(69\) −6.00000 −0.722315
\(70\) −2.00000 −0.239046
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 1.00000 0.117851
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) −2.00000 −0.232495
\(75\) −1.00000 −0.115470
\(76\) −6.00000 −0.688247
\(77\) 8.00000 0.911685
\(78\) 1.00000 0.113228
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) −1.00000 −0.111803
\(81\) 1.00000 0.111111
\(82\) −2.00000 −0.220863
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) −2.00000 −0.218218
\(85\) −8.00000 −0.867722
\(86\) −4.00000 −0.431331
\(87\) 4.00000 0.428845
\(88\) 4.00000 0.426401
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) −1.00000 −0.105409
\(91\) −2.00000 −0.209657
\(92\) 6.00000 0.625543
\(93\) 0 0
\(94\) 0 0
\(95\) 6.00000 0.615587
\(96\) −1.00000 −0.102062
\(97\) −16.0000 −1.62455 −0.812277 0.583272i \(-0.801772\pi\)
−0.812277 + 0.583272i \(0.801772\pi\)
\(98\) −3.00000 −0.303046
\(99\) 4.00000 0.402015
\(100\) 1.00000 0.100000
\(101\) −16.0000 −1.59206 −0.796030 0.605257i \(-0.793070\pi\)
−0.796030 + 0.605257i \(0.793070\pi\)
\(102\) −8.00000 −0.792118
\(103\) −12.0000 −1.18240 −0.591198 0.806527i \(-0.701345\pi\)
−0.591198 + 0.806527i \(0.701345\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 2.00000 0.195180
\(106\) −10.0000 −0.971286
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 12.0000 1.14939 0.574696 0.818367i \(-0.305120\pi\)
0.574696 + 0.818367i \(0.305120\pi\)
\(110\) −4.00000 −0.381385
\(111\) 2.00000 0.189832
\(112\) 2.00000 0.188982
\(113\) 20.0000 1.88144 0.940721 0.339182i \(-0.110150\pi\)
0.940721 + 0.339182i \(0.110150\pi\)
\(114\) 6.00000 0.561951
\(115\) −6.00000 −0.559503
\(116\) −4.00000 −0.371391
\(117\) −1.00000 −0.0924500
\(118\) 4.00000 0.368230
\(119\) 16.0000 1.46672
\(120\) 1.00000 0.0912871
\(121\) 5.00000 0.454545
\(122\) −10.0000 −0.905357
\(123\) 2.00000 0.180334
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 2.00000 0.178174
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.00000 0.352180
\(130\) 1.00000 0.0877058
\(131\) 10.0000 0.873704 0.436852 0.899533i \(-0.356093\pi\)
0.436852 + 0.899533i \(0.356093\pi\)
\(132\) −4.00000 −0.348155
\(133\) −12.0000 −1.04053
\(134\) 12.0000 1.03664
\(135\) 1.00000 0.0860663
\(136\) 8.00000 0.685994
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) −6.00000 −0.510754
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) −2.00000 −0.169031
\(141\) 0 0
\(142\) −8.00000 −0.671345
\(143\) −4.00000 −0.334497
\(144\) 1.00000 0.0833333
\(145\) 4.00000 0.332182
\(146\) −8.00000 −0.662085
\(147\) 3.00000 0.247436
\(148\) −2.00000 −0.164399
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) −1.00000 −0.0816497
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) −6.00000 −0.486664
\(153\) 8.00000 0.646762
\(154\) 8.00000 0.644658
\(155\) 0 0
\(156\) 1.00000 0.0800641
\(157\) 22.0000 1.75579 0.877896 0.478852i \(-0.158947\pi\)
0.877896 + 0.478852i \(0.158947\pi\)
\(158\) 8.00000 0.636446
\(159\) 10.0000 0.793052
\(160\) −1.00000 −0.0790569
\(161\) 12.0000 0.945732
\(162\) 1.00000 0.0785674
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) −2.00000 −0.156174
\(165\) 4.00000 0.311400
\(166\) 12.0000 0.931381
\(167\) −4.00000 −0.309529 −0.154765 0.987951i \(-0.549462\pi\)
−0.154765 + 0.987951i \(0.549462\pi\)
\(168\) −2.00000 −0.154303
\(169\) 1.00000 0.0769231
\(170\) −8.00000 −0.613572
\(171\) −6.00000 −0.458831
\(172\) −4.00000 −0.304997
\(173\) 22.0000 1.67263 0.836315 0.548250i \(-0.184706\pi\)
0.836315 + 0.548250i \(0.184706\pi\)
\(174\) 4.00000 0.303239
\(175\) 2.00000 0.151186
\(176\) 4.00000 0.301511
\(177\) −4.00000 −0.300658
\(178\) −14.0000 −1.04934
\(179\) −10.0000 −0.747435 −0.373718 0.927543i \(-0.621917\pi\)
−0.373718 + 0.927543i \(0.621917\pi\)
\(180\) −1.00000 −0.0745356
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) −2.00000 −0.148250
\(183\) 10.0000 0.739221
\(184\) 6.00000 0.442326
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) 32.0000 2.34007
\(188\) 0 0
\(189\) −2.00000 −0.145479
\(190\) 6.00000 0.435286
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −4.00000 −0.287926 −0.143963 0.989583i \(-0.545985\pi\)
−0.143963 + 0.989583i \(0.545985\pi\)
\(194\) −16.0000 −1.14873
\(195\) −1.00000 −0.0716115
\(196\) −3.00000 −0.214286
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 4.00000 0.284268
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 1.00000 0.0707107
\(201\) −12.0000 −0.846415
\(202\) −16.0000 −1.12576
\(203\) −8.00000 −0.561490
\(204\) −8.00000 −0.560112
\(205\) 2.00000 0.139686
\(206\) −12.0000 −0.836080
\(207\) 6.00000 0.417029
\(208\) −1.00000 −0.0693375
\(209\) −24.0000 −1.66011
\(210\) 2.00000 0.138013
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) −10.0000 −0.686803
\(213\) 8.00000 0.548151
\(214\) 12.0000 0.820303
\(215\) 4.00000 0.272798
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) 12.0000 0.812743
\(219\) 8.00000 0.540590
\(220\) −4.00000 −0.269680
\(221\) −8.00000 −0.538138
\(222\) 2.00000 0.134231
\(223\) −2.00000 −0.133930 −0.0669650 0.997755i \(-0.521332\pi\)
−0.0669650 + 0.997755i \(0.521332\pi\)
\(224\) 2.00000 0.133631
\(225\) 1.00000 0.0666667
\(226\) 20.0000 1.33038
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 6.00000 0.397360
\(229\) 4.00000 0.264327 0.132164 0.991228i \(-0.457808\pi\)
0.132164 + 0.991228i \(0.457808\pi\)
\(230\) −6.00000 −0.395628
\(231\) −8.00000 −0.526361
\(232\) −4.00000 −0.262613
\(233\) 24.0000 1.57229 0.786146 0.618041i \(-0.212073\pi\)
0.786146 + 0.618041i \(0.212073\pi\)
\(234\) −1.00000 −0.0653720
\(235\) 0 0
\(236\) 4.00000 0.260378
\(237\) −8.00000 −0.519656
\(238\) 16.0000 1.03713
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 1.00000 0.0645497
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 5.00000 0.321412
\(243\) −1.00000 −0.0641500
\(244\) −10.0000 −0.640184
\(245\) 3.00000 0.191663
\(246\) 2.00000 0.127515
\(247\) 6.00000 0.381771
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) −1.00000 −0.0632456
\(251\) 6.00000 0.378717 0.189358 0.981908i \(-0.439359\pi\)
0.189358 + 0.981908i \(0.439359\pi\)
\(252\) 2.00000 0.125988
\(253\) 24.0000 1.50887
\(254\) 4.00000 0.250982
\(255\) 8.00000 0.500979
\(256\) 1.00000 0.0625000
\(257\) 12.0000 0.748539 0.374270 0.927320i \(-0.377893\pi\)
0.374270 + 0.927320i \(0.377893\pi\)
\(258\) 4.00000 0.249029
\(259\) −4.00000 −0.248548
\(260\) 1.00000 0.0620174
\(261\) −4.00000 −0.247594
\(262\) 10.0000 0.617802
\(263\) 2.00000 0.123325 0.0616626 0.998097i \(-0.480360\pi\)
0.0616626 + 0.998097i \(0.480360\pi\)
\(264\) −4.00000 −0.246183
\(265\) 10.0000 0.614295
\(266\) −12.0000 −0.735767
\(267\) 14.0000 0.856786
\(268\) 12.0000 0.733017
\(269\) −24.0000 −1.46331 −0.731653 0.681677i \(-0.761251\pi\)
−0.731653 + 0.681677i \(0.761251\pi\)
\(270\) 1.00000 0.0608581
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 8.00000 0.485071
\(273\) 2.00000 0.121046
\(274\) −6.00000 −0.362473
\(275\) 4.00000 0.241209
\(276\) −6.00000 −0.361158
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) −8.00000 −0.479808
\(279\) 0 0
\(280\) −2.00000 −0.119523
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) −8.00000 −0.474713
\(285\) −6.00000 −0.355409
\(286\) −4.00000 −0.236525
\(287\) −4.00000 −0.236113
\(288\) 1.00000 0.0589256
\(289\) 47.0000 2.76471
\(290\) 4.00000 0.234888
\(291\) 16.0000 0.937937
\(292\) −8.00000 −0.468165
\(293\) −26.0000 −1.51894 −0.759468 0.650545i \(-0.774541\pi\)
−0.759468 + 0.650545i \(0.774541\pi\)
\(294\) 3.00000 0.174964
\(295\) −4.00000 −0.232889
\(296\) −2.00000 −0.116248
\(297\) −4.00000 −0.232104
\(298\) −10.0000 −0.579284
\(299\) −6.00000 −0.346989
\(300\) −1.00000 −0.0577350
\(301\) −8.00000 −0.461112
\(302\) 0 0
\(303\) 16.0000 0.919176
\(304\) −6.00000 −0.344124
\(305\) 10.0000 0.572598
\(306\) 8.00000 0.457330
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 8.00000 0.455842
\(309\) 12.0000 0.682656
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 1.00000 0.0566139
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 22.0000 1.24153
\(315\) −2.00000 −0.112687
\(316\) 8.00000 0.450035
\(317\) −30.0000 −1.68497 −0.842484 0.538721i \(-0.818908\pi\)
−0.842484 + 0.538721i \(0.818908\pi\)
\(318\) 10.0000 0.560772
\(319\) −16.0000 −0.895828
\(320\) −1.00000 −0.0559017
\(321\) −12.0000 −0.669775
\(322\) 12.0000 0.668734
\(323\) −48.0000 −2.67079
\(324\) 1.00000 0.0555556
\(325\) −1.00000 −0.0554700
\(326\) −16.0000 −0.886158
\(327\) −12.0000 −0.663602
\(328\) −2.00000 −0.110432
\(329\) 0 0
\(330\) 4.00000 0.220193
\(331\) 10.0000 0.549650 0.274825 0.961494i \(-0.411380\pi\)
0.274825 + 0.961494i \(0.411380\pi\)
\(332\) 12.0000 0.658586
\(333\) −2.00000 −0.109599
\(334\) −4.00000 −0.218870
\(335\) −12.0000 −0.655630
\(336\) −2.00000 −0.109109
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 1.00000 0.0543928
\(339\) −20.0000 −1.08625
\(340\) −8.00000 −0.433861
\(341\) 0 0
\(342\) −6.00000 −0.324443
\(343\) −20.0000 −1.07990
\(344\) −4.00000 −0.215666
\(345\) 6.00000 0.323029
\(346\) 22.0000 1.18273
\(347\) −24.0000 −1.28839 −0.644194 0.764862i \(-0.722807\pi\)
−0.644194 + 0.764862i \(0.722807\pi\)
\(348\) 4.00000 0.214423
\(349\) −28.0000 −1.49881 −0.749403 0.662114i \(-0.769659\pi\)
−0.749403 + 0.662114i \(0.769659\pi\)
\(350\) 2.00000 0.106904
\(351\) 1.00000 0.0533761
\(352\) 4.00000 0.213201
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) −4.00000 −0.212598
\(355\) 8.00000 0.424596
\(356\) −14.0000 −0.741999
\(357\) −16.0000 −0.846810
\(358\) −10.0000 −0.528516
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) −1.00000 −0.0527046
\(361\) 17.0000 0.894737
\(362\) 10.0000 0.525588
\(363\) −5.00000 −0.262432
\(364\) −2.00000 −0.104828
\(365\) 8.00000 0.418739
\(366\) 10.0000 0.522708
\(367\) −36.0000 −1.87918 −0.939592 0.342296i \(-0.888796\pi\)
−0.939592 + 0.342296i \(0.888796\pi\)
\(368\) 6.00000 0.312772
\(369\) −2.00000 −0.104116
\(370\) 2.00000 0.103975
\(371\) −20.0000 −1.03835
\(372\) 0 0
\(373\) −2.00000 −0.103556 −0.0517780 0.998659i \(-0.516489\pi\)
−0.0517780 + 0.998659i \(0.516489\pi\)
\(374\) 32.0000 1.65468
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 4.00000 0.206010
\(378\) −2.00000 −0.102869
\(379\) −18.0000 −0.924598 −0.462299 0.886724i \(-0.652975\pi\)
−0.462299 + 0.886724i \(0.652975\pi\)
\(380\) 6.00000 0.307794
\(381\) −4.00000 −0.204926
\(382\) 0 0
\(383\) −12.0000 −0.613171 −0.306586 0.951843i \(-0.599187\pi\)
−0.306586 + 0.951843i \(0.599187\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −8.00000 −0.407718
\(386\) −4.00000 −0.203595
\(387\) −4.00000 −0.203331
\(388\) −16.0000 −0.812277
\(389\) 8.00000 0.405616 0.202808 0.979219i \(-0.434993\pi\)
0.202808 + 0.979219i \(0.434993\pi\)
\(390\) −1.00000 −0.0506370
\(391\) 48.0000 2.42746
\(392\) −3.00000 −0.151523
\(393\) −10.0000 −0.504433
\(394\) −18.0000 −0.906827
\(395\) −8.00000 −0.402524
\(396\) 4.00000 0.201008
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) 0 0
\(399\) 12.0000 0.600751
\(400\) 1.00000 0.0500000
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) −12.0000 −0.598506
\(403\) 0 0
\(404\) −16.0000 −0.796030
\(405\) −1.00000 −0.0496904
\(406\) −8.00000 −0.397033
\(407\) −8.00000 −0.396545
\(408\) −8.00000 −0.396059
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 2.00000 0.0987730
\(411\) 6.00000 0.295958
\(412\) −12.0000 −0.591198
\(413\) 8.00000 0.393654
\(414\) 6.00000 0.294884
\(415\) −12.0000 −0.589057
\(416\) −1.00000 −0.0490290
\(417\) 8.00000 0.391762
\(418\) −24.0000 −1.17388
\(419\) 10.0000 0.488532 0.244266 0.969708i \(-0.421453\pi\)
0.244266 + 0.969708i \(0.421453\pi\)
\(420\) 2.00000 0.0975900
\(421\) −8.00000 −0.389896 −0.194948 0.980814i \(-0.562454\pi\)
−0.194948 + 0.980814i \(0.562454\pi\)
\(422\) −20.0000 −0.973585
\(423\) 0 0
\(424\) −10.0000 −0.485643
\(425\) 8.00000 0.388057
\(426\) 8.00000 0.387601
\(427\) −20.0000 −0.967868
\(428\) 12.0000 0.580042
\(429\) 4.00000 0.193122
\(430\) 4.00000 0.192897
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) −4.00000 −0.191785
\(436\) 12.0000 0.574696
\(437\) −36.0000 −1.72211
\(438\) 8.00000 0.382255
\(439\) −32.0000 −1.52728 −0.763638 0.645644i \(-0.776589\pi\)
−0.763638 + 0.645644i \(0.776589\pi\)
\(440\) −4.00000 −0.190693
\(441\) −3.00000 −0.142857
\(442\) −8.00000 −0.380521
\(443\) 16.0000 0.760183 0.380091 0.924949i \(-0.375893\pi\)
0.380091 + 0.924949i \(0.375893\pi\)
\(444\) 2.00000 0.0949158
\(445\) 14.0000 0.663664
\(446\) −2.00000 −0.0947027
\(447\) 10.0000 0.472984
\(448\) 2.00000 0.0944911
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 1.00000 0.0471405
\(451\) −8.00000 −0.376705
\(452\) 20.0000 0.940721
\(453\) 0 0
\(454\) −4.00000 −0.187729
\(455\) 2.00000 0.0937614
\(456\) 6.00000 0.280976
\(457\) 8.00000 0.374224 0.187112 0.982339i \(-0.440087\pi\)
0.187112 + 0.982339i \(0.440087\pi\)
\(458\) 4.00000 0.186908
\(459\) −8.00000 −0.373408
\(460\) −6.00000 −0.279751
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) −8.00000 −0.372194
\(463\) −26.0000 −1.20832 −0.604161 0.796862i \(-0.706492\pi\)
−0.604161 + 0.796862i \(0.706492\pi\)
\(464\) −4.00000 −0.185695
\(465\) 0 0
\(466\) 24.0000 1.11178
\(467\) 28.0000 1.29569 0.647843 0.761774i \(-0.275671\pi\)
0.647843 + 0.761774i \(0.275671\pi\)
\(468\) −1.00000 −0.0462250
\(469\) 24.0000 1.10822
\(470\) 0 0
\(471\) −22.0000 −1.01371
\(472\) 4.00000 0.184115
\(473\) −16.0000 −0.735681
\(474\) −8.00000 −0.367452
\(475\) −6.00000 −0.275299
\(476\) 16.0000 0.733359
\(477\) −10.0000 −0.457869
\(478\) 16.0000 0.731823
\(479\) 32.0000 1.46212 0.731059 0.682315i \(-0.239027\pi\)
0.731059 + 0.682315i \(0.239027\pi\)
\(480\) 1.00000 0.0456435
\(481\) 2.00000 0.0911922
\(482\) 2.00000 0.0910975
\(483\) −12.0000 −0.546019
\(484\) 5.00000 0.227273
\(485\) 16.0000 0.726523
\(486\) −1.00000 −0.0453609
\(487\) 26.0000 1.17817 0.589086 0.808070i \(-0.299488\pi\)
0.589086 + 0.808070i \(0.299488\pi\)
\(488\) −10.0000 −0.452679
\(489\) 16.0000 0.723545
\(490\) 3.00000 0.135526
\(491\) 42.0000 1.89543 0.947717 0.319113i \(-0.103385\pi\)
0.947717 + 0.319113i \(0.103385\pi\)
\(492\) 2.00000 0.0901670
\(493\) −32.0000 −1.44121
\(494\) 6.00000 0.269953
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) −16.0000 −0.717698
\(498\) −12.0000 −0.537733
\(499\) 38.0000 1.70111 0.850557 0.525883i \(-0.176265\pi\)
0.850557 + 0.525883i \(0.176265\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 4.00000 0.178707
\(502\) 6.00000 0.267793
\(503\) 10.0000 0.445878 0.222939 0.974832i \(-0.428435\pi\)
0.222939 + 0.974832i \(0.428435\pi\)
\(504\) 2.00000 0.0890871
\(505\) 16.0000 0.711991
\(506\) 24.0000 1.06693
\(507\) −1.00000 −0.0444116
\(508\) 4.00000 0.177471
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 8.00000 0.354246
\(511\) −16.0000 −0.707798
\(512\) 1.00000 0.0441942
\(513\) 6.00000 0.264906
\(514\) 12.0000 0.529297
\(515\) 12.0000 0.528783
\(516\) 4.00000 0.176090
\(517\) 0 0
\(518\) −4.00000 −0.175750
\(519\) −22.0000 −0.965693
\(520\) 1.00000 0.0438529
\(521\) −26.0000 −1.13908 −0.569540 0.821963i \(-0.692879\pi\)
−0.569540 + 0.821963i \(0.692879\pi\)
\(522\) −4.00000 −0.175075
\(523\) 36.0000 1.57417 0.787085 0.616844i \(-0.211589\pi\)
0.787085 + 0.616844i \(0.211589\pi\)
\(524\) 10.0000 0.436852
\(525\) −2.00000 −0.0872872
\(526\) 2.00000 0.0872041
\(527\) 0 0
\(528\) −4.00000 −0.174078
\(529\) 13.0000 0.565217
\(530\) 10.0000 0.434372
\(531\) 4.00000 0.173585
\(532\) −12.0000 −0.520266
\(533\) 2.00000 0.0866296
\(534\) 14.0000 0.605839
\(535\) −12.0000 −0.518805
\(536\) 12.0000 0.518321
\(537\) 10.0000 0.431532
\(538\) −24.0000 −1.03471
\(539\) −12.0000 −0.516877
\(540\) 1.00000 0.0430331
\(541\) −8.00000 −0.343947 −0.171973 0.985102i \(-0.555014\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(542\) 16.0000 0.687259
\(543\) −10.0000 −0.429141
\(544\) 8.00000 0.342997
\(545\) −12.0000 −0.514024
\(546\) 2.00000 0.0855921
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) −6.00000 −0.256307
\(549\) −10.0000 −0.426790
\(550\) 4.00000 0.170561
\(551\) 24.0000 1.02243
\(552\) −6.00000 −0.255377
\(553\) 16.0000 0.680389
\(554\) −10.0000 −0.424859
\(555\) −2.00000 −0.0848953
\(556\) −8.00000 −0.339276
\(557\) 2.00000 0.0847427 0.0423714 0.999102i \(-0.486509\pi\)
0.0423714 + 0.999102i \(0.486509\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) −2.00000 −0.0845154
\(561\) −32.0000 −1.35104
\(562\) −6.00000 −0.253095
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) 0 0
\(565\) −20.0000 −0.841406
\(566\) −4.00000 −0.168133
\(567\) 2.00000 0.0839921
\(568\) −8.00000 −0.335673
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) −6.00000 −0.251312
\(571\) 40.0000 1.67395 0.836974 0.547243i \(-0.184323\pi\)
0.836974 + 0.547243i \(0.184323\pi\)
\(572\) −4.00000 −0.167248
\(573\) 0 0
\(574\) −4.00000 −0.166957
\(575\) 6.00000 0.250217
\(576\) 1.00000 0.0416667
\(577\) 12.0000 0.499567 0.249783 0.968302i \(-0.419641\pi\)
0.249783 + 0.968302i \(0.419641\pi\)
\(578\) 47.0000 1.95494
\(579\) 4.00000 0.166234
\(580\) 4.00000 0.166091
\(581\) 24.0000 0.995688
\(582\) 16.0000 0.663221
\(583\) −40.0000 −1.65663
\(584\) −8.00000 −0.331042
\(585\) 1.00000 0.0413449
\(586\) −26.0000 −1.07405
\(587\) 36.0000 1.48588 0.742940 0.669359i \(-0.233431\pi\)
0.742940 + 0.669359i \(0.233431\pi\)
\(588\) 3.00000 0.123718
\(589\) 0 0
\(590\) −4.00000 −0.164677
\(591\) 18.0000 0.740421
\(592\) −2.00000 −0.0821995
\(593\) 22.0000 0.903432 0.451716 0.892162i \(-0.350812\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(594\) −4.00000 −0.164122
\(595\) −16.0000 −0.655936
\(596\) −10.0000 −0.409616
\(597\) 0 0
\(598\) −6.00000 −0.245358
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) −1.00000 −0.0408248
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) −8.00000 −0.326056
\(603\) 12.0000 0.488678
\(604\) 0 0
\(605\) −5.00000 −0.203279
\(606\) 16.0000 0.649956
\(607\) −28.0000 −1.13648 −0.568242 0.822861i \(-0.692376\pi\)
−0.568242 + 0.822861i \(0.692376\pi\)
\(608\) −6.00000 −0.243332
\(609\) 8.00000 0.324176
\(610\) 10.0000 0.404888
\(611\) 0 0
\(612\) 8.00000 0.323381
\(613\) −10.0000 −0.403896 −0.201948 0.979396i \(-0.564727\pi\)
−0.201948 + 0.979396i \(0.564727\pi\)
\(614\) 12.0000 0.484281
\(615\) −2.00000 −0.0806478
\(616\) 8.00000 0.322329
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 12.0000 0.482711
\(619\) −10.0000 −0.401934 −0.200967 0.979598i \(-0.564408\pi\)
−0.200967 + 0.979598i \(0.564408\pi\)
\(620\) 0 0
\(621\) −6.00000 −0.240772
\(622\) 24.0000 0.962312
\(623\) −28.0000 −1.12180
\(624\) 1.00000 0.0400320
\(625\) 1.00000 0.0400000
\(626\) 6.00000 0.239808
\(627\) 24.0000 0.958468
\(628\) 22.0000 0.877896
\(629\) −16.0000 −0.637962
\(630\) −2.00000 −0.0796819
\(631\) 12.0000 0.477712 0.238856 0.971055i \(-0.423228\pi\)
0.238856 + 0.971055i \(0.423228\pi\)
\(632\) 8.00000 0.318223
\(633\) 20.0000 0.794929
\(634\) −30.0000 −1.19145
\(635\) −4.00000 −0.158735
\(636\) 10.0000 0.396526
\(637\) 3.00000 0.118864
\(638\) −16.0000 −0.633446
\(639\) −8.00000 −0.316475
\(640\) −1.00000 −0.0395285
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) −12.0000 −0.473602
\(643\) 44.0000 1.73519 0.867595 0.497271i \(-0.165665\pi\)
0.867595 + 0.497271i \(0.165665\pi\)
\(644\) 12.0000 0.472866
\(645\) −4.00000 −0.157500
\(646\) −48.0000 −1.88853
\(647\) −30.0000 −1.17942 −0.589711 0.807614i \(-0.700758\pi\)
−0.589711 + 0.807614i \(0.700758\pi\)
\(648\) 1.00000 0.0392837
\(649\) 16.0000 0.628055
\(650\) −1.00000 −0.0392232
\(651\) 0 0
\(652\) −16.0000 −0.626608
\(653\) 42.0000 1.64359 0.821794 0.569785i \(-0.192974\pi\)
0.821794 + 0.569785i \(0.192974\pi\)
\(654\) −12.0000 −0.469237
\(655\) −10.0000 −0.390732
\(656\) −2.00000 −0.0780869
\(657\) −8.00000 −0.312110
\(658\) 0 0
\(659\) 2.00000 0.0779089 0.0389545 0.999241i \(-0.487597\pi\)
0.0389545 + 0.999241i \(0.487597\pi\)
\(660\) 4.00000 0.155700
\(661\) 48.0000 1.86698 0.933492 0.358599i \(-0.116745\pi\)
0.933492 + 0.358599i \(0.116745\pi\)
\(662\) 10.0000 0.388661
\(663\) 8.00000 0.310694
\(664\) 12.0000 0.465690
\(665\) 12.0000 0.465340
\(666\) −2.00000 −0.0774984
\(667\) −24.0000 −0.929284
\(668\) −4.00000 −0.154765
\(669\) 2.00000 0.0773245
\(670\) −12.0000 −0.463600
\(671\) −40.0000 −1.54418
\(672\) −2.00000 −0.0771517
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) 14.0000 0.539260
\(675\) −1.00000 −0.0384900
\(676\) 1.00000 0.0384615
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) −20.0000 −0.768095
\(679\) −32.0000 −1.22805
\(680\) −8.00000 −0.306786
\(681\) 4.00000 0.153280
\(682\) 0 0
\(683\) −44.0000 −1.68361 −0.841807 0.539779i \(-0.818508\pi\)
−0.841807 + 0.539779i \(0.818508\pi\)
\(684\) −6.00000 −0.229416
\(685\) 6.00000 0.229248
\(686\) −20.0000 −0.763604
\(687\) −4.00000 −0.152610
\(688\) −4.00000 −0.152499
\(689\) 10.0000 0.380970
\(690\) 6.00000 0.228416
\(691\) −14.0000 −0.532585 −0.266293 0.963892i \(-0.585799\pi\)
−0.266293 + 0.963892i \(0.585799\pi\)
\(692\) 22.0000 0.836315
\(693\) 8.00000 0.303895
\(694\) −24.0000 −0.911028
\(695\) 8.00000 0.303457
\(696\) 4.00000 0.151620
\(697\) −16.0000 −0.606043
\(698\) −28.0000 −1.05982
\(699\) −24.0000 −0.907763
\(700\) 2.00000 0.0755929
\(701\) 32.0000 1.20862 0.604312 0.796748i \(-0.293448\pi\)
0.604312 + 0.796748i \(0.293448\pi\)
\(702\) 1.00000 0.0377426
\(703\) 12.0000 0.452589
\(704\) 4.00000 0.150756
\(705\) 0 0
\(706\) −14.0000 −0.526897
\(707\) −32.0000 −1.20348
\(708\) −4.00000 −0.150329
\(709\) −4.00000 −0.150223 −0.0751116 0.997175i \(-0.523931\pi\)
−0.0751116 + 0.997175i \(0.523931\pi\)
\(710\) 8.00000 0.300235
\(711\) 8.00000 0.300023
\(712\) −14.0000 −0.524672
\(713\) 0 0
\(714\) −16.0000 −0.598785
\(715\) 4.00000 0.149592
\(716\) −10.0000 −0.373718
\(717\) −16.0000 −0.597531
\(718\) −24.0000 −0.895672
\(719\) 36.0000 1.34257 0.671287 0.741198i \(-0.265742\pi\)
0.671287 + 0.741198i \(0.265742\pi\)
\(720\) −1.00000 −0.0372678
\(721\) −24.0000 −0.893807
\(722\) 17.0000 0.632674
\(723\) −2.00000 −0.0743808
\(724\) 10.0000 0.371647
\(725\) −4.00000 −0.148556
\(726\) −5.00000 −0.185567
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) −2.00000 −0.0741249
\(729\) 1.00000 0.0370370
\(730\) 8.00000 0.296093
\(731\) −32.0000 −1.18356
\(732\) 10.0000 0.369611
\(733\) 38.0000 1.40356 0.701781 0.712393i \(-0.252388\pi\)
0.701781 + 0.712393i \(0.252388\pi\)
\(734\) −36.0000 −1.32878
\(735\) −3.00000 −0.110657
\(736\) 6.00000 0.221163
\(737\) 48.0000 1.76810
\(738\) −2.00000 −0.0736210
\(739\) 30.0000 1.10357 0.551784 0.833987i \(-0.313947\pi\)
0.551784 + 0.833987i \(0.313947\pi\)
\(740\) 2.00000 0.0735215
\(741\) −6.00000 −0.220416
\(742\) −20.0000 −0.734223
\(743\) 12.0000 0.440237 0.220119 0.975473i \(-0.429356\pi\)
0.220119 + 0.975473i \(0.429356\pi\)
\(744\) 0 0
\(745\) 10.0000 0.366372
\(746\) −2.00000 −0.0732252
\(747\) 12.0000 0.439057
\(748\) 32.0000 1.17004
\(749\) 24.0000 0.876941
\(750\) 1.00000 0.0365148
\(751\) −16.0000 −0.583848 −0.291924 0.956441i \(-0.594295\pi\)
−0.291924 + 0.956441i \(0.594295\pi\)
\(752\) 0 0
\(753\) −6.00000 −0.218652
\(754\) 4.00000 0.145671
\(755\) 0 0
\(756\) −2.00000 −0.0727393
\(757\) −6.00000 −0.218074 −0.109037 0.994038i \(-0.534777\pi\)
−0.109037 + 0.994038i \(0.534777\pi\)
\(758\) −18.0000 −0.653789
\(759\) −24.0000 −0.871145
\(760\) 6.00000 0.217643
\(761\) 22.0000 0.797499 0.398750 0.917060i \(-0.369444\pi\)
0.398750 + 0.917060i \(0.369444\pi\)
\(762\) −4.00000 −0.144905
\(763\) 24.0000 0.868858
\(764\) 0 0
\(765\) −8.00000 −0.289241
\(766\) −12.0000 −0.433578
\(767\) −4.00000 −0.144432
\(768\) −1.00000 −0.0360844
\(769\) 10.0000 0.360609 0.180305 0.983611i \(-0.442292\pi\)
0.180305 + 0.983611i \(0.442292\pi\)
\(770\) −8.00000 −0.288300
\(771\) −12.0000 −0.432169
\(772\) −4.00000 −0.143963
\(773\) 38.0000 1.36677 0.683383 0.730061i \(-0.260508\pi\)
0.683383 + 0.730061i \(0.260508\pi\)
\(774\) −4.00000 −0.143777
\(775\) 0 0
\(776\) −16.0000 −0.574367
\(777\) 4.00000 0.143499
\(778\) 8.00000 0.286814
\(779\) 12.0000 0.429945
\(780\) −1.00000 −0.0358057
\(781\) −32.0000 −1.14505
\(782\) 48.0000 1.71648
\(783\) 4.00000 0.142948
\(784\) −3.00000 −0.107143
\(785\) −22.0000 −0.785214
\(786\) −10.0000 −0.356688
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) −18.0000 −0.641223
\(789\) −2.00000 −0.0712019
\(790\) −8.00000 −0.284627
\(791\) 40.0000 1.42224
\(792\) 4.00000 0.142134
\(793\) 10.0000 0.355110
\(794\) 14.0000 0.496841
\(795\) −10.0000 −0.354663
\(796\) 0 0
\(797\) −10.0000 −0.354218 −0.177109 0.984191i \(-0.556675\pi\)
−0.177109 + 0.984191i \(0.556675\pi\)
\(798\) 12.0000 0.424795
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) −14.0000 −0.494666
\(802\) 30.0000 1.05934
\(803\) −32.0000 −1.12926
\(804\) −12.0000 −0.423207
\(805\) −12.0000 −0.422944
\(806\) 0 0
\(807\) 24.0000 0.844840
\(808\) −16.0000 −0.562878
\(809\) 2.00000 0.0703163 0.0351581 0.999382i \(-0.488807\pi\)
0.0351581 + 0.999382i \(0.488807\pi\)
\(810\) −1.00000 −0.0351364
\(811\) −38.0000 −1.33436 −0.667180 0.744896i \(-0.732499\pi\)
−0.667180 + 0.744896i \(0.732499\pi\)
\(812\) −8.00000 −0.280745
\(813\) −16.0000 −0.561144
\(814\) −8.00000 −0.280400
\(815\) 16.0000 0.560456
\(816\) −8.00000 −0.280056
\(817\) 24.0000 0.839654
\(818\) −26.0000 −0.909069
\(819\) −2.00000 −0.0698857
\(820\) 2.00000 0.0698430
\(821\) −10.0000 −0.349002 −0.174501 0.984657i \(-0.555831\pi\)
−0.174501 + 0.984657i \(0.555831\pi\)
\(822\) 6.00000 0.209274
\(823\) −52.0000 −1.81261 −0.906303 0.422628i \(-0.861108\pi\)
−0.906303 + 0.422628i \(0.861108\pi\)
\(824\) −12.0000 −0.418040
\(825\) −4.00000 −0.139262
\(826\) 8.00000 0.278356
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 6.00000 0.208514
\(829\) −10.0000 −0.347314 −0.173657 0.984806i \(-0.555558\pi\)
−0.173657 + 0.984806i \(0.555558\pi\)
\(830\) −12.0000 −0.416526
\(831\) 10.0000 0.346896
\(832\) −1.00000 −0.0346688
\(833\) −24.0000 −0.831551
\(834\) 8.00000 0.277017
\(835\) 4.00000 0.138426
\(836\) −24.0000 −0.830057
\(837\) 0 0
\(838\) 10.0000 0.345444
\(839\) −40.0000 −1.38095 −0.690477 0.723355i \(-0.742599\pi\)
−0.690477 + 0.723355i \(0.742599\pi\)
\(840\) 2.00000 0.0690066
\(841\) −13.0000 −0.448276
\(842\) −8.00000 −0.275698
\(843\) 6.00000 0.206651
\(844\) −20.0000 −0.688428
\(845\) −1.00000 −0.0344010
\(846\) 0 0
\(847\) 10.0000 0.343604
\(848\) −10.0000 −0.343401
\(849\) 4.00000 0.137280
\(850\) 8.00000 0.274398
\(851\) −12.0000 −0.411355
\(852\) 8.00000 0.274075
\(853\) 46.0000 1.57501 0.787505 0.616308i \(-0.211372\pi\)
0.787505 + 0.616308i \(0.211372\pi\)
\(854\) −20.0000 −0.684386
\(855\) 6.00000 0.205196
\(856\) 12.0000 0.410152
\(857\) 4.00000 0.136637 0.0683187 0.997664i \(-0.478237\pi\)
0.0683187 + 0.997664i \(0.478237\pi\)
\(858\) 4.00000 0.136558
\(859\) 36.0000 1.22830 0.614152 0.789188i \(-0.289498\pi\)
0.614152 + 0.789188i \(0.289498\pi\)
\(860\) 4.00000 0.136399
\(861\) 4.00000 0.136320
\(862\) 0 0
\(863\) −12.0000 −0.408485 −0.204242 0.978920i \(-0.565473\pi\)
−0.204242 + 0.978920i \(0.565473\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −22.0000 −0.748022
\(866\) −2.00000 −0.0679628
\(867\) −47.0000 −1.59620
\(868\) 0 0
\(869\) 32.0000 1.08553
\(870\) −4.00000 −0.135613
\(871\) −12.0000 −0.406604
\(872\) 12.0000 0.406371
\(873\) −16.0000 −0.541518
\(874\) −36.0000 −1.21772
\(875\) −2.00000 −0.0676123
\(876\) 8.00000 0.270295
\(877\) −14.0000 −0.472746 −0.236373 0.971662i \(-0.575959\pi\)
−0.236373 + 0.971662i \(0.575959\pi\)
\(878\) −32.0000 −1.07995
\(879\) 26.0000 0.876958
\(880\) −4.00000 −0.134840
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) −3.00000 −0.101015
\(883\) −28.0000 −0.942275 −0.471138 0.882060i \(-0.656156\pi\)
−0.471138 + 0.882060i \(0.656156\pi\)
\(884\) −8.00000 −0.269069
\(885\) 4.00000 0.134459
\(886\) 16.0000 0.537531
\(887\) −2.00000 −0.0671534 −0.0335767 0.999436i \(-0.510690\pi\)
−0.0335767 + 0.999436i \(0.510690\pi\)
\(888\) 2.00000 0.0671156
\(889\) 8.00000 0.268311
\(890\) 14.0000 0.469281
\(891\) 4.00000 0.134005
\(892\) −2.00000 −0.0669650
\(893\) 0 0
\(894\) 10.0000 0.334450
\(895\) 10.0000 0.334263
\(896\) 2.00000 0.0668153
\(897\) 6.00000 0.200334
\(898\) −6.00000 −0.200223
\(899\) 0 0
\(900\) 1.00000 0.0333333
\(901\) −80.0000 −2.66519
\(902\) −8.00000 −0.266371
\(903\) 8.00000 0.266223
\(904\) 20.0000 0.665190
\(905\) −10.0000 −0.332411
\(906\) 0 0
\(907\) 52.0000 1.72663 0.863316 0.504664i \(-0.168384\pi\)
0.863316 + 0.504664i \(0.168384\pi\)
\(908\) −4.00000 −0.132745
\(909\) −16.0000 −0.530687
\(910\) 2.00000 0.0662994
\(911\) −20.0000 −0.662630 −0.331315 0.943520i \(-0.607492\pi\)
−0.331315 + 0.943520i \(0.607492\pi\)
\(912\) 6.00000 0.198680
\(913\) 48.0000 1.58857
\(914\) 8.00000 0.264616
\(915\) −10.0000 −0.330590
\(916\) 4.00000 0.132164
\(917\) 20.0000 0.660458
\(918\) −8.00000 −0.264039
\(919\) 40.0000 1.31948 0.659739 0.751495i \(-0.270667\pi\)
0.659739 + 0.751495i \(0.270667\pi\)
\(920\) −6.00000 −0.197814
\(921\) −12.0000 −0.395413
\(922\) −6.00000 −0.197599
\(923\) 8.00000 0.263323
\(924\) −8.00000 −0.263181
\(925\) −2.00000 −0.0657596
\(926\) −26.0000 −0.854413
\(927\) −12.0000 −0.394132
\(928\) −4.00000 −0.131306
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) 18.0000 0.589926
\(932\) 24.0000 0.786146
\(933\) −24.0000 −0.785725
\(934\) 28.0000 0.916188
\(935\) −32.0000 −1.04651
\(936\) −1.00000 −0.0326860
\(937\) 18.0000 0.588034 0.294017 0.955800i \(-0.405008\pi\)
0.294017 + 0.955800i \(0.405008\pi\)
\(938\) 24.0000 0.783628
\(939\) −6.00000 −0.195803
\(940\) 0 0
\(941\) −34.0000 −1.10837 −0.554184 0.832394i \(-0.686970\pi\)
−0.554184 + 0.832394i \(0.686970\pi\)
\(942\) −22.0000 −0.716799
\(943\) −12.0000 −0.390774
\(944\) 4.00000 0.130189
\(945\) 2.00000 0.0650600
\(946\) −16.0000 −0.520205
\(947\) 4.00000 0.129983 0.0649913 0.997886i \(-0.479298\pi\)
0.0649913 + 0.997886i \(0.479298\pi\)
\(948\) −8.00000 −0.259828
\(949\) 8.00000 0.259691
\(950\) −6.00000 −0.194666
\(951\) 30.0000 0.972817
\(952\) 16.0000 0.518563
\(953\) 24.0000 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(954\) −10.0000 −0.323762
\(955\) 0 0
\(956\) 16.0000 0.517477
\(957\) 16.0000 0.517207
\(958\) 32.0000 1.03387
\(959\) −12.0000 −0.387500
\(960\) 1.00000 0.0322749
\(961\) −31.0000 −1.00000
\(962\) 2.00000 0.0644826
\(963\) 12.0000 0.386695
\(964\) 2.00000 0.0644157
\(965\) 4.00000 0.128765
\(966\) −12.0000 −0.386094
\(967\) −14.0000 −0.450210 −0.225105 0.974335i \(-0.572272\pi\)
−0.225105 + 0.974335i \(0.572272\pi\)
\(968\) 5.00000 0.160706
\(969\) 48.0000 1.54198
\(970\) 16.0000 0.513729
\(971\) 38.0000 1.21948 0.609739 0.792602i \(-0.291274\pi\)
0.609739 + 0.792602i \(0.291274\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −16.0000 −0.512936
\(974\) 26.0000 0.833094
\(975\) 1.00000 0.0320256
\(976\) −10.0000 −0.320092
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 16.0000 0.511624
\(979\) −56.0000 −1.78977
\(980\) 3.00000 0.0958315
\(981\) 12.0000 0.383131
\(982\) 42.0000 1.34027
\(983\) −52.0000 −1.65854 −0.829271 0.558846i \(-0.811244\pi\)
−0.829271 + 0.558846i \(0.811244\pi\)
\(984\) 2.00000 0.0637577
\(985\) 18.0000 0.573528
\(986\) −32.0000 −1.01909
\(987\) 0 0
\(988\) 6.00000 0.190885
\(989\) −24.0000 −0.763156
\(990\) −4.00000 −0.127128
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) −10.0000 −0.317340
\(994\) −16.0000 −0.507489
\(995\) 0 0
\(996\) −12.0000 −0.380235
\(997\) −26.0000 −0.823428 −0.411714 0.911313i \(-0.635070\pi\)
−0.411714 + 0.911313i \(0.635070\pi\)
\(998\) 38.0000 1.20287
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 390.2.a.e.1.1 1
3.2 odd 2 1170.2.a.e.1.1 1
4.3 odd 2 3120.2.a.o.1.1 1
5.2 odd 4 1950.2.e.f.1249.2 2
5.3 odd 4 1950.2.e.f.1249.1 2
5.4 even 2 1950.2.a.h.1.1 1
12.11 even 2 9360.2.a.bh.1.1 1
13.5 odd 4 5070.2.b.e.1351.1 2
13.8 odd 4 5070.2.b.e.1351.2 2
13.12 even 2 5070.2.a.e.1.1 1
15.2 even 4 5850.2.e.i.5149.1 2
15.8 even 4 5850.2.e.i.5149.2 2
15.14 odd 2 5850.2.a.bi.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.a.e.1.1 1 1.1 even 1 trivial
1170.2.a.e.1.1 1 3.2 odd 2
1950.2.a.h.1.1 1 5.4 even 2
1950.2.e.f.1249.1 2 5.3 odd 4
1950.2.e.f.1249.2 2 5.2 odd 4
3120.2.a.o.1.1 1 4.3 odd 2
5070.2.a.e.1.1 1 13.12 even 2
5070.2.b.e.1351.1 2 13.5 odd 4
5070.2.b.e.1351.2 2 13.8 odd 4
5850.2.a.bi.1.1 1 15.14 odd 2
5850.2.e.i.5149.1 2 15.2 even 4
5850.2.e.i.5149.2 2 15.8 even 4
9360.2.a.bh.1.1 1 12.11 even 2