Properties

Label 39.5.g.a.34.7
Level $39$
Weight $5$
Character 39.34
Analytic conductor $4.031$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [39,5,Mod(31,39)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("39.31"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(39, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 39.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.03142856027\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 5446 x^{16} - 1452 x^{15} + 106320 x^{13} + 8376897 x^{12} - 1643220 x^{11} + 1054152 x^{10} + \cdots + 2103506496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 34.7
Root \(-1.66937 - 1.66937i\) of defining polynomial
Character \(\chi\) \(=\) 39.34
Dual form 39.5.g.a.31.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.66937 + 1.66937i) q^{2} -5.19615 q^{3} -10.4264i q^{4} +(-28.4160 - 28.4160i) q^{5} +(-8.67431 - 8.67431i) q^{6} +(-17.1341 + 17.1341i) q^{7} +(44.1155 - 44.1155i) q^{8} +27.0000 q^{9} -94.8736i q^{10} +(54.2346 - 54.2346i) q^{11} +54.1772i q^{12} +(-168.969 + 3.22849i) q^{13} -57.2062 q^{14} +(147.654 + 147.654i) q^{15} -19.5322 q^{16} -70.4411i q^{17} +(45.0730 + 45.0730i) q^{18} +(194.123 + 194.123i) q^{19} +(-296.276 + 296.276i) q^{20} +(89.0312 - 89.0312i) q^{21} +181.075 q^{22} -716.329i q^{23} +(-229.231 + 229.231i) q^{24} +989.935i q^{25} +(-287.462 - 276.683i) q^{26} -140.296 q^{27} +(178.647 + 178.647i) q^{28} +725.866 q^{29} +492.978i q^{30} +(586.446 + 586.446i) q^{31} +(-738.454 - 738.454i) q^{32} +(-281.811 + 281.811i) q^{33} +(117.592 - 117.592i) q^{34} +973.762 q^{35} -281.513i q^{36} +(575.923 - 575.923i) q^{37} +648.126i q^{38} +(877.990 - 16.7757i) q^{39} -2507.17 q^{40} +(-1810.07 - 1810.07i) q^{41} +297.252 q^{42} -2879.48i q^{43} +(-565.472 - 565.472i) q^{44} +(-767.231 - 767.231i) q^{45} +(1195.82 - 1195.82i) q^{46} +(1064.86 - 1064.86i) q^{47} +101.492 q^{48} +1813.85i q^{49} +(-1652.57 + 1652.57i) q^{50} +366.023i q^{51} +(33.6615 + 1761.74i) q^{52} +2549.76 q^{53} +(-234.206 - 234.206i) q^{54} -3082.26 q^{55} +1511.75i q^{56} +(-1008.69 - 1008.69i) q^{57} +(1211.74 + 1211.74i) q^{58} +(-2264.35 + 2264.35i) q^{59} +(1539.50 - 1539.50i) q^{60} +6434.68 q^{61} +1957.99i q^{62} +(-462.620 + 462.620i) q^{63} -2152.99i q^{64} +(4893.16 + 4709.68i) q^{65} -940.895 q^{66} +(-5472.27 - 5472.27i) q^{67} -734.447 q^{68} +3722.15i q^{69} +(1625.57 + 1625.57i) q^{70} +(4643.32 + 4643.32i) q^{71} +(1191.12 - 1191.12i) q^{72} +(-5605.57 + 5605.57i) q^{73} +1922.86 q^{74} -5143.86i q^{75} +(2024.00 - 2024.00i) q^{76} +1858.52i q^{77} +(1493.70 + 1437.69i) q^{78} -6871.05 q^{79} +(555.027 + 555.027i) q^{80} +729.000 q^{81} -6043.36i q^{82} +(-2647.22 - 2647.22i) q^{83} +(-928.275 - 928.275i) q^{84} +(-2001.65 + 2001.65i) q^{85} +(4806.92 - 4806.92i) q^{86} -3771.71 q^{87} -4785.17i q^{88} +(-6804.23 + 6804.23i) q^{89} -2561.59i q^{90} +(2839.81 - 2950.45i) q^{91} -7468.73 q^{92} +(-3047.26 - 3047.26i) q^{93} +3555.29 q^{94} -11032.4i q^{95} +(3837.12 + 3837.12i) q^{96} +(9498.95 + 9498.95i) q^{97} +(-3027.99 + 3027.99i) q^{98} +(1464.33 - 1464.33i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 24 q^{5} - 24 q^{7} + 540 q^{9} + 372 q^{11} - 224 q^{13} + 480 q^{14} - 252 q^{15} - 2328 q^{16} - 840 q^{19} + 228 q^{20} + 936 q^{21} + 3536 q^{22} - 1404 q^{24} - 828 q^{26} - 1984 q^{28} - 5064 q^{29}+ \cdots + 10044 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/39\mathbb{Z}\right)^\times\).

\(n\) \(14\) \(28\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.66937 + 1.66937i 0.417343 + 0.417343i 0.884287 0.466944i \(-0.154645\pi\)
−0.466944 + 0.884287i \(0.654645\pi\)
\(3\) −5.19615 −0.577350
\(4\) 10.4264i 0.651650i
\(5\) −28.4160 28.4160i −1.13664 1.13664i −0.989049 0.147591i \(-0.952848\pi\)
−0.147591 0.989049i \(-0.547152\pi\)
\(6\) −8.67431 8.67431i −0.240953 0.240953i
\(7\) −17.1341 + 17.1341i −0.349675 + 0.349675i −0.859988 0.510314i \(-0.829529\pi\)
0.510314 + 0.859988i \(0.329529\pi\)
\(8\) 44.1155 44.1155i 0.689304 0.689304i
\(9\) 27.0000 0.333333
\(10\) 94.8736i 0.948736i
\(11\) 54.2346 54.2346i 0.448220 0.448220i −0.446542 0.894762i \(-0.647345\pi\)
0.894762 + 0.446542i \(0.147345\pi\)
\(12\) 54.1772i 0.376230i
\(13\) −168.969 + 3.22849i −0.999818 + 0.0191035i
\(14\) −57.2062 −0.291868
\(15\) 147.654 + 147.654i 0.656239 + 0.656239i
\(16\) −19.5322 −0.0762978
\(17\) 70.4411i 0.243741i −0.992546 0.121870i \(-0.961111\pi\)
0.992546 0.121870i \(-0.0388892\pi\)
\(18\) 45.0730 + 45.0730i 0.139114 + 0.139114i
\(19\) 194.123 + 194.123i 0.537736 + 0.537736i 0.922863 0.385127i \(-0.125843\pi\)
−0.385127 + 0.922863i \(0.625843\pi\)
\(20\) −296.276 + 296.276i −0.740691 + 0.740691i
\(21\) 89.0312 89.0312i 0.201885 0.201885i
\(22\) 181.075 0.374123
\(23\) 716.329i 1.35412i −0.735928 0.677059i \(-0.763254\pi\)
0.735928 0.677059i \(-0.236746\pi\)
\(24\) −229.231 + 229.231i −0.397970 + 0.397970i
\(25\) 989.935i 1.58390i
\(26\) −287.462 276.683i −0.425239 0.409294i
\(27\) −140.296 −0.192450
\(28\) 178.647 + 178.647i 0.227866 + 0.227866i
\(29\) 725.866 0.863099 0.431550 0.902089i \(-0.357967\pi\)
0.431550 + 0.902089i \(0.357967\pi\)
\(30\) 492.978i 0.547753i
\(31\) 586.446 + 586.446i 0.610245 + 0.610245i 0.943010 0.332765i \(-0.107981\pi\)
−0.332765 + 0.943010i \(0.607981\pi\)
\(32\) −738.454 738.454i −0.721147 0.721147i
\(33\) −281.811 + 281.811i −0.258780 + 0.258780i
\(34\) 117.592 117.592i 0.101723 0.101723i
\(35\) 973.762 0.794908
\(36\) 281.513i 0.217217i
\(37\) 575.923 575.923i 0.420689 0.420689i −0.464752 0.885441i \(-0.653856\pi\)
0.885441 + 0.464752i \(0.153856\pi\)
\(38\) 648.126i 0.448840i
\(39\) 877.990 16.7757i 0.577245 0.0110294i
\(40\) −2507.17 −1.56698
\(41\) −1810.07 1810.07i −1.07678 1.07678i −0.996796 0.0799854i \(-0.974513\pi\)
−0.0799854 0.996796i \(-0.525487\pi\)
\(42\) 297.252 0.168510
\(43\) 2879.48i 1.55732i −0.627448 0.778659i \(-0.715900\pi\)
0.627448 0.778659i \(-0.284100\pi\)
\(44\) −565.472 565.472i −0.292083 0.292083i
\(45\) −767.231 767.231i −0.378880 0.378880i
\(46\) 1195.82 1195.82i 0.565132 0.565132i
\(47\) 1064.86 1064.86i 0.482055 0.482055i −0.423733 0.905787i \(-0.639280\pi\)
0.905787 + 0.423733i \(0.139280\pi\)
\(48\) 101.492 0.0440505
\(49\) 1813.85i 0.755455i
\(50\) −1652.57 + 1652.57i −0.661028 + 0.661028i
\(51\) 366.023i 0.140724i
\(52\) 33.6615 + 1761.74i 0.0124488 + 0.651531i
\(53\) 2549.76 0.907710 0.453855 0.891076i \(-0.350048\pi\)
0.453855 + 0.891076i \(0.350048\pi\)
\(54\) −234.206 234.206i −0.0803177 0.0803177i
\(55\) −3082.26 −1.01893
\(56\) 1511.75i 0.482065i
\(57\) −1008.69 1008.69i −0.310462 0.310462i
\(58\) 1211.74 + 1211.74i 0.360208 + 0.360208i
\(59\) −2264.35 + 2264.35i −0.650487 + 0.650487i −0.953110 0.302623i \(-0.902138\pi\)
0.302623 + 0.953110i \(0.402138\pi\)
\(60\) 1539.50 1539.50i 0.427638 0.427638i
\(61\) 6434.68 1.72929 0.864644 0.502386i \(-0.167544\pi\)
0.864644 + 0.502386i \(0.167544\pi\)
\(62\) 1957.99i 0.509363i
\(63\) −462.620 + 462.620i −0.116558 + 0.116558i
\(64\) 2152.99i 0.525633i
\(65\) 4893.16 + 4709.68i 1.15815 + 1.11472i
\(66\) −940.895 −0.216000
\(67\) −5472.27 5472.27i −1.21904 1.21904i −0.967969 0.251070i \(-0.919217\pi\)
−0.251070 0.967969i \(-0.580783\pi\)
\(68\) −734.447 −0.158834
\(69\) 3722.15i 0.781801i
\(70\) 1625.57 + 1625.57i 0.331749 + 0.331749i
\(71\) 4643.32 + 4643.32i 0.921111 + 0.921111i 0.997108 0.0759967i \(-0.0242139\pi\)
−0.0759967 + 0.997108i \(0.524214\pi\)
\(72\) 1191.12 1191.12i 0.229768 0.229768i
\(73\) −5605.57 + 5605.57i −1.05190 + 1.05190i −0.0533222 + 0.998577i \(0.516981\pi\)
−0.998577 + 0.0533222i \(0.983019\pi\)
\(74\) 1922.86 0.351143
\(75\) 5143.86i 0.914463i
\(76\) 2024.00 2024.00i 0.350416 0.350416i
\(77\) 1858.52i 0.313462i
\(78\) 1493.70 + 1437.69i 0.245512 + 0.236306i
\(79\) −6871.05 −1.10095 −0.550477 0.834850i \(-0.685554\pi\)
−0.550477 + 0.834850i \(0.685554\pi\)
\(80\) 555.027 + 555.027i 0.0867230 + 0.0867230i
\(81\) 729.000 0.111111
\(82\) 6043.36i 0.898774i
\(83\) −2647.22 2647.22i −0.384267 0.384267i 0.488370 0.872637i \(-0.337592\pi\)
−0.872637 + 0.488370i \(0.837592\pi\)
\(84\) −928.275 928.275i −0.131558 0.131558i
\(85\) −2001.65 + 2001.65i −0.277045 + 0.277045i
\(86\) 4806.92 4806.92i 0.649935 0.649935i
\(87\) −3771.71 −0.498311
\(88\) 4785.17i 0.617920i
\(89\) −6804.23 + 6804.23i −0.859012 + 0.859012i −0.991222 0.132210i \(-0.957793\pi\)
0.132210 + 0.991222i \(0.457793\pi\)
\(90\) 2561.59i 0.316245i
\(91\) 2839.81 2950.45i 0.342931 0.356291i
\(92\) −7468.73 −0.882412
\(93\) −3047.26 3047.26i −0.352325 0.352325i
\(94\) 3555.29 0.402364
\(95\) 11032.4i 1.22242i
\(96\) 3837.12 + 3837.12i 0.416354 + 0.416354i
\(97\) 9498.95 + 9498.95i 1.00956 + 1.00956i 0.999954 + 0.00960578i \(0.00305766\pi\)
0.00960578 + 0.999954i \(0.496942\pi\)
\(98\) −3027.99 + 3027.99i −0.315284 + 0.315284i
\(99\) 1464.33 1464.33i 0.149407 0.149407i
\(100\) 10321.5 1.03215
\(101\) 16541.4i 1.62155i −0.585361 0.810773i \(-0.699047\pi\)
0.585361 0.810773i \(-0.300953\pi\)
\(102\) −611.028 + 611.028i −0.0587301 + 0.0587301i
\(103\) 11148.4i 1.05084i −0.850842 0.525421i \(-0.823908\pi\)
0.850842 0.525421i \(-0.176092\pi\)
\(104\) −7311.73 + 7596.58i −0.676010 + 0.702347i
\(105\) −5059.82 −0.458940
\(106\) 4256.49 + 4256.49i 0.378826 + 0.378826i
\(107\) 9291.29 0.811537 0.405769 0.913976i \(-0.367004\pi\)
0.405769 + 0.913976i \(0.367004\pi\)
\(108\) 1462.78i 0.125410i
\(109\) 1985.75 + 1985.75i 0.167136 + 0.167136i 0.785719 0.618583i \(-0.212293\pi\)
−0.618583 + 0.785719i \(0.712293\pi\)
\(110\) −5145.43 5145.43i −0.425243 0.425243i
\(111\) −2992.59 + 2992.59i −0.242885 + 0.242885i
\(112\) 334.666 334.666i 0.0266794 0.0266794i
\(113\) −1799.10 −0.140896 −0.0704478 0.997515i \(-0.522443\pi\)
−0.0704478 + 0.997515i \(0.522443\pi\)
\(114\) 3367.76i 0.259138i
\(115\) −20355.2 + 20355.2i −1.53914 + 1.53914i
\(116\) 7568.17i 0.562439i
\(117\) −4562.17 + 87.1693i −0.333273 + 0.00636783i
\(118\) −7560.07 −0.542952
\(119\) 1206.94 + 1206.94i 0.0852300 + 0.0852300i
\(120\) 13027.6 0.904696
\(121\) 8758.21i 0.598198i
\(122\) 10741.9 + 10741.9i 0.721706 + 0.721706i
\(123\) 9405.40 + 9405.40i 0.621680 + 0.621680i
\(124\) 6114.52 6114.52i 0.397666 0.397666i
\(125\) 10370.0 10370.0i 0.663680 0.663680i
\(126\) −1544.57 −0.0972895
\(127\) 7557.96i 0.468594i −0.972165 0.234297i \(-0.924721\pi\)
0.972165 0.234297i \(-0.0752789\pi\)
\(128\) −8221.12 + 8221.12i −0.501777 + 0.501777i
\(129\) 14962.2i 0.899118i
\(130\) 306.299 + 16030.7i 0.0181242 + 0.948563i
\(131\) 9705.21 0.565539 0.282769 0.959188i \(-0.408747\pi\)
0.282769 + 0.959188i \(0.408747\pi\)
\(132\) 2938.28 + 2938.28i 0.168634 + 0.168634i
\(133\) −6652.22 −0.376065
\(134\) 18270.5i 1.01751i
\(135\) 3986.65 + 3986.65i 0.218746 + 0.218746i
\(136\) −3107.54 3107.54i −0.168012 0.168012i
\(137\) −7306.03 + 7306.03i −0.389261 + 0.389261i −0.874424 0.485163i \(-0.838760\pi\)
0.485163 + 0.874424i \(0.338760\pi\)
\(138\) −6213.66 + 6213.66i −0.326279 + 0.326279i
\(139\) 14508.5 0.750921 0.375460 0.926838i \(-0.377485\pi\)
0.375460 + 0.926838i \(0.377485\pi\)
\(140\) 10152.8i 0.518002i
\(141\) −5533.17 + 5533.17i −0.278314 + 0.278314i
\(142\) 15502.9i 0.768838i
\(143\) −8988.88 + 9339.07i −0.439576 + 0.456701i
\(144\) −527.370 −0.0254326
\(145\) −20626.2 20626.2i −0.981032 0.981032i
\(146\) −18715.6 −0.878005
\(147\) 9425.03i 0.436162i
\(148\) −6004.81 6004.81i −0.274142 0.274142i
\(149\) 6209.08 + 6209.08i 0.279675 + 0.279675i 0.832979 0.553304i \(-0.186633\pi\)
−0.553304 + 0.832979i \(0.686633\pi\)
\(150\) 8587.00 8587.00i 0.381645 0.381645i
\(151\) 6322.22 6322.22i 0.277278 0.277278i −0.554743 0.832021i \(-0.687184\pi\)
0.832021 + 0.554743i \(0.187184\pi\)
\(152\) 17127.6 0.741327
\(153\) 1901.91i 0.0812469i
\(154\) −3102.56 + 3102.56i −0.130821 + 0.130821i
\(155\) 33328.9i 1.38726i
\(156\) −174.910 9154.27i −0.00718731 0.376162i
\(157\) 26942.7 1.09305 0.546526 0.837442i \(-0.315950\pi\)
0.546526 + 0.837442i \(0.315950\pi\)
\(158\) −11470.3 11470.3i −0.459475 0.459475i
\(159\) −13248.9 −0.524067
\(160\) 41967.8i 1.63937i
\(161\) 12273.6 + 12273.6i 0.473501 + 0.473501i
\(162\) 1216.97 + 1216.97i 0.0463714 + 0.0463714i
\(163\) 22832.2 22832.2i 0.859355 0.859355i −0.131907 0.991262i \(-0.542110\pi\)
0.991262 + 0.131907i \(0.0421101\pi\)
\(164\) −18872.5 + 18872.5i −0.701685 + 0.701685i
\(165\) 16015.9 0.588279
\(166\) 8838.37i 0.320742i
\(167\) 7664.75 7664.75i 0.274831 0.274831i −0.556211 0.831041i \(-0.687745\pi\)
0.831041 + 0.556211i \(0.187745\pi\)
\(168\) 7855.31i 0.278320i
\(169\) 28540.2 1091.03i 0.999270 0.0382000i
\(170\) −6683.00 −0.231246
\(171\) 5241.31 + 5241.31i 0.179245 + 0.179245i
\(172\) −30022.6 −1.01483
\(173\) 9382.63i 0.313496i 0.987639 + 0.156748i \(0.0501011\pi\)
−0.987639 + 0.156748i \(0.949899\pi\)
\(174\) −6296.39 6296.39i −0.207966 0.207966i
\(175\) −16961.6 16961.6i −0.553849 0.553849i
\(176\) −1059.32 + 1059.32i −0.0341982 + 0.0341982i
\(177\) 11765.9 11765.9i 0.375559 0.375559i
\(178\) −22717.6 −0.717005
\(179\) 322.023i 0.0100503i −0.999987 0.00502517i \(-0.998400\pi\)
0.999987 0.00502517i \(-0.00159957\pi\)
\(180\) −7999.46 + 7999.46i −0.246897 + 0.246897i
\(181\) 28479.3i 0.869306i −0.900598 0.434653i \(-0.856871\pi\)
0.900598 0.434653i \(-0.143129\pi\)
\(182\) 9666.09 184.690i 0.291815 0.00557571i
\(183\) −33435.6 −0.998405
\(184\) −31601.2 31601.2i −0.933400 0.933400i
\(185\) −32730.8 −0.956343
\(186\) 10174.0i 0.294081i
\(187\) −3820.35 3820.35i −0.109249 0.109249i
\(188\) −11102.6 11102.6i −0.314131 0.314131i
\(189\) 2403.84 2403.84i 0.0672949 0.0672949i
\(190\) 18417.1 18417.1i 0.510170 0.510170i
\(191\) 39049.7 1.07041 0.535206 0.844722i \(-0.320234\pi\)
0.535206 + 0.844722i \(0.320234\pi\)
\(192\) 11187.3i 0.303474i
\(193\) −34849.0 + 34849.0i −0.935570 + 0.935570i −0.998046 0.0624768i \(-0.980100\pi\)
0.0624768 + 0.998046i \(0.480100\pi\)
\(194\) 31714.5i 0.842665i
\(195\) −25425.6 24472.2i −0.668656 0.643583i
\(196\) 18911.9 0.492292
\(197\) 33755.4 + 33755.4i 0.869784 + 0.869784i 0.992448 0.122664i \(-0.0391438\pi\)
−0.122664 + 0.992448i \(0.539144\pi\)
\(198\) 4889.04 0.124708
\(199\) 12091.0i 0.305322i −0.988279 0.152661i \(-0.951216\pi\)
0.988279 0.152661i \(-0.0487842\pi\)
\(200\) 43671.5 + 43671.5i 1.09179 + 1.09179i
\(201\) 28434.7 + 28434.7i 0.703813 + 0.703813i
\(202\) 27613.7 27613.7i 0.676740 0.676740i
\(203\) −12437.0 + 12437.0i −0.301804 + 0.301804i
\(204\) 3816.30 0.0917027
\(205\) 102870.i 2.44782i
\(206\) 18610.8 18610.8i 0.438561 0.438561i
\(207\) 19340.9i 0.451373i
\(208\) 3300.34 63.0596i 0.0762838 0.00145755i
\(209\) 21056.3 0.482048
\(210\) −8446.71 8446.71i −0.191535 0.191535i
\(211\) 51063.6 1.14695 0.573477 0.819221i \(-0.305594\pi\)
0.573477 + 0.819221i \(0.305594\pi\)
\(212\) 26584.8i 0.591509i
\(213\) −24127.4 24127.4i −0.531804 0.531804i
\(214\) 15510.6 + 15510.6i 0.338689 + 0.338689i
\(215\) −81823.2 + 81823.2i −1.77011 + 1.77011i
\(216\) −6189.23 + 6189.23i −0.132657 + 0.132657i
\(217\) −20096.4 −0.426775
\(218\) 6629.90i 0.139506i
\(219\) 29127.4 29127.4i 0.607314 0.607314i
\(220\) 32136.9i 0.663985i
\(221\) 227.418 + 11902.4i 0.00465630 + 0.243696i
\(222\) −9991.47 −0.202733
\(223\) 7861.80 + 7861.80i 0.158093 + 0.158093i 0.781721 0.623628i \(-0.214342\pi\)
−0.623628 + 0.781721i \(0.714342\pi\)
\(224\) 25305.4 0.504333
\(225\) 26728.3i 0.527966i
\(226\) −3003.36 3003.36i −0.0588018 0.0588018i
\(227\) −9642.38 9642.38i −0.187125 0.187125i 0.607327 0.794452i \(-0.292242\pi\)
−0.794452 + 0.607327i \(0.792242\pi\)
\(228\) −10517.0 + 10517.0i −0.202313 + 0.202313i
\(229\) 36285.4 36285.4i 0.691928 0.691928i −0.270728 0.962656i \(-0.587264\pi\)
0.962656 + 0.270728i \(0.0872643\pi\)
\(230\) −67960.7 −1.28470
\(231\) 9657.15i 0.180978i
\(232\) 32021.9 32021.9i 0.594938 0.594938i
\(233\) 2365.03i 0.0435637i 0.999763 + 0.0217819i \(0.00693393\pi\)
−0.999763 + 0.0217819i \(0.993066\pi\)
\(234\) −7761.47 7470.43i −0.141746 0.136431i
\(235\) −60518.0 −1.09584
\(236\) 23609.0 + 23609.0i 0.423890 + 0.423890i
\(237\) 35703.0 0.635636
\(238\) 4029.67i 0.0711402i
\(239\) −18841.4 18841.4i −0.329850 0.329850i 0.522679 0.852529i \(-0.324933\pi\)
−0.852529 + 0.522679i \(0.824933\pi\)
\(240\) −2884.01 2884.01i −0.0500696 0.0500696i
\(241\) −27569.6 + 27569.6i −0.474676 + 0.474676i −0.903424 0.428748i \(-0.858955\pi\)
0.428748 + 0.903424i \(0.358955\pi\)
\(242\) −14620.7 + 14620.7i −0.249653 + 0.249653i
\(243\) −3788.00 −0.0641500
\(244\) 67090.5i 1.12689i
\(245\) 51542.3 51542.3i 0.858680 0.858680i
\(246\) 31402.2i 0.518907i
\(247\) −33427.5 32174.0i −0.547910 0.527365i
\(248\) 51742.7 0.841289
\(249\) 13755.3 + 13755.3i 0.221857 + 0.221857i
\(250\) 34622.8 0.553964
\(251\) 52279.9i 0.829826i −0.909861 0.414913i \(-0.863812\pi\)
0.909861 0.414913i \(-0.136188\pi\)
\(252\) 4823.46 + 4823.46i 0.0759552 + 0.0759552i
\(253\) −38849.8 38849.8i −0.606943 0.606943i
\(254\) 12617.0 12617.0i 0.195564 0.195564i
\(255\) 10400.9 10400.9i 0.159952 0.159952i
\(256\) −61896.1 −0.944459
\(257\) 87118.8i 1.31900i −0.751703 0.659501i \(-0.770768\pi\)
0.751703 0.659501i \(-0.229232\pi\)
\(258\) −24977.5 + 24977.5i −0.375240 + 0.375240i
\(259\) 19735.8i 0.294209i
\(260\) 49105.0 51018.1i 0.726406 0.754705i
\(261\) 19598.4 0.287700
\(262\) 16201.6 + 16201.6i 0.236023 + 0.236023i
\(263\) −92681.2 −1.33992 −0.669962 0.742395i \(-0.733690\pi\)
−0.669962 + 0.742395i \(0.733690\pi\)
\(264\) 24864.5i 0.356756i
\(265\) −72453.8 72453.8i −1.03174 1.03174i
\(266\) −11105.0 11105.0i −0.156948 0.156948i
\(267\) 35355.8 35355.8i 0.495951 0.495951i
\(268\) −57056.0 + 57056.0i −0.794387 + 0.794387i
\(269\) −123465. −1.70624 −0.853118 0.521717i \(-0.825292\pi\)
−0.853118 + 0.521717i \(0.825292\pi\)
\(270\) 13310.4i 0.182584i
\(271\) 60295.3 60295.3i 0.821003 0.821003i −0.165249 0.986252i \(-0.552843\pi\)
0.986252 + 0.165249i \(0.0528428\pi\)
\(272\) 1375.87i 0.0185969i
\(273\) −14756.1 + 15331.0i −0.197991 + 0.205705i
\(274\) −24393.0 −0.324910
\(275\) 53688.8 + 53688.8i 0.709934 + 0.709934i
\(276\) 38808.7 0.509461
\(277\) 62673.2i 0.816812i 0.912800 + 0.408406i \(0.133915\pi\)
−0.912800 + 0.408406i \(0.866085\pi\)
\(278\) 24220.1 + 24220.1i 0.313391 + 0.313391i
\(279\) 15834.0 + 15834.0i 0.203415 + 0.203415i
\(280\) 42958.0 42958.0i 0.547933 0.547933i
\(281\) 17050.4 17050.4i 0.215934 0.215934i −0.590848 0.806783i \(-0.701207\pi\)
0.806783 + 0.590848i \(0.201207\pi\)
\(282\) −18473.8 −0.232305
\(283\) 135558.i 1.69259i 0.532716 + 0.846294i \(0.321171\pi\)
−0.532716 + 0.846294i \(0.678829\pi\)
\(284\) 48413.1 48413.1i 0.600242 0.600242i
\(285\) 57325.9i 0.705767i
\(286\) −30596.2 + 584.600i −0.374054 + 0.00714705i
\(287\) 62027.7 0.753047
\(288\) −19938.3 19938.3i −0.240382 0.240382i
\(289\) 78559.1 0.940590
\(290\) 68865.6i 0.818854i
\(291\) −49358.0 49358.0i −0.582870 0.582870i
\(292\) 58445.9 + 58445.9i 0.685470 + 0.685470i
\(293\) −33642.1 + 33642.1i −0.391876 + 0.391876i −0.875356 0.483480i \(-0.839373\pi\)
0.483480 + 0.875356i \(0.339373\pi\)
\(294\) 15733.9 15733.9i 0.182029 0.182029i
\(295\) 128687. 1.47874
\(296\) 50814.3i 0.579966i
\(297\) −7608.91 + 7608.91i −0.0862600 + 0.0862600i
\(298\) 20730.5i 0.233441i
\(299\) 2312.66 + 121037.i 0.0258684 + 1.35387i
\(300\) −53631.9 −0.595910
\(301\) 49337.2 + 49337.2i 0.544555 + 0.544555i
\(302\) 21108.2 0.231440
\(303\) 85951.6i 0.936200i
\(304\) −3791.65 3791.65i −0.0410281 0.0410281i
\(305\) −182848. 182848.i −1.96558 1.96558i
\(306\) 3174.99 3174.99i 0.0339078 0.0339078i
\(307\) −121981. + 121981.i −1.29425 + 1.29425i −0.362112 + 0.932135i \(0.617944\pi\)
−0.932135 + 0.362112i \(0.882056\pi\)
\(308\) 19377.7 0.204268
\(309\) 57928.7i 0.606704i
\(310\) 55638.2 55638.2i 0.578962 0.578962i
\(311\) 1370.53i 0.0141699i 0.999975 + 0.00708495i \(0.00225523\pi\)
−0.999975 + 0.00708495i \(0.997745\pi\)
\(312\) 37992.8 39473.0i 0.390295 0.405500i
\(313\) 52462.0 0.535495 0.267748 0.963489i \(-0.413721\pi\)
0.267748 + 0.963489i \(0.413721\pi\)
\(314\) 44977.3 + 44977.3i 0.456178 + 0.456178i
\(315\) 26291.6 0.264969
\(316\) 71640.4i 0.717437i
\(317\) −101779. 101779.i −1.01284 1.01284i −0.999916 0.0129239i \(-0.995886\pi\)
−0.0129239 0.999916i \(-0.504114\pi\)
\(318\) −22117.4 22117.4i −0.218715 0.218715i
\(319\) 39367.1 39367.1i 0.386858 0.386858i
\(320\) −61179.4 + 61179.4i −0.597455 + 0.597455i
\(321\) −48279.0 −0.468541
\(322\) 40978.5i 0.395225i
\(323\) 13674.2 13674.2i 0.131068 0.131068i
\(324\) 7600.85i 0.0724056i
\(325\) −3196.00 167269.i −0.0302580 1.58361i
\(326\) 76230.8 0.717291
\(327\) −10318.2 10318.2i −0.0964962 0.0964962i
\(328\) −159704. −1.48446
\(329\) 36490.7i 0.337125i
\(330\) 26736.5 + 26736.5i 0.245514 + 0.245514i
\(331\) 90476.9 + 90476.9i 0.825813 + 0.825813i 0.986935 0.161122i \(-0.0515112\pi\)
−0.161122 + 0.986935i \(0.551511\pi\)
\(332\) −27600.9 + 27600.9i −0.250408 + 0.250408i
\(333\) 15549.9 15549.9i 0.140230 0.140230i
\(334\) 25590.6 0.229397
\(335\) 311000.i 2.77122i
\(336\) −1738.98 + 1738.98i −0.0154034 + 0.0154034i
\(337\) 48432.3i 0.426457i 0.977002 + 0.213228i \(0.0683979\pi\)
−0.977002 + 0.213228i \(0.931602\pi\)
\(338\) 49465.4 + 45822.8i 0.432981 + 0.401096i
\(339\) 9348.38 0.0813461
\(340\) 20870.0 + 20870.0i 0.180537 + 0.180537i
\(341\) 63611.3 0.547048
\(342\) 17499.4i 0.149613i
\(343\) −72217.5 72217.5i −0.613838 0.613838i
\(344\) −127030. 127030.i −1.07347 1.07347i
\(345\) 105769. 105769.i 0.888625 0.888625i
\(346\) −15663.1 + 15663.1i −0.130835 + 0.130835i
\(347\) 50065.9 0.415799 0.207899 0.978150i \(-0.433337\pi\)
0.207899 + 0.978150i \(0.433337\pi\)
\(348\) 39325.4i 0.324724i
\(349\) −36678.7 + 36678.7i −0.301137 + 0.301137i −0.841458 0.540322i \(-0.818302\pi\)
0.540322 + 0.841458i \(0.318302\pi\)
\(350\) 56630.5i 0.462290i
\(351\) 23705.7 452.945i 0.192415 0.00367647i
\(352\) −80099.5 −0.646465
\(353\) −91471.6 91471.6i −0.734069 0.734069i 0.237354 0.971423i \(-0.423720\pi\)
−0.971423 + 0.237354i \(0.923720\pi\)
\(354\) 39283.3 0.313474
\(355\) 263889.i 2.09394i
\(356\) 70943.6 + 70943.6i 0.559775 + 0.559775i
\(357\) −6271.45 6271.45i −0.0492076 0.0492076i
\(358\) 537.576 537.576i 0.00419444 0.00419444i
\(359\) 19904.6 19904.6i 0.154442 0.154442i −0.625657 0.780098i \(-0.715169\pi\)
0.780098 + 0.625657i \(0.215169\pi\)
\(360\) −67693.5 −0.522327
\(361\) 54953.8i 0.421680i
\(362\) 47542.6 47542.6i 0.362799 0.362799i
\(363\) 45509.0i 0.345370i
\(364\) −30762.5 29609.0i −0.232177 0.223471i
\(365\) 318576. 2.39126
\(366\) −55816.4 55816.4i −0.416677 0.416677i
\(367\) 13539.5 0.100524 0.0502620 0.998736i \(-0.483994\pi\)
0.0502620 + 0.998736i \(0.483994\pi\)
\(368\) 13991.5i 0.103316i
\(369\) −48871.9 48871.9i −0.358927 0.358927i
\(370\) −54639.9 54639.9i −0.399123 0.399123i
\(371\) −43687.7 + 43687.7i −0.317403 + 0.317403i
\(372\) −31772.0 + 31772.0i −0.229593 + 0.229593i
\(373\) −76501.0 −0.549857 −0.274928 0.961465i \(-0.588654\pi\)
−0.274928 + 0.961465i \(0.588654\pi\)
\(374\) 12755.1i 0.0911890i
\(375\) −53884.1 + 53884.1i −0.383176 + 0.383176i
\(376\) 93953.5i 0.664565i
\(377\) −122649. + 2343.45i −0.862942 + 0.0164882i
\(378\) 8025.81 0.0561701
\(379\) 9873.34 + 9873.34i 0.0687362 + 0.0687362i 0.740639 0.671903i \(-0.234523\pi\)
−0.671903 + 0.740639i \(0.734523\pi\)
\(380\) −115028. −0.796592
\(381\) 39272.3i 0.270543i
\(382\) 65188.4 + 65188.4i 0.446729 + 0.446729i
\(383\) 92064.1 + 92064.1i 0.627614 + 0.627614i 0.947467 0.319853i \(-0.103634\pi\)
−0.319853 + 0.947467i \(0.603634\pi\)
\(384\) 42718.2 42718.2i 0.289701 0.289701i
\(385\) 52811.6 52811.6i 0.356294 0.356294i
\(386\) −116352. −0.780906
\(387\) 77746.0i 0.519106i
\(388\) 99039.8 99039.8i 0.657880 0.657880i
\(389\) 35489.2i 0.234529i −0.993101 0.117265i \(-0.962587\pi\)
0.993101 0.117265i \(-0.0374125\pi\)
\(390\) −1591.57 83298.0i −0.0104640 0.547653i
\(391\) −50459.0 −0.330054
\(392\) 80018.7 + 80018.7i 0.520738 + 0.520738i
\(393\) −50429.7 −0.326514
\(394\) 112701.i 0.725996i
\(395\) 195248. + 195248.i 1.25139 + 1.25139i
\(396\) −15267.7 15267.7i −0.0973609 0.0973609i
\(397\) 45764.3 45764.3i 0.290366 0.290366i −0.546859 0.837225i \(-0.684177\pi\)
0.837225 + 0.546859i \(0.184177\pi\)
\(398\) 20184.4 20184.4i 0.127424 0.127424i
\(399\) 34566.0 0.217121
\(400\) 19335.6i 0.120848i
\(401\) 53143.4 53143.4i 0.330492 0.330492i −0.522281 0.852773i \(-0.674919\pi\)
0.852773 + 0.522281i \(0.174919\pi\)
\(402\) 94936.2i 0.587462i
\(403\) −100985. 97197.9i −0.621792 0.598476i
\(404\) −172467. −1.05668
\(405\) −20715.2 20715.2i −0.126293 0.126293i
\(406\) −41524.1 −0.251911
\(407\) 62470.0i 0.377123i
\(408\) 16147.3 + 16147.3i 0.0970015 + 0.0970015i
\(409\) 75294.0 + 75294.0i 0.450105 + 0.450105i 0.895389 0.445284i \(-0.146897\pi\)
−0.445284 + 0.895389i \(0.646897\pi\)
\(410\) −171728. + 171728.i −1.02158 + 1.02158i
\(411\) 37963.3 37963.3i 0.224740 0.224740i
\(412\) −116237. −0.684781
\(413\) 77594.9i 0.454918i
\(414\) 32287.1 32287.1i 0.188377 0.188377i
\(415\) 150447.i 0.873546i
\(416\) 127160. + 122392.i 0.734791 + 0.707239i
\(417\) −75388.6 −0.433544
\(418\) 35150.8 + 35150.8i 0.201179 + 0.201179i
\(419\) −264545. −1.50686 −0.753429 0.657530i \(-0.771601\pi\)
−0.753429 + 0.657530i \(0.771601\pi\)
\(420\) 52755.7i 0.299068i
\(421\) 30687.4 + 30687.4i 0.173140 + 0.173140i 0.788357 0.615218i \(-0.210932\pi\)
−0.615218 + 0.788357i \(0.710932\pi\)
\(422\) 85244.1 + 85244.1i 0.478673 + 0.478673i
\(423\) 28751.2 28751.2i 0.160685 0.160685i
\(424\) 112484. 112484.i 0.625688 0.625688i
\(425\) 69732.1 0.386060
\(426\) 80555.2i 0.443889i
\(427\) −110252. + 110252.i −0.604688 + 0.604688i
\(428\) 96874.7i 0.528838i
\(429\) 46707.6 48527.3i 0.253789 0.263676i
\(430\) −273187. −1.47748
\(431\) 138755. + 138755.i 0.746956 + 0.746956i 0.973906 0.226950i \(-0.0728755\pi\)
−0.226950 + 0.973906i \(0.572876\pi\)
\(432\) 2740.30 0.0146835
\(433\) 192478.i 1.02661i 0.858206 + 0.513305i \(0.171579\pi\)
−0.858206 + 0.513305i \(0.828421\pi\)
\(434\) −33548.3 33548.3i −0.178111 0.178111i
\(435\) 107177. + 107177.i 0.566399 + 0.566399i
\(436\) 20704.2 20704.2i 0.108914 0.108914i
\(437\) 139056. 139056.i 0.728158 0.728158i
\(438\) 97248.9 0.506917
\(439\) 221370.i 1.14865i −0.818626 0.574327i \(-0.805264\pi\)
0.818626 0.574327i \(-0.194736\pi\)
\(440\) −135975. + 135975.i −0.702352 + 0.702352i
\(441\) 48973.9i 0.251818i
\(442\) −19489.8 + 20249.1i −0.0997616 + 0.103648i
\(443\) 354252. 1.80511 0.902557 0.430570i \(-0.141687\pi\)
0.902557 + 0.430570i \(0.141687\pi\)
\(444\) 31201.9 + 31201.9i 0.158276 + 0.158276i
\(445\) 386698. 1.95277
\(446\) 26248.5i 0.131958i
\(447\) −32263.3 32263.3i −0.161471 0.161471i
\(448\) 36889.5 + 36889.5i 0.183801 + 0.183801i
\(449\) −187721. + 187721.i −0.931152 + 0.931152i −0.997778 0.0666259i \(-0.978777\pi\)
0.0666259 + 0.997778i \(0.478777\pi\)
\(450\) −44619.4 + 44619.4i −0.220343 + 0.220343i
\(451\) −196337. −0.965270
\(452\) 18758.1i 0.0918147i
\(453\) −32851.2 + 32851.2i −0.160087 + 0.160087i
\(454\) 32193.4i 0.156191i
\(455\) −164536. + 3143.78i −0.794763 + 0.0151855i
\(456\) −88997.8 −0.428006
\(457\) −88792.4 88792.4i −0.425151 0.425151i 0.461822 0.886973i \(-0.347196\pi\)
−0.886973 + 0.461822i \(0.847196\pi\)
\(458\) 121148. 0.577543
\(459\) 9882.61i 0.0469079i
\(460\) 212231. + 212231.i 1.00298 + 1.00298i
\(461\) −56596.4 56596.4i −0.266310 0.266310i 0.561302 0.827611i \(-0.310301\pi\)
−0.827611 + 0.561302i \(0.810301\pi\)
\(462\) 16121.4 16121.4i 0.0755297 0.0755297i
\(463\) 171067. 171067.i 0.798003 0.798003i −0.184777 0.982780i \(-0.559156\pi\)
0.982780 + 0.184777i \(0.0591563\pi\)
\(464\) −14177.8 −0.0658526
\(465\) 173182.i 0.800934i
\(466\) −3948.11 + 3948.11i −0.0181810 + 0.0181810i
\(467\) 68140.5i 0.312443i −0.987722 0.156222i \(-0.950069\pi\)
0.987722 0.156222i \(-0.0499314\pi\)
\(468\) 908.862 + 47567.0i 0.00414960 + 0.217177i
\(469\) 187524. 0.852534
\(470\) −101027. 101027.i −0.457343 0.457343i
\(471\) −139998. −0.631074
\(472\) 199785.i 0.896767i
\(473\) −156168. 156168.i −0.698021 0.698021i
\(474\) 59601.6 + 59601.6i 0.265278 + 0.265278i
\(475\) −192169. + 192169.i −0.851718 + 0.851718i
\(476\) 12584.1 12584.1i 0.0555401 0.0555401i
\(477\) 68843.4 0.302570
\(478\) 62906.5i 0.275321i
\(479\) −113713. + 113713.i −0.495610 + 0.495610i −0.910068 0.414458i \(-0.863971\pi\)
0.414458 + 0.910068i \(0.363971\pi\)
\(480\) 218071.i 0.946489i
\(481\) −95453.9 + 99172.6i −0.412576 + 0.428649i
\(482\) −92047.9 −0.396205
\(483\) −63775.6 63775.6i −0.273376 0.273376i
\(484\) 91316.6 0.389816
\(485\) 539844.i 2.29501i
\(486\) −6323.57 6323.57i −0.0267726 0.0267726i
\(487\) 30988.8 + 30988.8i 0.130661 + 0.130661i 0.769413 0.638752i \(-0.220549\pi\)
−0.638752 + 0.769413i \(0.720549\pi\)
\(488\) 283869. 283869.i 1.19201 1.19201i
\(489\) −118640. + 118640.i −0.496149 + 0.496149i
\(490\) 172086. 0.716728
\(491\) 229476.i 0.951861i −0.879483 0.475931i \(-0.842111\pi\)
0.879483 0.475931i \(-0.157889\pi\)
\(492\) 98064.4 98064.4i 0.405118 0.405118i
\(493\) 51130.8i 0.210372i
\(494\) −2092.47 109513.i −0.00857442 0.448759i
\(495\) −83221.0 −0.339643
\(496\) −11454.6 11454.6i −0.0465604 0.0465604i
\(497\) −159118. −0.644179
\(498\) 45925.5i 0.185181i
\(499\) 29259.2 + 29259.2i 0.117506 + 0.117506i 0.763415 0.645909i \(-0.223521\pi\)
−0.645909 + 0.763415i \(0.723521\pi\)
\(500\) −108122. 108122.i −0.432487 0.432487i
\(501\) −39827.2 + 39827.2i −0.158674 + 0.158674i
\(502\) 87274.5 87274.5i 0.346322 0.346322i
\(503\) 432230. 1.70836 0.854180 0.519978i \(-0.174060\pi\)
0.854180 + 0.519978i \(0.174060\pi\)
\(504\) 40817.4i 0.160688i
\(505\) −470040. + 470040.i −1.84311 + 1.84311i
\(506\) 129710.i 0.506607i
\(507\) −148299. + 5669.16i −0.576929 + 0.0220548i
\(508\) −78802.3 −0.305360
\(509\) −150630. 150630.i −0.581402 0.581402i 0.353886 0.935289i \(-0.384860\pi\)
−0.935289 + 0.353886i \(0.884860\pi\)
\(510\) 34725.9 0.133510
\(511\) 192092.i 0.735645i
\(512\) 28210.4 + 28210.4i 0.107614 + 0.107614i
\(513\) −27234.7 27234.7i −0.103487 0.103487i
\(514\) 145434. 145434.i 0.550476 0.550476i
\(515\) −316792. + 316792.i −1.19443 + 1.19443i
\(516\) 156002. 0.585910
\(517\) 115504.i 0.432133i
\(518\) −32946.4 + 32946.4i −0.122786 + 0.122786i
\(519\) 48753.6i 0.180997i
\(520\) 423634. 8094.37i 1.56669 0.0299348i
\(521\) −152305. −0.561096 −0.280548 0.959840i \(-0.590516\pi\)
−0.280548 + 0.959840i \(0.590516\pi\)
\(522\) 32717.0 + 32717.0i 0.120069 + 0.120069i
\(523\) 78780.8 0.288016 0.144008 0.989577i \(-0.454001\pi\)
0.144008 + 0.989577i \(0.454001\pi\)
\(524\) 101190.i 0.368533i
\(525\) 88135.1 + 88135.1i 0.319765 + 0.319765i
\(526\) −154719. 154719.i −0.559208 0.559208i
\(527\) 41309.9 41309.9i 0.148742 0.148742i
\(528\) 5504.40 5504.40i 0.0197443 0.0197443i
\(529\) −233286. −0.833638
\(530\) 241905.i 0.861177i
\(531\) −61137.3 + 61137.3i −0.216829 + 0.216829i
\(532\) 69358.7i 0.245063i
\(533\) 311690. + 300002.i 1.09716 + 1.05601i
\(534\) 118044. 0.413963
\(535\) −264021. 264021.i −0.922425 0.922425i
\(536\) −482823. −1.68058
\(537\) 1673.28i 0.00580257i
\(538\) −206109. 206109.i −0.712086 0.712086i
\(539\) 98373.3 + 98373.3i 0.338610 + 0.338610i
\(540\) 41566.4 41566.4i 0.142546 0.142546i
\(541\) −35408.4 + 35408.4i −0.120979 + 0.120979i −0.765004 0.644025i \(-0.777263\pi\)
0.644025 + 0.765004i \(0.277263\pi\)
\(542\) 201310. 0.685279
\(543\) 147983.i 0.501894i
\(544\) −52017.5 + 52017.5i −0.175773 + 0.175773i
\(545\) 112854.i 0.379947i
\(546\) −50226.5 + 959.676i −0.168480 + 0.00321914i
\(547\) 10939.9 0.0365628 0.0182814 0.999833i \(-0.494181\pi\)
0.0182814 + 0.999833i \(0.494181\pi\)
\(548\) 76175.6 + 76175.6i 0.253662 + 0.253662i
\(549\) 173736. 0.576429
\(550\) 179253.i 0.592572i
\(551\) 140907. + 140907.i 0.464120 + 0.464120i
\(552\) 164205. + 164205.i 0.538899 + 0.538899i
\(553\) 117729. 117729.i 0.384976 0.384976i
\(554\) −104625. + 104625.i −0.340891 + 0.340891i
\(555\) 170074. 0.552145
\(556\) 151272.i 0.489338i
\(557\) 32717.3 32717.3i 0.105455 0.105455i −0.652411 0.757866i \(-0.726242\pi\)
0.757866 + 0.652411i \(0.226242\pi\)
\(558\) 52865.8i 0.169788i
\(559\) 9296.38 + 486543.i 0.0297502 + 1.55703i
\(560\) −19019.7 −0.0606497
\(561\) 19851.1 + 19851.1i 0.0630752 + 0.0630752i
\(562\) 56926.8 0.180237
\(563\) 180795.i 0.570388i −0.958470 0.285194i \(-0.907942\pi\)
0.958470 0.285194i \(-0.0920580\pi\)
\(564\) 57691.0 + 57691.0i 0.181364 + 0.181364i
\(565\) 51123.1 + 51123.1i 0.160148 + 0.160148i
\(566\) −226296. + 226296.i −0.706390 + 0.706390i
\(567\) −12490.7 + 12490.7i −0.0388527 + 0.0388527i
\(568\) 409685. 1.26985
\(569\) 500901.i 1.54713i 0.633715 + 0.773566i \(0.281529\pi\)
−0.633715 + 0.773566i \(0.718471\pi\)
\(570\) −95698.2 + 95698.2i −0.294547 + 0.294547i
\(571\) 246396.i 0.755722i 0.925862 + 0.377861i \(0.123340\pi\)
−0.925862 + 0.377861i \(0.876660\pi\)
\(572\) 97372.9 + 93721.7i 0.297609 + 0.286449i
\(573\) −202908. −0.618002
\(574\) 103547. + 103547.i 0.314279 + 0.314279i
\(575\) 709119. 2.14478
\(576\) 58130.8i 0.175211i
\(577\) −184815. 184815.i −0.555119 0.555119i 0.372794 0.927914i \(-0.378400\pi\)
−0.927914 + 0.372794i \(0.878400\pi\)
\(578\) 131144. + 131144.i 0.392549 + 0.392549i
\(579\) 181081. 181081.i 0.540151 0.540151i
\(580\) −215057. + 215057.i −0.639290 + 0.639290i
\(581\) 90715.2 0.268737
\(582\) 164794.i 0.486513i
\(583\) 138285. 138285.i 0.406854 0.406854i
\(584\) 494585.i 1.45016i
\(585\) 132115. + 127161.i 0.386048 + 0.371573i
\(586\) −112322. −0.327093
\(587\) −402989. 402989.i −1.16954 1.16954i −0.982317 0.187227i \(-0.940050\pi\)
−0.187227 0.982317i \(-0.559950\pi\)
\(588\) −98269.1 −0.284225
\(589\) 227685.i 0.656302i
\(590\) 214827. + 214827.i 0.617141 + 0.617141i
\(591\) −175398. 175398.i −0.502170 0.502170i
\(592\) −11249.1 + 11249.1i −0.0320976 + 0.0320976i
\(593\) 180607. 180607.i 0.513601 0.513601i −0.402027 0.915628i \(-0.631694\pi\)
0.915628 + 0.402027i \(0.131694\pi\)
\(594\) −25404.2 −0.0720000
\(595\) 68592.9i 0.193751i
\(596\) 64738.3 64738.3i 0.182251 0.182251i
\(597\) 62826.9i 0.176278i
\(598\) −198196. + 205917.i −0.554233 + 0.575825i
\(599\) −461474. −1.28615 −0.643077 0.765801i \(-0.722343\pi\)
−0.643077 + 0.765801i \(0.722343\pi\)
\(600\) −226924. 226924.i −0.630343 0.630343i
\(601\) −482801. −1.33666 −0.668328 0.743867i \(-0.732990\pi\)
−0.668328 + 0.743867i \(0.732990\pi\)
\(602\) 164724.i 0.454532i
\(603\) −147751. 147751.i −0.406346 0.406346i
\(604\) −65918.0 65918.0i −0.180688 0.180688i
\(605\) 248873. 248873.i 0.679935 0.679935i
\(606\) −143485. + 143485.i −0.390716 + 0.390716i
\(607\) 219694. 0.596266 0.298133 0.954524i \(-0.403636\pi\)
0.298133 + 0.954524i \(0.403636\pi\)
\(608\) 286701.i 0.775573i
\(609\) 64624.8 64624.8i 0.174247 0.174247i
\(610\) 610481.i 1.64064i
\(611\) −176490. + 183366.i −0.472758 + 0.491176i
\(612\) −19830.1 −0.0529446
\(613\) 193600. + 193600.i 0.515209 + 0.515209i 0.916118 0.400909i \(-0.131306\pi\)
−0.400909 + 0.916118i \(0.631306\pi\)
\(614\) −407265. −1.08029
\(615\) 534527.i 1.41325i
\(616\) 81989.4 + 81989.4i 0.216071 + 0.216071i
\(617\) 234942. + 234942.i 0.617149 + 0.617149i 0.944799 0.327650i \(-0.106257\pi\)
−0.327650 + 0.944799i \(0.606257\pi\)
\(618\) −96704.5 + 96704.5i −0.253203 + 0.253203i
\(619\) 518107. 518107.i 1.35219 1.35219i 0.468984 0.883206i \(-0.344620\pi\)
0.883206 0.468984i \(-0.155380\pi\)
\(620\) −347500. −0.904006
\(621\) 100498.i 0.260600i
\(622\) −2287.92 + 2287.92i −0.00591371 + 0.00591371i
\(623\) 233168.i 0.600749i
\(624\) −17149.1 + 327.667i −0.0440425 + 0.000841519i
\(625\) 29362.4 0.0751678
\(626\) 87578.5 + 87578.5i 0.223485 + 0.223485i
\(627\) −109412. −0.278311
\(628\) 280915.i 0.712288i
\(629\) −40568.7 40568.7i −0.102539 0.102539i
\(630\) 43890.4 + 43890.4i 0.110583 + 0.110583i
\(631\) −335596. + 335596.i −0.842866 + 0.842866i −0.989231 0.146365i \(-0.953243\pi\)
0.146365 + 0.989231i \(0.453243\pi\)
\(632\) −303120. + 303120.i −0.758892 + 0.758892i
\(633\) −265334. −0.662195
\(634\) 339815.i 0.845403i
\(635\) −214767. + 214767.i −0.532623 + 0.532623i
\(636\) 138139.i 0.341508i
\(637\) −5855.99 306484.i −0.0144318 0.755317i
\(638\) 131437. 0.322905
\(639\) 125370. + 125370.i 0.307037 + 0.307037i
\(640\) 467222. 1.14068
\(641\) 555098.i 1.35099i 0.737362 + 0.675497i \(0.236071\pi\)
−0.737362 + 0.675497i \(0.763929\pi\)
\(642\) −80595.5 80595.5i −0.195542 0.195542i
\(643\) 263449. + 263449.i 0.637197 + 0.637197i 0.949863 0.312666i \(-0.101222\pi\)
−0.312666 + 0.949863i \(0.601222\pi\)
\(644\) 127970. 127970.i 0.308557 0.308557i
\(645\) 425166. 425166.i 1.02197 1.02197i
\(646\) 45654.7 0.109401
\(647\) 396185.i 0.946433i −0.880946 0.473216i \(-0.843093\pi\)
0.880946 0.473216i \(-0.156907\pi\)
\(648\) 32160.2 32160.2i 0.0765894 0.0765894i
\(649\) 245612.i 0.583123i
\(650\) 273898. 284569.i 0.648279 0.673535i
\(651\) 104424. 0.246399
\(652\) −238058. 238058.i −0.559999 0.559999i
\(653\) 825533. 1.93601 0.968006 0.250929i \(-0.0807360\pi\)
0.968006 + 0.250929i \(0.0807360\pi\)
\(654\) 34450.0i 0.0805440i
\(655\) −275783. 275783.i −0.642813 0.642813i
\(656\) 35354.7 + 35354.7i 0.0821560 + 0.0821560i
\(657\) −151350. + 151350.i −0.350633 + 0.350633i
\(658\) −60916.5 + 60916.5i −0.140697 + 0.140697i
\(659\) 123474. 0.284317 0.142159 0.989844i \(-0.454596\pi\)
0.142159 + 0.989844i \(0.454596\pi\)
\(660\) 166988.i 0.383352i
\(661\) 121255. 121255.i 0.277522 0.277522i −0.554597 0.832119i \(-0.687128\pi\)
0.832119 + 0.554597i \(0.187128\pi\)
\(662\) 302079.i 0.689294i
\(663\) −1181.70 61846.5i −0.00268832 0.140698i
\(664\) −233566. −0.529754
\(665\) 189029. + 189029.i 0.427451 + 0.427451i
\(666\) 51917.2 0.117048
\(667\) 519959.i 1.16874i
\(668\) −79915.8 79915.8i −0.179093 0.179093i
\(669\) −40851.1 40851.1i −0.0912750 0.0912750i
\(670\) −519174. + 519174.i −1.15655 + 1.15655i
\(671\) 348982. 348982.i 0.775101 0.775101i
\(672\) −131491. −0.291177
\(673\) 140601.i 0.310425i 0.987881 + 0.155213i \(0.0496062\pi\)
−0.987881 + 0.155213i \(0.950394\pi\)
\(674\) −80851.5 + 80851.5i −0.177979 + 0.177979i
\(675\) 138884.i 0.304821i
\(676\) −11375.5 297571.i −0.0248930 0.651174i
\(677\) −543307. −1.18541 −0.592704 0.805420i \(-0.701940\pi\)
−0.592704 + 0.805420i \(0.701940\pi\)
\(678\) 15605.9 + 15605.9i 0.0339492 + 0.0339492i
\(679\) −325511. −0.706035
\(680\) 176608.i 0.381937i
\(681\) 50103.3 + 50103.3i 0.108037 + 0.108037i
\(682\) 106191. + 106191.i 0.228307 + 0.228307i
\(683\) −475365. + 475365.i −1.01903 + 1.01903i −0.0192116 + 0.999815i \(0.506116\pi\)
−0.999815 + 0.0192116i \(0.993884\pi\)
\(684\) 54648.0 54648.0i 0.116805 0.116805i
\(685\) 415216. 0.884898
\(686\) 241115.i 0.512362i
\(687\) −188545. + 188545.i −0.399485 + 0.399485i
\(688\) 56242.7i 0.118820i
\(689\) −430830. + 8231.87i −0.907544 + 0.0173404i
\(690\) 353134. 0.741723
\(691\) −212706. 212706.i −0.445476 0.445476i 0.448371 0.893847i \(-0.352004\pi\)
−0.893847 + 0.448371i \(0.852004\pi\)
\(692\) 97827.1 0.204290
\(693\) 50180.0i 0.104487i
\(694\) 83578.6 + 83578.6i 0.173531 + 0.173531i
\(695\) −412274. 412274.i −0.853526 0.853526i
\(696\) −166391. + 166391.i −0.343488 + 0.343488i
\(697\) −127503. + 127503.i −0.262456 + 0.262456i
\(698\) −122461. −0.251354
\(699\) 12289.1i 0.0251515i
\(700\) −176849. + 176849.i −0.360916 + 0.360916i
\(701\) 56550.4i 0.115080i −0.998343 0.0575400i \(-0.981674\pi\)
0.998343 0.0575400i \(-0.0183257\pi\)
\(702\) 40329.8 + 38817.5i 0.0818373 + 0.0787686i
\(703\) 223600. 0.452439
\(704\) −116767. 116767.i −0.235599 0.235599i
\(705\) 314461. 0.632686
\(706\) 305400.i 0.612716i
\(707\) 283421. + 283421.i 0.567013 + 0.567013i
\(708\) −122676. 122676.i −0.244733 0.244733i
\(709\) 284754. 284754.i 0.566470 0.566470i −0.364668 0.931138i \(-0.618818\pi\)
0.931138 + 0.364668i \(0.118818\pi\)
\(710\) 440529. 440529.i 0.873892 0.873892i
\(711\) −185518. −0.366985
\(712\) 600344.i 1.18424i
\(713\) 420088. 420088.i 0.826345 0.826345i
\(714\) 20938.8i 0.0410728i
\(715\) 520807. 9951.05i 1.01874 0.0194651i
\(716\) −3357.54 −0.00654931
\(717\) 97902.7 + 97902.7i 0.190439 + 0.190439i
\(718\) 66456.3 0.128910
\(719\) 513980.i 0.994234i 0.867684 + 0.497117i \(0.165608\pi\)
−0.867684 + 0.497117i \(0.834392\pi\)
\(720\) 14985.7 + 14985.7i 0.0289077 + 0.0289077i
\(721\) 191017. + 191017.i 0.367453 + 0.367453i
\(722\) 91738.2 91738.2i 0.175985 0.175985i
\(723\) 143256. 143256.i 0.274054 0.274054i
\(724\) −296937. −0.566483
\(725\) 718561.i 1.36706i
\(726\) 75971.4 75971.4i 0.144138 0.144138i
\(727\) 5325.23i 0.0100756i −0.999987 0.00503779i \(-0.998396\pi\)
0.999987 0.00503779i \(-0.00160358\pi\)
\(728\) −4880.69 255440.i −0.00920912 0.481977i
\(729\) 19683.0 0.0370370
\(730\) 531821. + 531821.i 0.997975 + 0.997975i
\(731\) −202834. −0.379582
\(732\) 348613.i 0.650610i
\(733\) 471793. + 471793.i 0.878100 + 0.878100i 0.993338 0.115238i \(-0.0367631\pi\)
−0.115238 + 0.993338i \(0.536763\pi\)
\(734\) 22602.4 + 22602.4i 0.0419530 + 0.0419530i
\(735\) −267821. + 267821.i −0.495759 + 0.495759i
\(736\) −528976. + 528976.i −0.976518 + 0.976518i
\(737\) −593573. −1.09280
\(738\) 163171.i 0.299591i
\(739\) 383237. 383237.i 0.701745 0.701745i −0.263040 0.964785i \(-0.584725\pi\)
0.964785 + 0.263040i \(0.0847252\pi\)
\(740\) 341265.i 0.623201i
\(741\) 173694. + 167181.i 0.316336 + 0.304474i
\(742\) −145862. −0.264932
\(743\) 77467.3 + 77467.3i 0.140327 + 0.140327i 0.773781 0.633454i \(-0.218363\pi\)
−0.633454 + 0.773781i \(0.718363\pi\)
\(744\) −268863. −0.485719
\(745\) 352874.i 0.635780i
\(746\) −127709. 127709.i −0.229479 0.229479i
\(747\) −71474.9 71474.9i −0.128089 0.128089i
\(748\) −39832.4 + 39832.4i −0.0711924 + 0.0711924i
\(749\) −159198. + 159198.i −0.283774 + 0.283774i
\(750\) −179905. −0.319831
\(751\) 287709.i 0.510121i 0.966925 + 0.255061i \(0.0820954\pi\)
−0.966925 + 0.255061i \(0.917905\pi\)
\(752\) −20799.1 + 20799.1i −0.0367797 + 0.0367797i
\(753\) 271654.i 0.479101i
\(754\) −208659. 200835.i −0.367024 0.353261i
\(755\) −359304. −0.630330
\(756\) −25063.4 25063.4i −0.0438527 0.0438527i
\(757\) −962044. −1.67882 −0.839408 0.543502i \(-0.817098\pi\)
−0.839408 + 0.543502i \(0.817098\pi\)
\(758\) 32964.5i 0.0573731i
\(759\) 201870. + 201870.i 0.350419 + 0.350419i
\(760\) −486698. 486698.i −0.842622 0.842622i
\(761\) 496273. 496273.i 0.856943 0.856943i −0.134034 0.990977i \(-0.542793\pi\)
0.990977 + 0.134034i \(0.0427932\pi\)
\(762\) −65560.0 + 65560.0i −0.112909 + 0.112909i
\(763\) −68047.8 −0.116887
\(764\) 407148.i 0.697534i
\(765\) −54044.6 + 54044.6i −0.0923484 + 0.0923484i
\(766\) 307378.i 0.523860i
\(767\) 375294. 389915.i 0.637942 0.662795i
\(768\) 321621. 0.545284
\(769\) 326544. + 326544.i 0.552191 + 0.552191i 0.927073 0.374882i \(-0.122317\pi\)
−0.374882 + 0.927073i \(0.622317\pi\)
\(770\) 176324. 0.297393
\(771\) 452683.i 0.761526i
\(772\) 363350. + 363350.i 0.609664 + 0.609664i
\(773\) 213799. + 213799.i 0.357804 + 0.357804i 0.863003 0.505199i \(-0.168581\pi\)
−0.505199 + 0.863003i \(0.668581\pi\)
\(774\) 129787. 129787.i 0.216645 0.216645i
\(775\) −580544. + 580544.i −0.966566 + 0.966566i
\(776\) 838101. 1.39179
\(777\) 102550.i 0.169861i
\(778\) 59244.6 59244.6i 0.0978790 0.0978790i
\(779\) 702751.i 1.15805i
\(780\) −255157. + 265098.i −0.419391 + 0.435729i
\(781\) 503658. 0.825721
\(782\) −84234.8 84234.8i −0.137746 0.137746i
\(783\) −101836. −0.166104
\(784\) 35428.5i 0.0576395i
\(785\) −765602. 765602.i −1.24241 1.24241i
\(786\) −84185.9 84185.9i −0.136268 0.136268i
\(787\) 642953. 642953.i 1.03808 1.03808i 0.0388320 0.999246i \(-0.487636\pi\)
0.999246 0.0388320i \(-0.0123637\pi\)
\(788\) 351948. 351948.i 0.566795 0.566795i
\(789\) 481586. 0.773606
\(790\) 651882.i 1.04452i
\(791\) 30825.8 30825.8i 0.0492677 0.0492677i
\(792\) 129200.i 0.205973i
\(793\) −1.08726e6 + 20774.3i −1.72897 + 0.0330354i
\(794\) 152795. 0.242364
\(795\) 376481. + 376481.i 0.595674 + 0.595674i
\(796\) −126066. −0.198963
\(797\) 735073.i 1.15721i 0.815606 + 0.578607i \(0.196404\pi\)
−0.815606 + 0.578607i \(0.803596\pi\)
\(798\) 57703.4 + 57703.4i 0.0906141 + 0.0906141i
\(799\) −75009.8 75009.8i −0.117496 0.117496i
\(800\) 731022. 731022.i 1.14222 1.14222i
\(801\) −183714. + 183714.i −0.286337 + 0.286337i
\(802\) 177432. 0.275857
\(803\) 608032.i 0.942965i
\(804\) 296472. 296472.i 0.458639 0.458639i
\(805\) 697534.i 1.07640i
\(806\) −6321.36 330840.i −0.00973062 0.509270i
\(807\) 641543. 0.985096
\(808\) −729731. 729731.i −1.11774 1.11774i
\(809\) −388192. −0.593130 −0.296565 0.955013i \(-0.595841\pi\)
−0.296565 + 0.955013i \(0.595841\pi\)
\(810\) 69162.9i 0.105415i
\(811\) −163285. 163285.i −0.248259 0.248259i 0.571997 0.820256i \(-0.306169\pi\)
−0.820256 + 0.571997i \(0.806169\pi\)
\(812\) 129674. + 129674.i 0.196671 + 0.196671i
\(813\) −313303. + 313303.i −0.474006 + 0.474006i
\(814\) 104286. 104286.i 0.157389 0.157389i
\(815\) −1.29760e6 −1.95355
\(816\) 7149.24i 0.0107369i
\(817\) 558972. 558972.i 0.837426 0.837426i
\(818\) 251387.i 0.375696i
\(819\) 76674.9 79662.0i 0.114310 0.118764i
\(820\) 1.07256e6 1.59512
\(821\) −401933. 401933.i −0.596303 0.596303i 0.343024 0.939327i \(-0.388549\pi\)
−0.939327 + 0.343024i \(0.888549\pi\)
\(822\) 126750. 0.187587
\(823\) 129326.i 0.190935i −0.995433 0.0954674i \(-0.969565\pi\)
0.995433 0.0954674i \(-0.0304346\pi\)
\(824\) −491816. 491816.i −0.724350 0.724350i
\(825\) −278975. 278975.i −0.409881 0.409881i
\(826\) 129535. 129535.i 0.189857 0.189857i
\(827\) 51675.4 51675.4i 0.0755567 0.0755567i −0.668319 0.743875i \(-0.732986\pi\)
0.743875 + 0.668319i \(0.232986\pi\)
\(828\) −201656. −0.294137
\(829\) 984088.i 1.43194i 0.698131 + 0.715970i \(0.254015\pi\)
−0.698131 + 0.715970i \(0.745985\pi\)
\(830\) −251151. + 251151.i −0.364568 + 0.364568i
\(831\) 325659.i 0.471587i
\(832\) 6950.92 + 363789.i 0.0100414 + 0.525537i
\(833\) 127769. 0.184135
\(834\) −125852. 125852.i −0.180937 0.180937i
\(835\) −435603. −0.624767
\(836\) 219542.i 0.314127i
\(837\) −82276.1 82276.1i −0.117442 0.117442i
\(838\) −441624. 441624.i −0.628876 0.628876i
\(839\) 378169. 378169.i 0.537232 0.537232i −0.385483 0.922715i \(-0.625965\pi\)
0.922715 + 0.385483i \(0.125965\pi\)
\(840\) −223216. + 223216.i −0.316349 + 0.316349i
\(841\) −180399. −0.255060
\(842\) 102457.i 0.144517i
\(843\) −88596.3 + 88596.3i −0.124670 + 0.124670i
\(844\) 532409.i 0.747413i
\(845\) −841999. 779994.i −1.17923 1.09239i
\(846\) 95992.8 0.134121
\(847\) −150064. 150064.i −0.209175 0.209175i
\(848\) −49802.4 −0.0692562
\(849\) 704379.i 0.977216i
\(850\) 116409. + 116409.i 0.161119 + 0.161119i
\(851\) −412551. 412551.i −0.569663 0.569663i
\(852\) −251562. + 251562.i −0.346550 + 0.346550i
\(853\) −296254. + 296254.i −0.407161 + 0.407161i −0.880747 0.473586i \(-0.842959\pi\)
0.473586 + 0.880747i \(0.342959\pi\)
\(854\) −368104. −0.504724
\(855\) 297874.i 0.407474i
\(856\) 409890. 409890.i 0.559396 0.559396i
\(857\) 1.04442e6i 1.42205i 0.703168 + 0.711023i \(0.251768\pi\)
−0.703168 + 0.711023i \(0.748232\pi\)
\(858\) 158982. 3037.67i 0.215960 0.00412635i
\(859\) 503818. 0.682790 0.341395 0.939920i \(-0.389101\pi\)
0.341395 + 0.939920i \(0.389101\pi\)
\(860\) 853122. + 853122.i 1.15349 + 1.15349i
\(861\) −322305. −0.434772
\(862\) 463268.i 0.623473i
\(863\) −283034. 283034.i −0.380029 0.380029i 0.491083 0.871113i \(-0.336601\pi\)
−0.871113 + 0.491083i \(0.836601\pi\)
\(864\) 103602. + 103602.i 0.138785 + 0.138785i
\(865\) 266617. 266617.i 0.356332 0.356332i
\(866\) −321318. + 321318.i −0.428449 + 0.428449i
\(867\) −408205. −0.543050
\(868\) 209533.i 0.278108i
\(869\) −372649. + 372649.i −0.493470 + 0.493470i
\(870\) 357836.i 0.472765i
\(871\) 942311. + 906977.i 1.24210 + 1.19553i
\(872\) 175204. 0.230416
\(873\) 256472. + 256472.i 0.336520 + 0.336520i
\(874\) 464271. 0.607783
\(875\) 355360.i 0.464144i
\(876\) −303694. 303694.i −0.395756 0.395756i
\(877\) 86669.2 + 86669.2i 0.112685 + 0.112685i 0.761201 0.648516i \(-0.224610\pi\)
−0.648516 + 0.761201i \(0.724610\pi\)
\(878\) 369548. 369548.i 0.479383 0.479383i
\(879\) 174810. 174810.i 0.226250 0.226250i
\(880\) 60203.4 0.0777420
\(881\) 346696.i 0.446681i −0.974741 0.223340i \(-0.928304\pi\)
0.974741 0.223340i \(-0.0716961\pi\)
\(882\) −81755.6 + 81755.6i −0.105095 + 0.105095i
\(883\) 570534.i 0.731746i 0.930665 + 0.365873i \(0.119230\pi\)
−0.930665 + 0.365873i \(0.880770\pi\)
\(884\) 124099. 2371.16i 0.158805 0.00303428i
\(885\) −668678. −0.853750
\(886\) 591378. + 591378.i 0.753352 + 0.753352i
\(887\) 988202. 1.25603 0.628013 0.778203i \(-0.283869\pi\)
0.628013 + 0.778203i \(0.283869\pi\)
\(888\) 264039.i 0.334843i
\(889\) 129499. + 129499.i 0.163856 + 0.163856i
\(890\) 645542. + 645542.i 0.814976 + 0.814976i
\(891\) 39537.0 39537.0i 0.0498022 0.0498022i
\(892\) 81970.3 81970.3i 0.103021 0.103021i
\(893\) 413427. 0.518436
\(894\) 107719.i 0.134777i
\(895\) −9150.60 + 9150.60i −0.0114236 + 0.0114236i
\(896\) 281722.i 0.350918i
\(897\) −12016.9 628929.i −0.0149351 0.781658i
\(898\) −626753. −0.777219
\(899\) 425681. + 425681.i 0.526702 + 0.526702i
\(900\) 278680. 0.344049
\(901\) 179608.i 0.221246i
\(902\) −327759. 327759.i −0.402848 0.402848i
\(903\) −256364. 256364.i −0.314399 0.314399i
\(904\) −79368.0 + 79368.0i −0.0971200 + 0.0971200i
\(905\) −809268. + 809268.i −0.988088 + 0.988088i
\(906\) −109682. −0.133622
\(907\) 720192.i 0.875455i −0.899108 0.437728i \(-0.855783\pi\)
0.899108 0.437728i \(-0.144217\pi\)
\(908\) −100535. + 100535.i −0.121940 + 0.121940i
\(909\) 446617.i 0.540515i
\(910\) −279919. 269423.i −0.338026 0.325351i
\(911\) 963155. 1.16054 0.580269 0.814425i \(-0.302947\pi\)
0.580269 + 0.814425i \(0.302947\pi\)
\(912\) 19702.0 + 19702.0i 0.0236876 + 0.0236876i
\(913\) −287142. −0.344473
\(914\) 296455.i 0.354867i
\(915\) 950104. + 950104.i 1.13483 + 1.13483i
\(916\) −378326. 378326.i −0.450895 0.450895i
\(917\) −166290. + 166290.i −0.197755 + 0.197755i
\(918\) −16497.7 + 16497.7i −0.0195767 + 0.0195767i
\(919\) −1.29069e6 −1.52823 −0.764117 0.645077i \(-0.776825\pi\)
−0.764117 + 0.645077i \(0.776825\pi\)
\(920\) 1.79596e6i 2.12188i
\(921\) 633834. 633834.i 0.747233 0.747233i
\(922\) 188961.i 0.222285i
\(923\) −799569. 769587.i −0.938540 0.903347i
\(924\) −100689. −0.117934
\(925\) 570127. + 570127.i 0.666328 + 0.666328i
\(926\) 571149. 0.666082
\(927\) 301006.i 0.350281i
\(928\) −536019. 536019.i −0.622421 0.622421i
\(929\) 620998. + 620998.i 0.719546 + 0.719546i 0.968512 0.248966i \(-0.0800907\pi\)
−0.248966 + 0.968512i \(0.580091\pi\)
\(930\) −289105. + 289105.i −0.334264 + 0.334264i
\(931\) −352109. + 352109.i −0.406235 + 0.406235i
\(932\) 24658.8 0.0283883
\(933\) 7121.47i 0.00818100i
\(934\) 113752. 113752.i 0.130396 0.130396i
\(935\) 217118.i 0.248354i
\(936\) −197417. + 205108.i −0.225337 + 0.234116i
\(937\) 1.00082e6 1.13992 0.569960 0.821672i \(-0.306959\pi\)
0.569960 + 0.821672i \(0.306959\pi\)
\(938\) 313048. + 313048.i 0.355799 + 0.355799i
\(939\) −272600. −0.309168
\(940\) 630985.i 0.714107i
\(941\) 902091. + 902091.i 1.01876 + 1.01876i 0.999821 + 0.0189381i \(0.00602854\pi\)
0.0189381 + 0.999821i \(0.493971\pi\)
\(942\) −233709. 233709.i −0.263374 0.263374i
\(943\) −1.29661e6 + 1.29661e6i −1.45809 + 1.45809i
\(944\) 44227.7 44227.7i 0.0496307 0.0496307i
\(945\) −136615. −0.152980
\(946\) 521403.i 0.582628i
\(947\) −64662.8 + 64662.8i −0.0721032 + 0.0721032i −0.742239 0.670136i \(-0.766236\pi\)
0.670136 + 0.742239i \(0.266236\pi\)
\(948\) 372254.i 0.414212i
\(949\) 929071. 965266.i 1.03161 1.07180i
\(950\) −641603. −0.710917
\(951\) 528861. + 528861.i 0.584764 + 0.584764i
\(952\) 106490. 0.117499
\(953\) 1.57625e6i 1.73556i 0.496948 + 0.867781i \(0.334454\pi\)
−0.496948 + 0.867781i \(0.665546\pi\)
\(954\) 114925. + 114925.i 0.126275 + 0.126275i
\(955\) −1.10963e6 1.10963e6i −1.21667 1.21667i
\(956\) −196448. + 196448.i −0.214947 + 0.214947i
\(957\) −204557. + 204557.i −0.223353 + 0.223353i
\(958\) −379659. −0.413679
\(959\) 250364.i 0.272229i
\(960\) 317897. 317897.i 0.344941 0.344941i
\(961\) 235683.i 0.255201i
\(962\) −324904. + 6207.93i −0.351079 + 0.00670806i
\(963\) 250865. 0.270512
\(964\) 287452. + 287452.i 0.309322 + 0.309322i
\(965\) 1.98054e6 2.12681
\(966\) 212930.i 0.228183i
\(967\) −561644. 561644.i −0.600632 0.600632i 0.339849 0.940480i \(-0.389624\pi\)
−0.940480 + 0.339849i \(0.889624\pi\)
\(968\) 386373. + 386373.i 0.412340 + 0.412340i
\(969\) −71053.3 + 71053.3i −0.0756722 + 0.0756722i
\(970\) 901199. 901199.i 0.957806 0.957806i
\(971\) −70845.6 −0.0751405 −0.0375703 0.999294i \(-0.511962\pi\)
−0.0375703 + 0.999294i \(0.511962\pi\)
\(972\) 39495.2i 0.0418034i
\(973\) −248590. + 248590.i −0.262578 + 0.262578i
\(974\) 103464.i 0.109061i
\(975\) 16606.9 + 869153.i 0.0174694 + 0.914296i
\(976\) −125684. −0.131941
\(977\) −617175. 617175.i −0.646576 0.646576i 0.305588 0.952164i \(-0.401147\pi\)
−0.952164 + 0.305588i \(0.901147\pi\)
\(978\) −396107. −0.414128
\(979\) 738050.i 0.770052i
\(980\) −537400. 537400.i −0.559559 0.559559i
\(981\) 53615.2 + 53615.2i 0.0557121 + 0.0557121i
\(982\) 383080. 383080.i 0.397252 0.397252i
\(983\) 665135. 665135.i 0.688339 0.688339i −0.273526 0.961865i \(-0.588190\pi\)
0.961865 + 0.273526i \(0.0881898\pi\)
\(984\) 829847. 0.857053
\(985\) 1.91839e6i 1.97726i
\(986\) 85356.3 85356.3i 0.0877974 0.0877974i
\(987\) 189611.i 0.194639i
\(988\) −335459. + 348528.i −0.343658 + 0.357046i
\(989\) −2.06265e6 −2.10879
\(990\) −138927. 138927.i −0.141748 0.141748i
\(991\) 250003. 0.254565 0.127282 0.991867i \(-0.459375\pi\)
0.127282 + 0.991867i \(0.459375\pi\)
\(992\) 866127.i 0.880153i
\(993\) −470132. 470132.i −0.476783 0.476783i
\(994\) −265627. 265627.i −0.268843 0.268843i
\(995\) −343579. + 343579.i −0.347041 + 0.347041i
\(996\) 143419. 143419.i 0.144573 0.144573i
\(997\) −1.47712e6 −1.48602 −0.743011 0.669279i \(-0.766603\pi\)
−0.743011 + 0.669279i \(0.766603\pi\)
\(998\) 97688.8i 0.0980808i
\(999\) −80799.8 + 80799.8i −0.0809617 + 0.0809617i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 39.5.g.a.34.7 yes 20
3.2 odd 2 117.5.j.b.73.4 20
13.5 odd 4 inner 39.5.g.a.31.7 20
39.5 even 4 117.5.j.b.109.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.5.g.a.31.7 20 13.5 odd 4 inner
39.5.g.a.34.7 yes 20 1.1 even 1 trivial
117.5.j.b.73.4 20 3.2 odd 2
117.5.j.b.109.4 20 39.5 even 4