Properties

Label 390.2.a.a.1.1
Level $390$
Weight $2$
Character 390.1
Self dual yes
Analytic conductor $3.114$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(3.11416567883\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 390.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +1.00000 q^{10} -1.00000 q^{12} -1.00000 q^{13} +1.00000 q^{15} +1.00000 q^{16} -6.00000 q^{17} -1.00000 q^{18} -1.00000 q^{20} -4.00000 q^{23} +1.00000 q^{24} +1.00000 q^{25} +1.00000 q^{26} -1.00000 q^{27} -10.0000 q^{29} -1.00000 q^{30} -1.00000 q^{32} +6.00000 q^{34} +1.00000 q^{36} -6.00000 q^{37} +1.00000 q^{39} +1.00000 q^{40} +2.00000 q^{41} -4.00000 q^{43} -1.00000 q^{45} +4.00000 q^{46} -1.00000 q^{48} -7.00000 q^{49} -1.00000 q^{50} +6.00000 q^{51} -1.00000 q^{52} -6.00000 q^{53} +1.00000 q^{54} +10.0000 q^{58} +1.00000 q^{60} +6.00000 q^{61} +1.00000 q^{64} +1.00000 q^{65} +4.00000 q^{67} -6.00000 q^{68} +4.00000 q^{69} +16.0000 q^{71} -1.00000 q^{72} -2.00000 q^{73} +6.00000 q^{74} -1.00000 q^{75} -1.00000 q^{78} -1.00000 q^{80} +1.00000 q^{81} -2.00000 q^{82} +4.00000 q^{83} +6.00000 q^{85} +4.00000 q^{86} +10.0000 q^{87} -6.00000 q^{89} +1.00000 q^{90} -4.00000 q^{92} +1.00000 q^{96} +14.0000 q^{97} +7.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 1.00000 0.408248
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 1.00000 0.316228
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) −1.00000 −0.288675
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) −1.00000 −0.235702
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 1.00000 0.204124
\(25\) 1.00000 0.200000
\(26\) 1.00000 0.196116
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −10.0000 −1.85695 −0.928477 0.371391i \(-0.878881\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) −1.00000 −0.182574
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 6.00000 1.02899
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 1.00000 0.158114
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 4.00000 0.589768
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −1.00000 −0.144338
\(49\) −7.00000 −1.00000
\(50\) −1.00000 −0.141421
\(51\) 6.00000 0.840168
\(52\) −1.00000 −0.138675
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 10.0000 1.31306
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 1.00000 0.129099
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) −6.00000 −0.727607
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) 16.0000 1.89885 0.949425 0.313993i \(-0.101667\pi\)
0.949425 + 0.313993i \(0.101667\pi\)
\(72\) −1.00000 −0.117851
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 6.00000 0.697486
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) −1.00000 −0.113228
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −1.00000 −0.111803
\(81\) 1.00000 0.111111
\(82\) −2.00000 −0.220863
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 6.00000 0.650791
\(86\) 4.00000 0.431331
\(87\) 10.0000 1.07211
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 1.00000 0.105409
\(91\) 0 0
\(92\) −4.00000 −0.417029
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 7.00000 0.707107
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) −6.00000 −0.594089
\(103\) 12.0000 1.18240 0.591198 0.806527i \(-0.298655\pi\)
0.591198 + 0.806527i \(0.298655\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) 0 0
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) −10.0000 −0.928477
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) 0 0
\(120\) −1.00000 −0.0912871
\(121\) −11.0000 −1.00000
\(122\) −6.00000 −0.543214
\(123\) −2.00000 −0.180334
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 4.00000 0.352180
\(130\) −1.00000 −0.0877058
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) 1.00000 0.0860663
\(136\) 6.00000 0.514496
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) −4.00000 −0.340503
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −16.0000 −1.34269
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 10.0000 0.830455
\(146\) 2.00000 0.165521
\(147\) 7.00000 0.577350
\(148\) −6.00000 −0.493197
\(149\) −14.0000 −1.14692 −0.573462 0.819232i \(-0.694400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 1.00000 0.0816497
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 0 0
\(156\) 1.00000 0.0800641
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 1.00000 0.0790569
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 2.00000 0.156174
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) 24.0000 1.85718 0.928588 0.371113i \(-0.121024\pi\)
0.928588 + 0.371113i \(0.121024\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −6.00000 −0.460179
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) −10.0000 −0.758098
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) −1.00000 −0.0745356
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) −6.00000 −0.443533
\(184\) 4.00000 0.294884
\(185\) 6.00000 0.441129
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) −14.0000 −1.00514
\(195\) −1.00000 −0.0716115
\(196\) −7.00000 −0.500000
\(197\) −22.0000 −1.56744 −0.783718 0.621117i \(-0.786679\pi\)
−0.783718 + 0.621117i \(0.786679\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) −1.00000 −0.0707107
\(201\) −4.00000 −0.282138
\(202\) −6.00000 −0.422159
\(203\) 0 0
\(204\) 6.00000 0.420084
\(205\) −2.00000 −0.139686
\(206\) −12.0000 −0.836080
\(207\) −4.00000 −0.278019
\(208\) −1.00000 −0.0693375
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) −6.00000 −0.412082
\(213\) −16.0000 −1.09630
\(214\) 4.00000 0.273434
\(215\) 4.00000 0.272798
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) 14.0000 0.948200
\(219\) 2.00000 0.135147
\(220\) 0 0
\(221\) 6.00000 0.403604
\(222\) −6.00000 −0.402694
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) −10.0000 −0.665190
\(227\) 20.0000 1.32745 0.663723 0.747978i \(-0.268975\pi\)
0.663723 + 0.747978i \(0.268975\pi\)
\(228\) 0 0
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) −4.00000 −0.263752
\(231\) 0 0
\(232\) 10.0000 0.656532
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 1.00000 0.0653720
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 1.00000 0.0645497
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 11.0000 0.707107
\(243\) −1.00000 −0.0641500
\(244\) 6.00000 0.384111
\(245\) 7.00000 0.447214
\(246\) 2.00000 0.127515
\(247\) 0 0
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 1.00000 0.0632456
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 12.0000 0.752947
\(255\) −6.00000 −0.375735
\(256\) 1.00000 0.0625000
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) −4.00000 −0.249029
\(259\) 0 0
\(260\) 1.00000 0.0620174
\(261\) −10.0000 −0.618984
\(262\) −12.0000 −0.741362
\(263\) −28.0000 −1.72655 −0.863277 0.504730i \(-0.831592\pi\)
−0.863277 + 0.504730i \(0.831592\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) 6.00000 0.367194
\(268\) 4.00000 0.244339
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) −1.00000 −0.0608581
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) −6.00000 −0.363803
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) 4.00000 0.240772
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) −4.00000 −0.239904
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −12.0000 −0.713326 −0.356663 0.934233i \(-0.616086\pi\)
−0.356663 + 0.934233i \(0.616086\pi\)
\(284\) 16.0000 0.949425
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.00000 −0.0589256
\(289\) 19.0000 1.11765
\(290\) −10.0000 −0.587220
\(291\) −14.0000 −0.820695
\(292\) −2.00000 −0.117041
\(293\) 26.0000 1.51894 0.759468 0.650545i \(-0.225459\pi\)
0.759468 + 0.650545i \(0.225459\pi\)
\(294\) −7.00000 −0.408248
\(295\) 0 0
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) 14.0000 0.810998
\(299\) 4.00000 0.231326
\(300\) −1.00000 −0.0577350
\(301\) 0 0
\(302\) 16.0000 0.920697
\(303\) −6.00000 −0.344691
\(304\) 0 0
\(305\) −6.00000 −0.343559
\(306\) 6.00000 0.342997
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) −12.0000 −0.682656
\(310\) 0 0
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) −1.00000 −0.0566139
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) 0 0
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) −6.00000 −0.336463
\(319\) 0 0
\(320\) −1.00000 −0.0559017
\(321\) 4.00000 0.223258
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) −1.00000 −0.0554700
\(326\) 4.00000 0.221540
\(327\) 14.0000 0.774202
\(328\) −2.00000 −0.110432
\(329\) 0 0
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 4.00000 0.219529
\(333\) −6.00000 −0.328798
\(334\) −24.0000 −1.31322
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) −1.00000 −0.0543928
\(339\) −10.0000 −0.543125
\(340\) 6.00000 0.325396
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 4.00000 0.215666
\(345\) −4.00000 −0.215353
\(346\) 14.0000 0.752645
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 10.0000 0.536056
\(349\) 34.0000 1.81998 0.909989 0.414632i \(-0.136090\pi\)
0.909989 + 0.414632i \(0.136090\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 0 0
\(353\) −26.0000 −1.38384 −0.691920 0.721974i \(-0.743235\pi\)
−0.691920 + 0.721974i \(0.743235\pi\)
\(354\) 0 0
\(355\) −16.0000 −0.849192
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 20.0000 1.05703
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 1.00000 0.0527046
\(361\) −19.0000 −1.00000
\(362\) 10.0000 0.525588
\(363\) 11.0000 0.577350
\(364\) 0 0
\(365\) 2.00000 0.104685
\(366\) 6.00000 0.313625
\(367\) 20.0000 1.04399 0.521996 0.852948i \(-0.325188\pi\)
0.521996 + 0.852948i \(0.325188\pi\)
\(368\) −4.00000 −0.208514
\(369\) 2.00000 0.104116
\(370\) −6.00000 −0.311925
\(371\) 0 0
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 10.0000 0.515026
\(378\) 0 0
\(379\) 24.0000 1.23280 0.616399 0.787434i \(-0.288591\pi\)
0.616399 + 0.787434i \(0.288591\pi\)
\(380\) 0 0
\(381\) 12.0000 0.614779
\(382\) −24.0000 −1.22795
\(383\) −8.00000 −0.408781 −0.204390 0.978889i \(-0.565521\pi\)
−0.204390 + 0.978889i \(0.565521\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) −4.00000 −0.203331
\(388\) 14.0000 0.710742
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 1.00000 0.0506370
\(391\) 24.0000 1.21373
\(392\) 7.00000 0.353553
\(393\) −12.0000 −0.605320
\(394\) 22.0000 1.10834
\(395\) 0 0
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 16.0000 0.802008
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 4.00000 0.199502
\(403\) 0 0
\(404\) 6.00000 0.298511
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 0 0
\(408\) −6.00000 −0.297044
\(409\) 2.00000 0.0988936 0.0494468 0.998777i \(-0.484254\pi\)
0.0494468 + 0.998777i \(0.484254\pi\)
\(410\) 2.00000 0.0987730
\(411\) −6.00000 −0.295958
\(412\) 12.0000 0.591198
\(413\) 0 0
\(414\) 4.00000 0.196589
\(415\) −4.00000 −0.196352
\(416\) 1.00000 0.0490290
\(417\) −4.00000 −0.195881
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 12.0000 0.584151
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) −6.00000 −0.291043
\(426\) 16.0000 0.775203
\(427\) 0 0
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) −4.00000 −0.192897
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) −10.0000 −0.479463
\(436\) −14.0000 −0.670478
\(437\) 0 0
\(438\) −2.00000 −0.0955637
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) −6.00000 −0.285391
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) 6.00000 0.284747
\(445\) 6.00000 0.284427
\(446\) −16.0000 −0.757622
\(447\) 14.0000 0.662177
\(448\) 0 0
\(449\) −14.0000 −0.660701 −0.330350 0.943858i \(-0.607167\pi\)
−0.330350 + 0.943858i \(0.607167\pi\)
\(450\) −1.00000 −0.0471405
\(451\) 0 0
\(452\) 10.0000 0.470360
\(453\) 16.0000 0.751746
\(454\) −20.0000 −0.938647
\(455\) 0 0
\(456\) 0 0
\(457\) 6.00000 0.280668 0.140334 0.990104i \(-0.455182\pi\)
0.140334 + 0.990104i \(0.455182\pi\)
\(458\) −2.00000 −0.0934539
\(459\) 6.00000 0.280056
\(460\) 4.00000 0.186501
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) −10.0000 −0.464238
\(465\) 0 0
\(466\) −18.0000 −0.833834
\(467\) −28.0000 −1.29569 −0.647843 0.761774i \(-0.724329\pi\)
−0.647843 + 0.761774i \(0.724329\pi\)
\(468\) −1.00000 −0.0462250
\(469\) 0 0
\(470\) 0 0
\(471\) 14.0000 0.645086
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) −16.0000 −0.731823
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) −1.00000 −0.0456435
\(481\) 6.00000 0.273576
\(482\) 14.0000 0.637683
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) −14.0000 −0.635707
\(486\) 1.00000 0.0453609
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) −6.00000 −0.271607
\(489\) 4.00000 0.180886
\(490\) −7.00000 −0.316228
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) −2.00000 −0.0901670
\(493\) 60.0000 2.70226
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 4.00000 0.179244
\(499\) −40.0000 −1.79065 −0.895323 0.445418i \(-0.853055\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(500\) −1.00000 −0.0447214
\(501\) −24.0000 −1.07224
\(502\) 4.00000 0.178529
\(503\) −36.0000 −1.60516 −0.802580 0.596544i \(-0.796540\pi\)
−0.802580 + 0.596544i \(0.796540\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) 0 0
\(507\) −1.00000 −0.0444116
\(508\) −12.0000 −0.532414
\(509\) −38.0000 −1.68432 −0.842160 0.539227i \(-0.818716\pi\)
−0.842160 + 0.539227i \(0.818716\pi\)
\(510\) 6.00000 0.265684
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) −12.0000 −0.528783
\(516\) 4.00000 0.176090
\(517\) 0 0
\(518\) 0 0
\(519\) 14.0000 0.614532
\(520\) −1.00000 −0.0438529
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 10.0000 0.437688
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 28.0000 1.22086
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) −6.00000 −0.260623
\(531\) 0 0
\(532\) 0 0
\(533\) −2.00000 −0.0866296
\(534\) −6.00000 −0.259645
\(535\) 4.00000 0.172935
\(536\) −4.00000 −0.172774
\(537\) 20.0000 0.863064
\(538\) −14.0000 −0.603583
\(539\) 0 0
\(540\) 1.00000 0.0430331
\(541\) −22.0000 −0.945854 −0.472927 0.881102i \(-0.656803\pi\)
−0.472927 + 0.881102i \(0.656803\pi\)
\(542\) 24.0000 1.03089
\(543\) 10.0000 0.429141
\(544\) 6.00000 0.257248
\(545\) 14.0000 0.599694
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 6.00000 0.256307
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) 0 0
\(552\) −4.00000 −0.170251
\(553\) 0 0
\(554\) −2.00000 −0.0849719
\(555\) −6.00000 −0.254686
\(556\) 4.00000 0.169638
\(557\) −30.0000 −1.27114 −0.635570 0.772043i \(-0.719235\pi\)
−0.635570 + 0.772043i \(0.719235\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) −28.0000 −1.18006 −0.590030 0.807382i \(-0.700884\pi\)
−0.590030 + 0.807382i \(0.700884\pi\)
\(564\) 0 0
\(565\) −10.0000 −0.420703
\(566\) 12.0000 0.504398
\(567\) 0 0
\(568\) −16.0000 −0.671345
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 0 0
\(573\) −24.0000 −1.00261
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 1.00000 0.0416667
\(577\) 22.0000 0.915872 0.457936 0.888985i \(-0.348589\pi\)
0.457936 + 0.888985i \(0.348589\pi\)
\(578\) −19.0000 −0.790296
\(579\) −14.0000 −0.581820
\(580\) 10.0000 0.415227
\(581\) 0 0
\(582\) 14.0000 0.580319
\(583\) 0 0
\(584\) 2.00000 0.0827606
\(585\) 1.00000 0.0413449
\(586\) −26.0000 −1.07405
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 7.00000 0.288675
\(589\) 0 0
\(590\) 0 0
\(591\) 22.0000 0.904959
\(592\) −6.00000 −0.246598
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −14.0000 −0.573462
\(597\) 16.0000 0.654836
\(598\) −4.00000 −0.163572
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 1.00000 0.0408248
\(601\) 42.0000 1.71322 0.856608 0.515968i \(-0.172568\pi\)
0.856608 + 0.515968i \(0.172568\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) −16.0000 −0.651031
\(605\) 11.0000 0.447214
\(606\) 6.00000 0.243733
\(607\) −36.0000 −1.46119 −0.730597 0.682808i \(-0.760758\pi\)
−0.730597 + 0.682808i \(0.760758\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 6.00000 0.242933
\(611\) 0 0
\(612\) −6.00000 −0.242536
\(613\) −22.0000 −0.888572 −0.444286 0.895885i \(-0.646543\pi\)
−0.444286 + 0.895885i \(0.646543\pi\)
\(614\) 4.00000 0.161427
\(615\) 2.00000 0.0806478
\(616\) 0 0
\(617\) 30.0000 1.20775 0.603877 0.797077i \(-0.293622\pi\)
0.603877 + 0.797077i \(0.293622\pi\)
\(618\) 12.0000 0.482711
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) 4.00000 0.160514
\(622\) 16.0000 0.641542
\(623\) 0 0
\(624\) 1.00000 0.0400320
\(625\) 1.00000 0.0400000
\(626\) −26.0000 −1.03917
\(627\) 0 0
\(628\) −14.0000 −0.558661
\(629\) 36.0000 1.43541
\(630\) 0 0
\(631\) −48.0000 −1.91085 −0.955425 0.295234i \(-0.904602\pi\)
−0.955425 + 0.295234i \(0.904602\pi\)
\(632\) 0 0
\(633\) 12.0000 0.476957
\(634\) −2.00000 −0.0794301
\(635\) 12.0000 0.476205
\(636\) 6.00000 0.237915
\(637\) 7.00000 0.277350
\(638\) 0 0
\(639\) 16.0000 0.632950
\(640\) 1.00000 0.0395285
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) −4.00000 −0.157867
\(643\) 4.00000 0.157745 0.0788723 0.996885i \(-0.474868\pi\)
0.0788723 + 0.996885i \(0.474868\pi\)
\(644\) 0 0
\(645\) −4.00000 −0.157500
\(646\) 0 0
\(647\) −36.0000 −1.41531 −0.707653 0.706560i \(-0.750246\pi\)
−0.707653 + 0.706560i \(0.750246\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 0 0
\(650\) 1.00000 0.0392232
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) −14.0000 −0.547443
\(655\) −12.0000 −0.468879
\(656\) 2.00000 0.0780869
\(657\) −2.00000 −0.0780274
\(658\) 0 0
\(659\) −20.0000 −0.779089 −0.389545 0.921008i \(-0.627368\pi\)
−0.389545 + 0.921008i \(0.627368\pi\)
\(660\) 0 0
\(661\) −30.0000 −1.16686 −0.583432 0.812162i \(-0.698291\pi\)
−0.583432 + 0.812162i \(0.698291\pi\)
\(662\) −8.00000 −0.310929
\(663\) −6.00000 −0.233021
\(664\) −4.00000 −0.155230
\(665\) 0 0
\(666\) 6.00000 0.232495
\(667\) 40.0000 1.54881
\(668\) 24.0000 0.928588
\(669\) −16.0000 −0.618596
\(670\) 4.00000 0.154533
\(671\) 0 0
\(672\) 0 0
\(673\) 42.0000 1.61898 0.809491 0.587133i \(-0.199743\pi\)
0.809491 + 0.587133i \(0.199743\pi\)
\(674\) −18.0000 −0.693334
\(675\) −1.00000 −0.0384900
\(676\) 1.00000 0.0384615
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) 10.0000 0.384048
\(679\) 0 0
\(680\) −6.00000 −0.230089
\(681\) −20.0000 −0.766402
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 0 0
\(687\) −2.00000 −0.0763048
\(688\) −4.00000 −0.152499
\(689\) 6.00000 0.228582
\(690\) 4.00000 0.152277
\(691\) 32.0000 1.21734 0.608669 0.793424i \(-0.291704\pi\)
0.608669 + 0.793424i \(0.291704\pi\)
\(692\) −14.0000 −0.532200
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) −4.00000 −0.151729
\(696\) −10.0000 −0.379049
\(697\) −12.0000 −0.454532
\(698\) −34.0000 −1.28692
\(699\) −18.0000 −0.680823
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) −1.00000 −0.0377426
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 26.0000 0.978523
\(707\) 0 0
\(708\) 0 0
\(709\) 2.00000 0.0751116 0.0375558 0.999295i \(-0.488043\pi\)
0.0375558 + 0.999295i \(0.488043\pi\)
\(710\) 16.0000 0.600469
\(711\) 0 0
\(712\) 6.00000 0.224860
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −20.0000 −0.747435
\(717\) −16.0000 −0.597531
\(718\) −24.0000 −0.895672
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) −1.00000 −0.0372678
\(721\) 0 0
\(722\) 19.0000 0.707107
\(723\) 14.0000 0.520666
\(724\) −10.0000 −0.371647
\(725\) −10.0000 −0.371391
\(726\) −11.0000 −0.408248
\(727\) 12.0000 0.445055 0.222528 0.974926i \(-0.428569\pi\)
0.222528 + 0.974926i \(0.428569\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −2.00000 −0.0740233
\(731\) 24.0000 0.887672
\(732\) −6.00000 −0.221766
\(733\) 50.0000 1.84679 0.923396 0.383849i \(-0.125402\pi\)
0.923396 + 0.383849i \(0.125402\pi\)
\(734\) −20.0000 −0.738213
\(735\) −7.00000 −0.258199
\(736\) 4.00000 0.147442
\(737\) 0 0
\(738\) −2.00000 −0.0736210
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) 6.00000 0.220564
\(741\) 0 0
\(742\) 0 0
\(743\) −48.0000 −1.76095 −0.880475 0.474093i \(-0.842776\pi\)
−0.880475 + 0.474093i \(0.842776\pi\)
\(744\) 0 0
\(745\) 14.0000 0.512920
\(746\) −10.0000 −0.366126
\(747\) 4.00000 0.146352
\(748\) 0 0
\(749\) 0 0
\(750\) −1.00000 −0.0365148
\(751\) 24.0000 0.875772 0.437886 0.899030i \(-0.355727\pi\)
0.437886 + 0.899030i \(0.355727\pi\)
\(752\) 0 0
\(753\) 4.00000 0.145768
\(754\) −10.0000 −0.364179
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) −24.0000 −0.871719
\(759\) 0 0
\(760\) 0 0
\(761\) −22.0000 −0.797499 −0.398750 0.917060i \(-0.630556\pi\)
−0.398750 + 0.917060i \(0.630556\pi\)
\(762\) −12.0000 −0.434714
\(763\) 0 0
\(764\) 24.0000 0.868290
\(765\) 6.00000 0.216930
\(766\) 8.00000 0.289052
\(767\) 0 0
\(768\) −1.00000 −0.0360844
\(769\) 34.0000 1.22607 0.613036 0.790055i \(-0.289948\pi\)
0.613036 + 0.790055i \(0.289948\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 14.0000 0.503871
\(773\) 26.0000 0.935155 0.467578 0.883952i \(-0.345127\pi\)
0.467578 + 0.883952i \(0.345127\pi\)
\(774\) 4.00000 0.143777
\(775\) 0 0
\(776\) −14.0000 −0.502571
\(777\) 0 0
\(778\) 18.0000 0.645331
\(779\) 0 0
\(780\) −1.00000 −0.0358057
\(781\) 0 0
\(782\) −24.0000 −0.858238
\(783\) 10.0000 0.357371
\(784\) −7.00000 −0.250000
\(785\) 14.0000 0.499681
\(786\) 12.0000 0.428026
\(787\) −36.0000 −1.28326 −0.641631 0.767014i \(-0.721742\pi\)
−0.641631 + 0.767014i \(0.721742\pi\)
\(788\) −22.0000 −0.783718
\(789\) 28.0000 0.996826
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −6.00000 −0.213066
\(794\) 14.0000 0.496841
\(795\) −6.00000 −0.212798
\(796\) −16.0000 −0.567105
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −1.00000 −0.0353553
\(801\) −6.00000 −0.212000
\(802\) −18.0000 −0.635602
\(803\) 0 0
\(804\) −4.00000 −0.141069
\(805\) 0 0
\(806\) 0 0
\(807\) −14.0000 −0.492823
\(808\) −6.00000 −0.211079
\(809\) 26.0000 0.914111 0.457056 0.889438i \(-0.348904\pi\)
0.457056 + 0.889438i \(0.348904\pi\)
\(810\) 1.00000 0.0351364
\(811\) 32.0000 1.12367 0.561836 0.827249i \(-0.310095\pi\)
0.561836 + 0.827249i \(0.310095\pi\)
\(812\) 0 0
\(813\) 24.0000 0.841717
\(814\) 0 0
\(815\) 4.00000 0.140114
\(816\) 6.00000 0.210042
\(817\) 0 0
\(818\) −2.00000 −0.0699284
\(819\) 0 0
\(820\) −2.00000 −0.0698430
\(821\) −22.0000 −0.767805 −0.383903 0.923374i \(-0.625420\pi\)
−0.383903 + 0.923374i \(0.625420\pi\)
\(822\) 6.00000 0.209274
\(823\) −44.0000 −1.53374 −0.766872 0.641800i \(-0.778188\pi\)
−0.766872 + 0.641800i \(0.778188\pi\)
\(824\) −12.0000 −0.418040
\(825\) 0 0
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) −4.00000 −0.139010
\(829\) 54.0000 1.87550 0.937749 0.347314i \(-0.112906\pi\)
0.937749 + 0.347314i \(0.112906\pi\)
\(830\) 4.00000 0.138842
\(831\) −2.00000 −0.0693792
\(832\) −1.00000 −0.0346688
\(833\) 42.0000 1.45521
\(834\) 4.00000 0.138509
\(835\) −24.0000 −0.830554
\(836\) 0 0
\(837\) 0 0
\(838\) −12.0000 −0.414533
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) 22.0000 0.758170
\(843\) 6.00000 0.206651
\(844\) −12.0000 −0.413057
\(845\) −1.00000 −0.0344010
\(846\) 0 0
\(847\) 0 0
\(848\) −6.00000 −0.206041
\(849\) 12.0000 0.411839
\(850\) 6.00000 0.205798
\(851\) 24.0000 0.822709
\(852\) −16.0000 −0.548151
\(853\) −38.0000 −1.30110 −0.650548 0.759465i \(-0.725461\pi\)
−0.650548 + 0.759465i \(0.725461\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 4.00000 0.136717
\(857\) −38.0000 −1.29806 −0.649028 0.760765i \(-0.724824\pi\)
−0.649028 + 0.760765i \(0.724824\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 4.00000 0.136399
\(861\) 0 0
\(862\) 24.0000 0.817443
\(863\) 48.0000 1.63394 0.816970 0.576681i \(-0.195652\pi\)
0.816970 + 0.576681i \(0.195652\pi\)
\(864\) 1.00000 0.0340207
\(865\) 14.0000 0.476014
\(866\) −2.00000 −0.0679628
\(867\) −19.0000 −0.645274
\(868\) 0 0
\(869\) 0 0
\(870\) 10.0000 0.339032
\(871\) −4.00000 −0.135535
\(872\) 14.0000 0.474100
\(873\) 14.0000 0.473828
\(874\) 0 0
\(875\) 0 0
\(876\) 2.00000 0.0675737
\(877\) −14.0000 −0.472746 −0.236373 0.971662i \(-0.575959\pi\)
−0.236373 + 0.971662i \(0.575959\pi\)
\(878\) 24.0000 0.809961
\(879\) −26.0000 −0.876958
\(880\) 0 0
\(881\) 34.0000 1.14549 0.572745 0.819734i \(-0.305879\pi\)
0.572745 + 0.819734i \(0.305879\pi\)
\(882\) 7.00000 0.235702
\(883\) 52.0000 1.74994 0.874970 0.484178i \(-0.160881\pi\)
0.874970 + 0.484178i \(0.160881\pi\)
\(884\) 6.00000 0.201802
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) −36.0000 −1.20876 −0.604381 0.796696i \(-0.706579\pi\)
−0.604381 + 0.796696i \(0.706579\pi\)
\(888\) −6.00000 −0.201347
\(889\) 0 0
\(890\) −6.00000 −0.201120
\(891\) 0 0
\(892\) 16.0000 0.535720
\(893\) 0 0
\(894\) −14.0000 −0.468230
\(895\) 20.0000 0.668526
\(896\) 0 0
\(897\) −4.00000 −0.133556
\(898\) 14.0000 0.467186
\(899\) 0 0
\(900\) 1.00000 0.0333333
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) 0 0
\(904\) −10.0000 −0.332595
\(905\) 10.0000 0.332411
\(906\) −16.0000 −0.531564
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) 20.0000 0.663723
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −6.00000 −0.198462
\(915\) 6.00000 0.198354
\(916\) 2.00000 0.0660819
\(917\) 0 0
\(918\) −6.00000 −0.198030
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) −4.00000 −0.131876
\(921\) 4.00000 0.131804
\(922\) 14.0000 0.461065
\(923\) −16.0000 −0.526646
\(924\) 0 0
\(925\) −6.00000 −0.197279
\(926\) 24.0000 0.788689
\(927\) 12.0000 0.394132
\(928\) 10.0000 0.328266
\(929\) −46.0000 −1.50921 −0.754606 0.656179i \(-0.772172\pi\)
−0.754606 + 0.656179i \(0.772172\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 18.0000 0.589610
\(933\) 16.0000 0.523816
\(934\) 28.0000 0.916188
\(935\) 0 0
\(936\) 1.00000 0.0326860
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) 0 0
\(939\) −26.0000 −0.848478
\(940\) 0 0
\(941\) 10.0000 0.325991 0.162995 0.986627i \(-0.447884\pi\)
0.162995 + 0.986627i \(0.447884\pi\)
\(942\) −14.0000 −0.456145
\(943\) −8.00000 −0.260516
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36.0000 −1.16984 −0.584921 0.811090i \(-0.698875\pi\)
−0.584921 + 0.811090i \(0.698875\pi\)
\(948\) 0 0
\(949\) 2.00000 0.0649227
\(950\) 0 0
\(951\) −2.00000 −0.0648544
\(952\) 0 0
\(953\) 10.0000 0.323932 0.161966 0.986796i \(-0.448217\pi\)
0.161966 + 0.986796i \(0.448217\pi\)
\(954\) 6.00000 0.194257
\(955\) −24.0000 −0.776622
\(956\) 16.0000 0.517477
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 1.00000 0.0322749
\(961\) −31.0000 −1.00000
\(962\) −6.00000 −0.193448
\(963\) −4.00000 −0.128898
\(964\) −14.0000 −0.450910
\(965\) −14.0000 −0.450676
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 11.0000 0.353553
\(969\) 0 0
\(970\) 14.0000 0.449513
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) −8.00000 −0.256337
\(975\) 1.00000 0.0320256
\(976\) 6.00000 0.192055
\(977\) −2.00000 −0.0639857 −0.0319928 0.999488i \(-0.510185\pi\)
−0.0319928 + 0.999488i \(0.510185\pi\)
\(978\) −4.00000 −0.127906
\(979\) 0 0
\(980\) 7.00000 0.223607
\(981\) −14.0000 −0.446986
\(982\) −20.0000 −0.638226
\(983\) 16.0000 0.510321 0.255160 0.966899i \(-0.417872\pi\)
0.255160 + 0.966899i \(0.417872\pi\)
\(984\) 2.00000 0.0637577
\(985\) 22.0000 0.700978
\(986\) −60.0000 −1.91079
\(987\) 0 0
\(988\) 0 0
\(989\) 16.0000 0.508770
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 0 0
\(993\) −8.00000 −0.253872
\(994\) 0 0
\(995\) 16.0000 0.507234
\(996\) −4.00000 −0.126745
\(997\) −22.0000 −0.696747 −0.348373 0.937356i \(-0.613266\pi\)
−0.348373 + 0.937356i \(0.613266\pi\)
\(998\) 40.0000 1.26618
\(999\) 6.00000 0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 390.2.a.a.1.1 1
3.2 odd 2 1170.2.a.m.1.1 1
4.3 odd 2 3120.2.a.q.1.1 1
5.2 odd 4 1950.2.e.l.1249.1 2
5.3 odd 4 1950.2.e.l.1249.2 2
5.4 even 2 1950.2.a.y.1.1 1
12.11 even 2 9360.2.a.bn.1.1 1
13.5 odd 4 5070.2.b.c.1351.2 2
13.8 odd 4 5070.2.b.c.1351.1 2
13.12 even 2 5070.2.a.s.1.1 1
15.2 even 4 5850.2.e.p.5149.2 2
15.8 even 4 5850.2.e.p.5149.1 2
15.14 odd 2 5850.2.a.m.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.a.a.1.1 1 1.1 even 1 trivial
1170.2.a.m.1.1 1 3.2 odd 2
1950.2.a.y.1.1 1 5.4 even 2
1950.2.e.l.1249.1 2 5.2 odd 4
1950.2.e.l.1249.2 2 5.3 odd 4
3120.2.a.q.1.1 1 4.3 odd 2
5070.2.a.s.1.1 1 13.12 even 2
5070.2.b.c.1351.1 2 13.8 odd 4
5070.2.b.c.1351.2 2 13.5 odd 4
5850.2.a.m.1.1 1 15.14 odd 2
5850.2.e.p.5149.1 2 15.8 even 4
5850.2.e.p.5149.2 2 15.2 even 4
9360.2.a.bn.1.1 1 12.11 even 2