Defining parameters
Level: | \( N \) | \(=\) | \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 390.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(168\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(31\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(390))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 92 | 9 | 83 |
Cusp forms | 77 | 9 | 68 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(2\) | \(1\) | \(1\) | \(2\) | \(1\) | \(1\) | \(0\) | \(0\) | \(0\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(9\) | \(0\) | \(9\) | \(8\) | \(0\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(6\) | \(1\) | \(5\) | \(5\) | \(1\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(6\) | \(0\) | \(6\) | \(5\) | \(0\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(7\) | \(1\) | \(6\) | \(6\) | \(1\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(5\) | \(0\) | \(5\) | \(4\) | \(0\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(5\) | \(0\) | \(5\) | \(4\) | \(0\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(6\) | \(1\) | \(5\) | \(5\) | \(1\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(5\) | \(1\) | \(4\) | \(4\) | \(1\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(7\) | \(0\) | \(7\) | \(6\) | \(0\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(6\) | \(0\) | \(6\) | \(5\) | \(0\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(5\) | \(1\) | \(4\) | \(4\) | \(1\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(7\) | \(0\) | \(7\) | \(6\) | \(0\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(4\) | \(1\) | \(3\) | \(3\) | \(1\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(8\) | \(2\) | \(6\) | \(7\) | \(2\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(4\) | \(0\) | \(4\) | \(3\) | \(0\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(42\) | \(1\) | \(41\) | \(35\) | \(1\) | \(34\) | \(7\) | \(0\) | \(7\) | ||||||
Minus space | \(-\) | \(50\) | \(8\) | \(42\) | \(42\) | \(8\) | \(34\) | \(8\) | \(0\) | \(8\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(390))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(390))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(390)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 2}\)