Properties

Label 39.5.g.a.34.2
Level $39$
Weight $5$
Character 39.34
Analytic conductor $4.031$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [39,5,Mod(31,39)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(39, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("39.31");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 39.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.03142856027\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 5446 x^{16} - 1452 x^{15} + 106320 x^{13} + 8376897 x^{12} - 1643220 x^{11} + 1054152 x^{10} + \cdots + 2103506496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 34.2
Root \(4.32919 + 4.32919i\) of defining polynomial
Character \(\chi\) \(=\) 39.34
Dual form 39.5.g.a.31.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.32919 - 4.32919i) q^{2} +5.19615 q^{3} +21.4837i q^{4} +(-26.0804 - 26.0804i) q^{5} +(-22.4951 - 22.4951i) q^{6} +(-16.9579 + 16.9579i) q^{7} +(23.7399 - 23.7399i) q^{8} +27.0000 q^{9} +225.814i q^{10} +(-69.5293 + 69.5293i) q^{11} +111.633i q^{12} +(-93.5895 + 140.720i) q^{13} +146.828 q^{14} +(-135.518 - 135.518i) q^{15} +138.190 q^{16} -166.635i q^{17} +(-116.888 - 116.888i) q^{18} +(-468.820 - 468.820i) q^{19} +(560.303 - 560.303i) q^{20} +(-88.1158 + 88.1158i) q^{21} +602.011 q^{22} -388.867i q^{23} +(123.356 - 123.356i) q^{24} +735.373i q^{25} +(1014.37 - 204.035i) q^{26} +140.296 q^{27} +(-364.318 - 364.318i) q^{28} -767.891 q^{29} +1173.36i q^{30} +(-66.8738 - 66.8738i) q^{31} +(-978.089 - 978.089i) q^{32} +(-361.285 + 361.285i) q^{33} +(-721.395 + 721.395i) q^{34} +884.537 q^{35} +580.060i q^{36} +(1532.33 - 1532.33i) q^{37} +4059.22i q^{38} +(-486.305 + 731.200i) q^{39} -1238.29 q^{40} +(802.986 + 802.986i) q^{41} +762.940 q^{42} -2798.62i q^{43} +(-1493.75 - 1493.75i) q^{44} +(-704.170 - 704.170i) q^{45} +(-1683.48 + 1683.48i) q^{46} +(33.8918 - 33.8918i) q^{47} +718.056 q^{48} +1825.86i q^{49} +(3183.56 - 3183.56i) q^{50} -865.862i q^{51} +(-3023.18 - 2010.65i) q^{52} -3139.54 q^{53} +(-607.368 - 607.368i) q^{54} +3626.70 q^{55} +805.159i q^{56} +(-2436.06 - 2436.06i) q^{57} +(3324.34 + 3324.34i) q^{58} +(-3959.16 + 3959.16i) q^{59} +(2911.42 - 2911.42i) q^{60} +504.230 q^{61} +579.018i q^{62} +(-457.863 + 457.863i) q^{63} +6257.62i q^{64} +(6110.87 - 1229.17i) q^{65} +3128.14 q^{66} +(4218.53 + 4218.53i) q^{67} +3579.94 q^{68} -2020.61i q^{69} +(-3829.33 - 3829.33i) q^{70} +(-3025.86 - 3025.86i) q^{71} +(640.978 - 640.978i) q^{72} +(3088.98 - 3088.98i) q^{73} -13267.5 q^{74} +3821.11i q^{75} +(10072.0 - 10072.0i) q^{76} -2358.14i q^{77} +(5270.81 - 1060.20i) q^{78} -9376.55 q^{79} +(-3604.05 - 3604.05i) q^{80} +729.000 q^{81} -6952.55i q^{82} +(6229.50 + 6229.50i) q^{83} +(-1893.05 - 1893.05i) q^{84} +(-4345.91 + 4345.91i) q^{85} +(-12115.7 + 12115.7i) q^{86} -3990.08 q^{87} +3301.24i q^{88} +(8558.42 - 8558.42i) q^{89} +6096.97i q^{90} +(-799.227 - 3973.39i) q^{91} +8354.30 q^{92} +(-347.486 - 347.486i) q^{93} -293.448 q^{94} +24454.0i q^{95} +(-5082.30 - 5082.30i) q^{96} +(2882.26 + 2882.26i) q^{97} +(7904.48 - 7904.48i) q^{98} +(-1877.29 + 1877.29i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 24 q^{5} - 24 q^{7} + 540 q^{9} + 372 q^{11} - 224 q^{13} + 480 q^{14} - 252 q^{15} - 2328 q^{16} - 840 q^{19} + 228 q^{20} + 936 q^{21} + 3536 q^{22} - 1404 q^{24} - 828 q^{26} - 1984 q^{28} - 5064 q^{29}+ \cdots + 10044 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/39\mathbb{Z}\right)^\times\).

\(n\) \(14\) \(28\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.32919 4.32919i −1.08230 1.08230i −0.996295 0.0860014i \(-0.972591\pi\)
−0.0860014 0.996295i \(-0.527409\pi\)
\(3\) 5.19615 0.577350
\(4\) 21.4837i 1.34273i
\(5\) −26.0804 26.0804i −1.04322 1.04322i −0.999023 0.0441922i \(-0.985929\pi\)
−0.0441922 0.999023i \(-0.514071\pi\)
\(6\) −22.4951 22.4951i −0.624864 0.624864i
\(7\) −16.9579 + 16.9579i −0.346080 + 0.346080i −0.858647 0.512567i \(-0.828694\pi\)
0.512567 + 0.858647i \(0.328694\pi\)
\(8\) 23.7399 23.7399i 0.370937 0.370937i
\(9\) 27.0000 0.333333
\(10\) 225.814i 2.25814i
\(11\) −69.5293 + 69.5293i −0.574623 + 0.574623i −0.933417 0.358794i \(-0.883188\pi\)
0.358794 + 0.933417i \(0.383188\pi\)
\(12\) 111.633i 0.775226i
\(13\) −93.5895 + 140.720i −0.553784 + 0.832660i
\(14\) 146.828 0.749121
\(15\) −135.518 135.518i −0.602301 0.602301i
\(16\) 138.190 0.539804
\(17\) 166.635i 0.576593i −0.957541 0.288296i \(-0.906911\pi\)
0.957541 0.288296i \(-0.0930888\pi\)
\(18\) −116.888 116.888i −0.360765 0.360765i
\(19\) −468.820 468.820i −1.29867 1.29867i −0.929270 0.369401i \(-0.879563\pi\)
−0.369401 0.929270i \(-0.620437\pi\)
\(20\) 560.303 560.303i 1.40076 1.40076i
\(21\) −88.1158 + 88.1158i −0.199809 + 0.199809i
\(22\) 602.011 1.24382
\(23\) 388.867i 0.735098i −0.930004 0.367549i \(-0.880197\pi\)
0.930004 0.367549i \(-0.119803\pi\)
\(24\) 123.356 123.356i 0.214160 0.214160i
\(25\) 735.373i 1.17660i
\(26\) 1014.37 204.035i 1.50054 0.301827i
\(27\) 140.296 0.192450
\(28\) −364.318 364.318i −0.464692 0.464692i
\(29\) −767.891 −0.913069 −0.456534 0.889706i \(-0.650909\pi\)
−0.456534 + 0.889706i \(0.650909\pi\)
\(30\) 1173.36i 1.30374i
\(31\) −66.8738 66.8738i −0.0695877 0.0695877i 0.671456 0.741044i \(-0.265669\pi\)
−0.741044 + 0.671456i \(0.765669\pi\)
\(32\) −978.089 978.089i −0.955165 0.955165i
\(33\) −361.285 + 361.285i −0.331758 + 0.331758i
\(34\) −721.395 + 721.395i −0.624044 + 0.624044i
\(35\) 884.537 0.722071
\(36\) 580.060i 0.447577i
\(37\) 1532.33 1532.33i 1.11931 1.11931i 0.127465 0.991843i \(-0.459316\pi\)
0.991843 0.127465i \(-0.0406841\pi\)
\(38\) 4059.22i 2.81109i
\(39\) −486.305 + 731.200i −0.319727 + 0.480737i
\(40\) −1238.29 −0.773933
\(41\) 802.986 + 802.986i 0.477684 + 0.477684i 0.904390 0.426707i \(-0.140326\pi\)
−0.426707 + 0.904390i \(0.640326\pi\)
\(42\) 762.940 0.432505
\(43\) 2798.62i 1.51358i −0.653655 0.756792i \(-0.726765\pi\)
0.653655 0.756792i \(-0.273235\pi\)
\(44\) −1493.75 1493.75i −0.771564 0.771564i
\(45\) −704.170 704.170i −0.347738 0.347738i
\(46\) −1683.48 + 1683.48i −0.795594 + 0.795594i
\(47\) 33.8918 33.8918i 0.0153426 0.0153426i −0.699394 0.714736i \(-0.746547\pi\)
0.714736 + 0.699394i \(0.246547\pi\)
\(48\) 718.056 0.311656
\(49\) 1825.86i 0.760458i
\(50\) 3183.56 3183.56i 1.27343 1.27343i
\(51\) 865.862i 0.332896i
\(52\) −3023.18 2010.65i −1.11804 0.743583i
\(53\) −3139.54 −1.11767 −0.558836 0.829278i \(-0.688752\pi\)
−0.558836 + 0.829278i \(0.688752\pi\)
\(54\) −607.368 607.368i −0.208288 0.208288i
\(55\) 3626.70 1.19891
\(56\) 805.159i 0.256747i
\(57\) −2436.06 2436.06i −0.749788 0.749788i
\(58\) 3324.34 + 3324.34i 0.988211 + 0.988211i
\(59\) −3959.16 + 3959.16i −1.13736 + 1.13736i −0.148440 + 0.988921i \(0.547425\pi\)
−0.988921 + 0.148440i \(0.952575\pi\)
\(60\) 2911.42 2911.42i 0.808728 0.808728i
\(61\) 504.230 0.135509 0.0677546 0.997702i \(-0.478417\pi\)
0.0677546 + 0.997702i \(0.478417\pi\)
\(62\) 579.018i 0.150629i
\(63\) −457.863 + 457.863i −0.115360 + 0.115360i
\(64\) 6257.62i 1.52774i
\(65\) 6110.87 1229.17i 1.44636 0.290928i
\(66\) 3128.14 0.718122
\(67\) 4218.53 + 4218.53i 0.939748 + 0.939748i 0.998285 0.0585372i \(-0.0186436\pi\)
−0.0585372 + 0.998285i \(0.518644\pi\)
\(68\) 3579.94 0.774209
\(69\) 2020.61i 0.424409i
\(70\) −3829.33 3829.33i −0.781495 0.781495i
\(71\) −3025.86 3025.86i −0.600249 0.600249i 0.340130 0.940379i \(-0.389529\pi\)
−0.940379 + 0.340130i \(0.889529\pi\)
\(72\) 640.978 640.978i 0.123646 0.123646i
\(73\) 3088.98 3088.98i 0.579654 0.579654i −0.355154 0.934808i \(-0.615571\pi\)
0.934808 + 0.355154i \(0.115571\pi\)
\(74\) −13267.5 −2.42285
\(75\) 3821.11i 0.679308i
\(76\) 10072.0 10072.0i 1.74377 1.74377i
\(77\) 2358.14i 0.397730i
\(78\) 5270.81 1060.20i 0.866339 0.174260i
\(79\) −9376.55 −1.50241 −0.751205 0.660069i \(-0.770527\pi\)
−0.751205 + 0.660069i \(0.770527\pi\)
\(80\) −3604.05 3604.05i −0.563132 0.563132i
\(81\) 729.000 0.111111
\(82\) 6952.55i 1.03399i
\(83\) 6229.50 + 6229.50i 0.904267 + 0.904267i 0.995802 0.0915344i \(-0.0291772\pi\)
−0.0915344 + 0.995802i \(0.529177\pi\)
\(84\) −1893.05 1893.05i −0.268290 0.268290i
\(85\) −4345.91 + 4345.91i −0.601510 + 0.601510i
\(86\) −12115.7 + 12115.7i −1.63815 + 1.63815i
\(87\) −3990.08 −0.527160
\(88\) 3301.24i 0.426297i
\(89\) 8558.42 8558.42i 1.08047 1.08047i 0.0840075 0.996465i \(-0.473228\pi\)
0.996465 0.0840075i \(-0.0267720\pi\)
\(90\) 6096.97i 0.752712i
\(91\) −799.227 3973.39i −0.0965133 0.479820i
\(92\) 8354.30 0.987039
\(93\) −347.486 347.486i −0.0401765 0.0401765i
\(94\) −293.448 −0.0332105
\(95\) 24454.0i 2.70959i
\(96\) −5082.30 5082.30i −0.551465 0.551465i
\(97\) 2882.26 + 2882.26i 0.306330 + 0.306330i 0.843484 0.537154i \(-0.180501\pi\)
−0.537154 + 0.843484i \(0.680501\pi\)
\(98\) 7904.48 7904.48i 0.823041 0.823041i
\(99\) −1877.29 + 1877.29i −0.191541 + 0.191541i
\(100\) −15798.5 −1.57985
\(101\) 5594.65i 0.548441i 0.961667 + 0.274220i \(0.0884198\pi\)
−0.961667 + 0.274220i \(0.911580\pi\)
\(102\) −3748.48 + 3748.48i −0.360292 + 0.360292i
\(103\) 6792.74i 0.640281i −0.947370 0.320140i \(-0.896270\pi\)
0.947370 0.320140i \(-0.103730\pi\)
\(104\) 1118.86 + 5562.48i 0.103445 + 0.514283i
\(105\) 4596.19 0.416888
\(106\) 13591.7 + 13591.7i 1.20965 + 1.20965i
\(107\) −8462.24 −0.739125 −0.369563 0.929206i \(-0.620492\pi\)
−0.369563 + 0.929206i \(0.620492\pi\)
\(108\) 3014.08i 0.258409i
\(109\) −12077.9 12077.9i −1.01657 1.01657i −0.999860 0.0167121i \(-0.994680\pi\)
−0.0167121 0.999860i \(-0.505320\pi\)
\(110\) −15700.7 15700.7i −1.29758 1.29758i
\(111\) 7962.24 7962.24i 0.646233 0.646233i
\(112\) −2343.41 + 2343.41i −0.186815 + 0.186815i
\(113\) 14864.2 1.16409 0.582043 0.813158i \(-0.302254\pi\)
0.582043 + 0.813158i \(0.302254\pi\)
\(114\) 21092.3i 1.62299i
\(115\) −10141.8 + 10141.8i −0.766866 + 0.766866i
\(116\) 16497.1i 1.22601i
\(117\) −2526.92 + 3799.43i −0.184595 + 0.277553i
\(118\) 34279.8 2.46192
\(119\) 2825.78 + 2825.78i 0.199547 + 0.199547i
\(120\) −6434.36 −0.446831
\(121\) 4972.34i 0.339618i
\(122\) −2182.90 2182.90i −0.146661 0.146661i
\(123\) 4172.44 + 4172.44i 0.275791 + 0.275791i
\(124\) 1436.70 1436.70i 0.0934376 0.0934376i
\(125\) 2878.56 2878.56i 0.184228 0.184228i
\(126\) 3964.35 0.249707
\(127\) 10995.6i 0.681728i −0.940113 0.340864i \(-0.889280\pi\)
0.940113 0.340864i \(-0.110720\pi\)
\(128\) 11441.0 11441.0i 0.698301 0.698301i
\(129\) 14542.0i 0.873868i
\(130\) −31776.4 21133.8i −1.88026 1.25052i
\(131\) 14023.3 0.817160 0.408580 0.912722i \(-0.366024\pi\)
0.408580 + 0.912722i \(0.366024\pi\)
\(132\) −7761.74 7761.74i −0.445462 0.445462i
\(133\) 15900.4 0.898887
\(134\) 36525.6i 2.03417i
\(135\) −3658.98 3658.98i −0.200767 0.200767i
\(136\) −3955.91 3955.91i −0.213879 0.213879i
\(137\) 20682.4 20682.4i 1.10194 1.10194i 0.107769 0.994176i \(-0.465629\pi\)
0.994176 0.107769i \(-0.0343706\pi\)
\(138\) −8747.60 + 8747.60i −0.459336 + 0.459336i
\(139\) −12584.1 −0.651317 −0.325658 0.945487i \(-0.605586\pi\)
−0.325658 + 0.945487i \(0.605586\pi\)
\(140\) 19003.1i 0.969547i
\(141\) 176.107 176.107i 0.00885807 0.00885807i
\(142\) 26199.0i 1.29929i
\(143\) −3276.92 16291.4i −0.160248 0.796682i
\(144\) 3731.13 0.179935
\(145\) 20026.9 + 20026.9i 0.952527 + 0.952527i
\(146\) −26745.5 −1.25472
\(147\) 9487.44i 0.439051i
\(148\) 32920.2 + 32920.2i 1.50293 + 1.50293i
\(149\) −1317.22 1317.22i −0.0593315 0.0593315i 0.676818 0.736150i \(-0.263358\pi\)
−0.736150 + 0.676818i \(0.763358\pi\)
\(150\) 16542.3 16542.3i 0.735213 0.735213i
\(151\) −6003.08 + 6003.08i −0.263282 + 0.263282i −0.826386 0.563104i \(-0.809607\pi\)
0.563104 + 0.826386i \(0.309607\pi\)
\(152\) −22259.5 −0.963449
\(153\) 4499.15i 0.192198i
\(154\) −10208.8 + 10208.8i −0.430462 + 0.430462i
\(155\) 3488.19i 0.145190i
\(156\) −15708.9 10447.6i −0.645500 0.429308i
\(157\) −24232.6 −0.983107 −0.491553 0.870847i \(-0.663571\pi\)
−0.491553 + 0.870847i \(0.663571\pi\)
\(158\) 40592.8 + 40592.8i 1.62605 + 1.62605i
\(159\) −16313.5 −0.645288
\(160\) 51017.9i 1.99289i
\(161\) 6594.37 + 6594.37i 0.254403 + 0.254403i
\(162\) −3155.98 3155.98i −0.120255 0.120255i
\(163\) −24239.5 + 24239.5i −0.912322 + 0.912322i −0.996455 0.0841325i \(-0.973188\pi\)
0.0841325 + 0.996455i \(0.473188\pi\)
\(164\) −17251.1 + 17251.1i −0.641401 + 0.641401i
\(165\) 18844.9 0.692191
\(166\) 53937.3i 1.95737i
\(167\) −17352.4 + 17352.4i −0.622195 + 0.622195i −0.946092 0.323897i \(-0.895007\pi\)
0.323897 + 0.946092i \(0.395007\pi\)
\(168\) 4183.73i 0.148233i
\(169\) −11043.0 26339.8i −0.386646 0.922228i
\(170\) 37628.5 1.30202
\(171\) −12658.1 12658.1i −0.432890 0.432890i
\(172\) 60124.7 2.03234
\(173\) 2780.29i 0.0928961i −0.998921 0.0464480i \(-0.985210\pi\)
0.998921 0.0464480i \(-0.0147902\pi\)
\(174\) 17273.8 + 17273.8i 0.570544 + 0.570544i
\(175\) −12470.4 12470.4i −0.407196 0.407196i
\(176\) −9608.25 + 9608.25i −0.310184 + 0.310184i
\(177\) −20572.4 + 20572.4i −0.656656 + 0.656656i
\(178\) −74102.0 −2.33878
\(179\) 2972.36i 0.0927674i 0.998924 + 0.0463837i \(0.0147697\pi\)
−0.998924 + 0.0463837i \(0.985230\pi\)
\(180\) 15128.2 15128.2i 0.466919 0.466919i
\(181\) 44034.0i 1.34410i −0.740507 0.672049i \(-0.765414\pi\)
0.740507 0.672049i \(-0.234586\pi\)
\(182\) −13741.5 + 20661.5i −0.414852 + 0.623764i
\(183\) 2620.05 0.0782362
\(184\) −9231.68 9231.68i −0.272675 0.272675i
\(185\) −79927.7 −2.33536
\(186\) 3008.67i 0.0869657i
\(187\) 11586.0 + 11586.0i 0.331323 + 0.331323i
\(188\) 728.122 + 728.122i 0.0206010 + 0.0206010i
\(189\) −2379.13 + 2379.13i −0.0666031 + 0.0666031i
\(190\) 105866. 105866.i 2.93258 2.93258i
\(191\) −3688.96 −0.101120 −0.0505601 0.998721i \(-0.516101\pi\)
−0.0505601 + 0.998721i \(0.516101\pi\)
\(192\) 32515.5i 0.882040i
\(193\) 19216.9 19216.9i 0.515904 0.515904i −0.400426 0.916329i \(-0.631138\pi\)
0.916329 + 0.400426i \(0.131138\pi\)
\(194\) 24955.7i 0.663079i
\(195\) 31753.0 6386.95i 0.835056 0.167967i
\(196\) −39226.2 −1.02109
\(197\) −15917.0 15917.0i −0.410136 0.410136i 0.471650 0.881786i \(-0.343659\pi\)
−0.881786 + 0.471650i \(0.843659\pi\)
\(198\) 16254.3 0.414608
\(199\) 23311.0i 0.588646i 0.955706 + 0.294323i \(0.0950941\pi\)
−0.955706 + 0.294323i \(0.904906\pi\)
\(200\) 17457.7 + 17457.7i 0.436443 + 0.436443i
\(201\) 21920.1 + 21920.1i 0.542564 + 0.542564i
\(202\) 24220.3 24220.3i 0.593576 0.593576i
\(203\) 13021.8 13021.8i 0.315995 0.315995i
\(204\) 18601.9 0.446990
\(205\) 41884.4i 0.996654i
\(206\) −29407.0 + 29407.0i −0.692974 + 0.692974i
\(207\) 10499.4i 0.245033i
\(208\) −12933.1 + 19446.0i −0.298935 + 0.449474i
\(209\) 65193.5 1.49249
\(210\) −19897.8 19897.8i −0.451196 0.451196i
\(211\) 10045.5 0.225636 0.112818 0.993616i \(-0.464012\pi\)
0.112818 + 0.993616i \(0.464012\pi\)
\(212\) 67448.9i 1.50073i
\(213\) −15722.8 15722.8i −0.346554 0.346554i
\(214\) 36634.6 + 36634.6i 0.799953 + 0.799953i
\(215\) −72989.0 + 72989.0i −1.57899 + 1.57899i
\(216\) 3330.62 3330.62i 0.0713868 0.0713868i
\(217\) 2268.08 0.0481658
\(218\) 104575.i 2.20047i
\(219\) 16050.8 16050.8i 0.334664 0.334664i
\(220\) 77915.0i 1.60981i
\(221\) 23448.8 + 15595.3i 0.480106 + 0.319308i
\(222\) −68940.0 −1.39883
\(223\) 24945.0 + 24945.0i 0.501620 + 0.501620i 0.911941 0.410321i \(-0.134583\pi\)
−0.410321 + 0.911941i \(0.634583\pi\)
\(224\) 33172.7 0.661126
\(225\) 19855.1i 0.392199i
\(226\) −64349.9 64349.9i −1.25989 1.25989i
\(227\) 15576.9 + 15576.9i 0.302294 + 0.302294i 0.841911 0.539617i \(-0.181431\pi\)
−0.539617 + 0.841911i \(0.681431\pi\)
\(228\) 52335.6 52335.6i 1.00676 1.00676i
\(229\) −24930.7 + 24930.7i −0.475405 + 0.475405i −0.903658 0.428254i \(-0.859129\pi\)
0.428254 + 0.903658i \(0.359129\pi\)
\(230\) 87811.5 1.65995
\(231\) 12253.3i 0.229630i
\(232\) −18229.7 + 18229.7i −0.338691 + 0.338691i
\(233\) 22434.3i 0.413239i −0.978421 0.206619i \(-0.933754\pi\)
0.978421 0.206619i \(-0.0662462\pi\)
\(234\) 27387.9 5508.94i 0.500181 0.100609i
\(235\) −1767.82 −0.0320113
\(236\) −85057.3 85057.3i −1.52717 1.52717i
\(237\) −48722.0 −0.867417
\(238\) 24466.7i 0.431938i
\(239\) −66829.7 66829.7i −1.16997 1.16997i −0.982217 0.187751i \(-0.939880\pi\)
−0.187751 0.982217i \(-0.560120\pi\)
\(240\) −18727.2 18727.2i −0.325124 0.325124i
\(241\) −34827.1 + 34827.1i −0.599629 + 0.599629i −0.940214 0.340585i \(-0.889375\pi\)
0.340585 + 0.940214i \(0.389375\pi\)
\(242\) 21526.2 21526.2i 0.367567 0.367567i
\(243\) 3788.00 0.0641500
\(244\) 10832.7i 0.181952i
\(245\) 47619.1 47619.1i 0.793321 0.793321i
\(246\) 36126.5i 0.596975i
\(247\) 109849. 22095.5i 1.80054 0.362168i
\(248\) −3175.16 −0.0516253
\(249\) 32369.4 + 32369.4i 0.522079 + 0.522079i
\(250\) −24923.6 −0.398778
\(251\) 4768.38i 0.0756873i 0.999284 + 0.0378437i \(0.0120489\pi\)
−0.999284 + 0.0378437i \(0.987951\pi\)
\(252\) −9836.60 9836.60i −0.154897 0.154897i
\(253\) 27037.7 + 27037.7i 0.422404 + 0.422404i
\(254\) −47601.9 + 47601.9i −0.737832 + 0.737832i
\(255\) −22582.0 + 22582.0i −0.347282 + 0.347282i
\(256\) 1061.74 0.0162008
\(257\) 62743.6i 0.949956i −0.879998 0.474978i \(-0.842456\pi\)
0.879998 0.474978i \(-0.157544\pi\)
\(258\) −62955.2 + 62955.2i −0.945785 + 0.945785i
\(259\) 51970.3i 0.774740i
\(260\) 26407.1 + 131284.i 0.390638 + 1.94207i
\(261\) −20733.1 −0.304356
\(262\) −60709.4 60709.4i −0.884409 0.884409i
\(263\) 45421.0 0.656667 0.328333 0.944562i \(-0.393513\pi\)
0.328333 + 0.944562i \(0.393513\pi\)
\(264\) 17153.8i 0.246123i
\(265\) 81880.4 + 81880.4i 1.16597 + 1.16597i
\(266\) −68835.8 68835.8i −0.972862 0.972862i
\(267\) 44470.9 44470.9i 0.623811 0.623811i
\(268\) −90629.6 + 90629.6i −1.26183 + 1.26183i
\(269\) 79205.8 1.09459 0.547296 0.836939i \(-0.315657\pi\)
0.547296 + 0.836939i \(0.315657\pi\)
\(270\) 31680.8i 0.434579i
\(271\) −16180.5 + 16180.5i −0.220320 + 0.220320i −0.808633 0.588313i \(-0.799792\pi\)
0.588313 + 0.808633i \(0.299792\pi\)
\(272\) 23027.3i 0.311247i
\(273\) −4152.90 20646.3i −0.0557220 0.277024i
\(274\) −179076. −2.38526
\(275\) −51130.0 51130.0i −0.676099 0.676099i
\(276\) 43410.2 0.569867
\(277\) 2884.24i 0.0375899i 0.999823 + 0.0187950i \(0.00598298\pi\)
−0.999823 + 0.0187950i \(0.994017\pi\)
\(278\) 54478.9 + 54478.9i 0.704918 + 0.704918i
\(279\) −1805.59 1805.59i −0.0231959 0.0231959i
\(280\) 20998.9 20998.9i 0.267843 0.267843i
\(281\) −103231. + 103231.i −1.30736 + 1.30736i −0.384052 + 0.923311i \(0.625472\pi\)
−0.923311 + 0.384052i \(0.874528\pi\)
\(282\) −1524.80 −0.0191741
\(283\) 78581.6i 0.981178i −0.871391 0.490589i \(-0.836782\pi\)
0.871391 0.490589i \(-0.163218\pi\)
\(284\) 65006.6 65006.6i 0.805973 0.805973i
\(285\) 127067.i 1.56438i
\(286\) −56341.9 + 84714.7i −0.688810 + 1.03568i
\(287\) −27233.9 −0.330633
\(288\) −26408.4 26408.4i −0.318388 0.318388i
\(289\) 55753.7 0.667541
\(290\) 173400.i 2.06183i
\(291\) 14976.6 + 14976.6i 0.176860 + 0.176860i
\(292\) 66362.7 + 66362.7i 0.778320 + 0.778320i
\(293\) −5490.45 + 5490.45i −0.0639547 + 0.0639547i −0.738361 0.674406i \(-0.764400\pi\)
0.674406 + 0.738361i \(0.264400\pi\)
\(294\) 41072.9 41072.9i 0.475183 0.475183i
\(295\) 206513. 2.37303
\(296\) 72755.0i 0.830385i
\(297\) −9754.70 + 9754.70i −0.110586 + 0.110586i
\(298\) 11405.0i 0.128429i
\(299\) 54721.2 + 36393.9i 0.612087 + 0.407086i
\(300\) −82091.5 −0.912128
\(301\) 47458.7 + 47458.7i 0.523821 + 0.523821i
\(302\) 51976.9 0.569897
\(303\) 29070.6i 0.316642i
\(304\) −64786.2 64786.2i −0.701028 0.701028i
\(305\) −13150.5 13150.5i −0.141365 0.141365i
\(306\) −19477.7 + 19477.7i −0.208015 + 0.208015i
\(307\) 36642.5 36642.5i 0.388784 0.388784i −0.485469 0.874254i \(-0.661351\pi\)
0.874254 + 0.485469i \(0.161351\pi\)
\(308\) 50661.6 0.534045
\(309\) 35296.1i 0.369666i
\(310\) 15101.0 15101.0i 0.157139 0.157139i
\(311\) 57004.6i 0.589371i 0.955594 + 0.294686i \(0.0952149\pi\)
−0.955594 + 0.294686i \(0.904785\pi\)
\(312\) 5813.79 + 28903.5i 0.0597242 + 0.296921i
\(313\) −168911. −1.72413 −0.862064 0.506799i \(-0.830829\pi\)
−0.862064 + 0.506799i \(0.830829\pi\)
\(314\) 104907. + 104907.i 1.06401 + 1.06401i
\(315\) 23882.5 0.240690
\(316\) 201443.i 2.01733i
\(317\) −57585.7 57585.7i −0.573055 0.573055i 0.359926 0.932981i \(-0.382802\pi\)
−0.932981 + 0.359926i \(0.882802\pi\)
\(318\) 70624.3 + 70624.3i 0.698393 + 0.698393i
\(319\) 53390.9 53390.9i 0.524670 0.524670i
\(320\) 163201. 163201.i 1.59376 1.59376i
\(321\) −43971.1 −0.426734
\(322\) 57096.5i 0.550678i
\(323\) −78122.0 + 78122.0i −0.748804 + 0.748804i
\(324\) 15661.6i 0.149192i
\(325\) −103481. 68823.2i −0.979705 0.651580i
\(326\) 209874. 1.97481
\(327\) −62758.6 62758.6i −0.586918 0.586918i
\(328\) 38125.7 0.354381
\(329\) 1149.47i 0.0106195i
\(330\) −81583.1 81583.1i −0.749156 0.749156i
\(331\) −134787. 134787.i −1.23025 1.23025i −0.963868 0.266382i \(-0.914172\pi\)
−0.266382 0.963868i \(-0.585828\pi\)
\(332\) −133833. + 133833.i −1.21419 + 1.21419i
\(333\) 41373.0 41373.0i 0.373103 0.373103i
\(334\) 150243. 1.34680
\(335\) 220042.i 1.96072i
\(336\) −12176.7 + 12176.7i −0.107858 + 0.107858i
\(337\) 56729.9i 0.499520i −0.968308 0.249760i \(-0.919648\pi\)
0.968308 0.249760i \(-0.0803517\pi\)
\(338\) −66222.5 + 161837.i −0.579659 + 1.41659i
\(339\) 77236.7 0.672085
\(340\) −93366.3 93366.3i −0.807667 0.807667i
\(341\) 9299.38 0.0799734
\(342\) 109599.i 0.937031i
\(343\) −71678.7 71678.7i −0.609259 0.609259i
\(344\) −66439.0 66439.0i −0.561444 0.561444i
\(345\) −52698.3 + 52698.3i −0.442750 + 0.442750i
\(346\) −12036.4 + 12036.4i −0.100541 + 0.100541i
\(347\) −183864. −1.52699 −0.763497 0.645811i \(-0.776519\pi\)
−0.763497 + 0.645811i \(0.776519\pi\)
\(348\) 85721.6i 0.707835i
\(349\) −72786.9 + 72786.9i −0.597588 + 0.597588i −0.939670 0.342082i \(-0.888868\pi\)
0.342082 + 0.939670i \(0.388868\pi\)
\(350\) 107973.i 0.881413i
\(351\) −13130.2 + 19742.4i −0.106576 + 0.160246i
\(352\) 136012. 1.09772
\(353\) 106752. + 106752.i 0.856695 + 0.856695i 0.990947 0.134252i \(-0.0428632\pi\)
−0.134252 + 0.990947i \(0.542863\pi\)
\(354\) 178123. 1.42139
\(355\) 157831.i 1.25238i
\(356\) 183867. + 183867.i 1.45078 + 1.45078i
\(357\) 14683.2 + 14683.2i 0.115209 + 0.115209i
\(358\) 12867.9 12867.9i 0.100402 0.100402i
\(359\) −26893.9 + 26893.9i −0.208672 + 0.208672i −0.803703 0.595031i \(-0.797140\pi\)
0.595031 + 0.803703i \(0.297140\pi\)
\(360\) −33433.9 −0.257978
\(361\) 309264.i 2.37309i
\(362\) −190631. + 190631.i −1.45471 + 1.45471i
\(363\) 25837.1i 0.196078i
\(364\) 85363.1 17170.3i 0.644269 0.129591i
\(365\) −161123. −1.20941
\(366\) −11342.7 11342.7i −0.0846748 0.0846748i
\(367\) 6492.32 0.0482023 0.0241012 0.999710i \(-0.492328\pi\)
0.0241012 + 0.999710i \(0.492328\pi\)
\(368\) 53737.5i 0.396809i
\(369\) 21680.6 + 21680.6i 0.159228 + 0.159228i
\(370\) 346022. + 346022.i 2.52755 + 2.52755i
\(371\) 53240.0 53240.0i 0.386804 0.386804i
\(372\) 7465.29 7465.29i 0.0539462 0.0539462i
\(373\) −53286.9 −0.383004 −0.191502 0.981492i \(-0.561336\pi\)
−0.191502 + 0.981492i \(0.561336\pi\)
\(374\) 100316.i 0.717180i
\(375\) 14957.4 14957.4i 0.106364 0.106364i
\(376\) 1609.18i 0.0113823i
\(377\) 71866.5 108057.i 0.505643 0.760276i
\(378\) 20599.4 0.144168
\(379\) −92136.8 92136.8i −0.641438 0.641438i 0.309471 0.950909i \(-0.399848\pi\)
−0.950909 + 0.309471i \(0.899848\pi\)
\(380\) −525363. −3.63825
\(381\) 57134.8i 0.393596i
\(382\) 15970.2 + 15970.2i 0.109442 + 0.109442i
\(383\) −15911.5 15911.5i −0.108471 0.108471i 0.650788 0.759259i \(-0.274439\pi\)
−0.759259 + 0.650788i \(0.774439\pi\)
\(384\) 59449.0 59449.0i 0.403164 0.403164i
\(385\) −61501.3 + 61501.3i −0.414918 + 0.414918i
\(386\) −166387. −1.11672
\(387\) 75562.7i 0.504528i
\(388\) −61921.5 + 61921.5i −0.411319 + 0.411319i
\(389\) 215552.i 1.42447i −0.701941 0.712236i \(-0.747683\pi\)
0.701941 0.712236i \(-0.252317\pi\)
\(390\) −165115. 109814.i −1.08557 0.721988i
\(391\) −64799.0 −0.423852
\(392\) 43345.8 + 43345.8i 0.282082 + 0.282082i
\(393\) 72867.1 0.471788
\(394\) 137815.i 0.887778i
\(395\) 244544. + 244544.i 1.56734 + 1.56734i
\(396\) −40331.2 40331.2i −0.257188 0.257188i
\(397\) 81274.7 81274.7i 0.515673 0.515673i −0.400586 0.916259i \(-0.631194\pi\)
0.916259 + 0.400586i \(0.131194\pi\)
\(398\) 100917. 100917.i 0.637089 0.637089i
\(399\) 82621.0 0.518973
\(400\) 101621.i 0.635132i
\(401\) 170564. 170564.i 1.06072 1.06072i 0.0626817 0.998034i \(-0.480035\pi\)
0.998034 0.0626817i \(-0.0199653\pi\)
\(402\) 189793.i 1.17443i
\(403\) 15669.1 3151.77i 0.0964795 0.0194063i
\(404\) −120194. −0.736409
\(405\) −19012.6 19012.6i −0.115913 0.115913i
\(406\) −112748. −0.683999
\(407\) 213084.i 1.28636i
\(408\) −20555.5 20555.5i −0.123483 0.123483i
\(409\) −92288.1 92288.1i −0.551695 0.551695i 0.375235 0.926930i \(-0.377562\pi\)
−0.926930 + 0.375235i \(0.877562\pi\)
\(410\) −181325. + 181325.i −1.07867 + 1.07867i
\(411\) 107469. 107469.i 0.636208 0.636208i
\(412\) 145933. 0.859725
\(413\) 134278.i 0.787235i
\(414\) −45453.9 + 45453.9i −0.265198 + 0.265198i
\(415\) 324935.i 1.88669i
\(416\) 229175. 46097.4i 1.32428 0.266373i
\(417\) −65388.9 −0.376038
\(418\) −282235. 282235.i −1.61532 1.61532i
\(419\) −20127.4 −0.114646 −0.0573232 0.998356i \(-0.518257\pi\)
−0.0573232 + 0.998356i \(0.518257\pi\)
\(420\) 98743.1i 0.559768i
\(421\) 171209. + 171209.i 0.965965 + 0.965965i 0.999440 0.0334748i \(-0.0106573\pi\)
−0.0334748 + 0.999440i \(0.510657\pi\)
\(422\) −43489.0 43489.0i −0.244205 0.244205i
\(423\) 915.080 915.080i 0.00511421 0.00511421i
\(424\) −74532.5 + 74532.5i −0.414586 + 0.414586i
\(425\) 122539. 0.678417
\(426\) 136134.i 0.750148i
\(427\) −8550.68 + 8550.68i −0.0468970 + 0.0468970i
\(428\) 181800.i 0.992446i
\(429\) −17027.4 84652.4i −0.0925195 0.459965i
\(430\) 631966. 3.41788
\(431\) 127549. + 127549.i 0.686630 + 0.686630i 0.961485 0.274856i \(-0.0886301\pi\)
−0.274856 + 0.961485i \(0.588630\pi\)
\(432\) 19387.5 0.103885
\(433\) 68957.0i 0.367792i −0.982946 0.183896i \(-0.941129\pi\)
0.982946 0.183896i \(-0.0588710\pi\)
\(434\) −9818.93 9818.93i −0.0521297 0.0521297i
\(435\) 104063. + 104063.i 0.549942 + 0.549942i
\(436\) 259478. 259478.i 1.36498 1.36498i
\(437\) −182309. + 182309.i −0.954651 + 0.954651i
\(438\) −138974. −0.724410
\(439\) 113397.i 0.588400i 0.955744 + 0.294200i \(0.0950531\pi\)
−0.955744 + 0.294200i \(0.904947\pi\)
\(440\) 86097.7 86097.7i 0.444720 0.444720i
\(441\) 49298.2i 0.253486i
\(442\) −33999.4 169029.i −0.174031 0.865203i
\(443\) 92267.8 0.470157 0.235079 0.971976i \(-0.424465\pi\)
0.235079 + 0.971976i \(0.424465\pi\)
\(444\) 171058. + 171058.i 0.867717 + 0.867717i
\(445\) −446414. −2.25433
\(446\) 215984.i 1.08580i
\(447\) −6844.47 6844.47i −0.0342551 0.0342551i
\(448\) −106116. 106116.i −0.528719 0.528719i
\(449\) −17542.3 + 17542.3i −0.0870148 + 0.0870148i −0.749274 0.662260i \(-0.769598\pi\)
0.662260 + 0.749274i \(0.269598\pi\)
\(450\) 85956.2 85956.2i 0.424475 0.424475i
\(451\) −111662. −0.548976
\(452\) 319338.i 1.56305i
\(453\) −31192.9 + 31192.9i −0.152006 + 0.152006i
\(454\) 134871.i 0.654343i
\(455\) −82783.4 + 124472.i −0.399872 + 0.601240i
\(456\) −115664. −0.556248
\(457\) 104731. + 104731.i 0.501466 + 0.501466i 0.911893 0.410428i \(-0.134621\pi\)
−0.410428 + 0.911893i \(0.634621\pi\)
\(458\) 215859. 1.02906
\(459\) 23378.3i 0.110965i
\(460\) −217883. 217883.i −1.02969 1.02969i
\(461\) −12382.8 12382.8i −0.0582663 0.0582663i 0.677373 0.735640i \(-0.263118\pi\)
−0.735640 + 0.677373i \(0.763118\pi\)
\(462\) −53046.7 + 53046.7i −0.248527 + 0.248527i
\(463\) 156318. 156318.i 0.729199 0.729199i −0.241261 0.970460i \(-0.577561\pi\)
0.970460 + 0.241261i \(0.0775611\pi\)
\(464\) −106115. −0.492878
\(465\) 18125.2i 0.0838255i
\(466\) −97122.3 + 97122.3i −0.447247 + 0.447247i
\(467\) 3880.03i 0.0177911i −0.999960 0.00889553i \(-0.997168\pi\)
0.999960 0.00889553i \(-0.00283157\pi\)
\(468\) −81625.8 54287.5i −0.372680 0.247861i
\(469\) −143075. −0.650455
\(470\) 7653.24 + 7653.24i 0.0346457 + 0.0346457i
\(471\) −125916. −0.567597
\(472\) 187980.i 0.843778i
\(473\) 194586. + 194586.i 0.869740 + 0.869740i
\(474\) 210926. + 210926.i 0.938803 + 0.938803i
\(475\) 344758. 344758.i 1.52801 1.52801i
\(476\) −60708.3 + 60708.3i −0.267938 + 0.267938i
\(477\) −84767.6 −0.372557
\(478\) 578637.i 2.53250i
\(479\) 53446.0 53446.0i 0.232940 0.232940i −0.580979 0.813919i \(-0.697330\pi\)
0.813919 + 0.580979i \(0.197330\pi\)
\(480\) 265097.i 1.15059i
\(481\) 72218.9 + 359040.i 0.312148 + 1.55186i
\(482\) 301546. 1.29795
\(483\) 34265.3 + 34265.3i 0.146879 + 0.146879i
\(484\) −106824. −0.456015
\(485\) 150341.i 0.639136i
\(486\) −16398.9 16398.9i −0.0694293 0.0694293i
\(487\) −39739.5 39739.5i −0.167558 0.167558i 0.618347 0.785905i \(-0.287803\pi\)
−0.785905 + 0.618347i \(0.787803\pi\)
\(488\) 11970.4 11970.4i 0.0502653 0.0502653i
\(489\) −125952. + 125952.i −0.526729 + 0.526729i
\(490\) −412304. −1.71722
\(491\) 183063.i 0.759342i −0.925122 0.379671i \(-0.876037\pi\)
0.925122 0.379671i \(-0.123963\pi\)
\(492\) −89639.4 + 89639.4i −0.370313 + 0.370313i
\(493\) 127958.i 0.526469i
\(494\) −571212. 379900.i −2.34069 1.55674i
\(495\) 97921.0 0.399637
\(496\) −9241.28 9241.28i −0.0375638 0.0375638i
\(497\) 102624. 0.415468
\(498\) 280266.i 1.13009i
\(499\) −57389.5 57389.5i −0.230479 0.230479i 0.582414 0.812893i \(-0.302108\pi\)
−0.812893 + 0.582414i \(0.802108\pi\)
\(500\) 61842.1 + 61842.1i 0.247368 + 0.247368i
\(501\) −90165.7 + 90165.7i −0.359224 + 0.359224i
\(502\) 20643.2 20643.2i 0.0819161 0.0819161i
\(503\) −192555. −0.761061 −0.380530 0.924768i \(-0.624259\pi\)
−0.380530 + 0.924768i \(0.624259\pi\)
\(504\) 21739.3i 0.0855824i
\(505\) 145910. 145910.i 0.572142 0.572142i
\(506\) 234102.i 0.914333i
\(507\) −57381.1 136865.i −0.223230 0.532449i
\(508\) 236226. 0.915377
\(509\) −84764.7 84764.7i −0.327175 0.327175i 0.524336 0.851511i \(-0.324313\pi\)
−0.851511 + 0.524336i \(0.824313\pi\)
\(510\) 195524. 0.751724
\(511\) 104765.i 0.401213i
\(512\) −187652. 187652.i −0.715835 0.715835i
\(513\) −65773.7 65773.7i −0.249929 0.249929i
\(514\) −271629. + 271629.i −1.02813 + 1.02813i
\(515\) −177157. + 177157.i −0.667951 + 0.667951i
\(516\) 312417. 1.17337
\(517\) 4712.95i 0.0176324i
\(518\) 224989. 224989.i 0.838498 0.838498i
\(519\) 14446.8i 0.0536336i
\(520\) 115891. 174252.i 0.428592 0.644424i
\(521\) 314076. 1.15707 0.578534 0.815658i \(-0.303625\pi\)
0.578534 + 0.815658i \(0.303625\pi\)
\(522\) 89757.2 + 89757.2i 0.329404 + 0.329404i
\(523\) −37022.8 −0.135352 −0.0676762 0.997707i \(-0.521558\pi\)
−0.0676762 + 0.997707i \(0.521558\pi\)
\(524\) 301272.i 1.09723i
\(525\) −64798.0 64798.0i −0.235095 0.235095i
\(526\) −196636. 196636.i −0.710708 0.710708i
\(527\) −11143.5 + 11143.5i −0.0401238 + 0.0401238i
\(528\) −49925.9 + 49925.9i −0.179085 + 0.179085i
\(529\) 128624. 0.459631
\(530\) 708951.i 2.52386i
\(531\) −106897. + 106897.i −0.379121 + 0.379121i
\(532\) 341600.i 1.20696i
\(533\) −188147. + 37844.8i −0.662282 + 0.133214i
\(534\) −385045. −1.35030
\(535\) 220699. + 220699.i 0.771067 + 0.771067i
\(536\) 200295. 0.697174
\(537\) 15444.8i 0.0535593i
\(538\) −342897. 342897.i −1.18467 1.18467i
\(539\) −126951. 126951.i −0.436976 0.436976i
\(540\) 78608.3 78608.3i 0.269576 0.269576i
\(541\) −38918.2 + 38918.2i −0.132971 + 0.132971i −0.770460 0.637489i \(-0.779973\pi\)
0.637489 + 0.770460i \(0.279973\pi\)
\(542\) 140097. 0.476903
\(543\) 228807.i 0.776015i
\(544\) −162984. + 162984.i −0.550741 + 0.550741i
\(545\) 629992.i 2.12101i
\(546\) −71403.2 + 107361.i −0.239515 + 0.360130i
\(547\) −383774. −1.28263 −0.641314 0.767279i \(-0.721610\pi\)
−0.641314 + 0.767279i \(0.721610\pi\)
\(548\) 444334. + 444334.i 1.47962 + 1.47962i
\(549\) 13614.2 0.0451697
\(550\) 442702.i 1.46348i
\(551\) 360003. + 360003.i 1.18578 + 1.18578i
\(552\) −47969.2 47969.2i −0.157429 0.157429i
\(553\) 159007. 159007.i 0.519954 0.519954i
\(554\) 12486.4 12486.4i 0.0406835 0.0406835i
\(555\) −415316. −1.34832
\(556\) 270353.i 0.874543i
\(557\) 280053. 280053.i 0.902672 0.902672i −0.0929944 0.995667i \(-0.529644\pi\)
0.995667 + 0.0929944i \(0.0296439\pi\)
\(558\) 15633.5i 0.0502097i
\(559\) 393820. + 261921.i 1.26030 + 0.838199i
\(560\) 122234. 0.389777
\(561\) 60202.8 + 60202.8i 0.191290 + 0.191290i
\(562\) 893810. 2.82991
\(563\) 50493.5i 0.159301i −0.996823 0.0796505i \(-0.974620\pi\)
0.996823 0.0796505i \(-0.0253804\pi\)
\(564\) 3783.43 + 3783.43i 0.0118940 + 0.0118940i
\(565\) −387664. 387664.i −1.21439 1.21439i
\(566\) −340194. + 340194.i −1.06193 + 1.06193i
\(567\) −12362.3 + 12362.3i −0.0384533 + 0.0384533i
\(568\) −143667. −0.445309
\(569\) 301875.i 0.932400i 0.884679 + 0.466200i \(0.154377\pi\)
−0.884679 + 0.466200i \(0.845623\pi\)
\(570\) 550096. 550096.i 1.69312 1.69312i
\(571\) 290046.i 0.889601i 0.895630 + 0.444800i \(0.146725\pi\)
−0.895630 + 0.444800i \(0.853275\pi\)
\(572\) 349999. 70400.4i 1.06973 0.215171i
\(573\) −19168.4 −0.0583817
\(574\) 117901. + 117901.i 0.357843 + 0.357843i
\(575\) 285962. 0.864914
\(576\) 168956.i 0.509246i
\(577\) 127765. + 127765.i 0.383760 + 0.383760i 0.872455 0.488695i \(-0.162527\pi\)
−0.488695 + 0.872455i \(0.662527\pi\)
\(578\) −241368. 241368.i −0.722477 0.722477i
\(579\) 99853.9 99853.9i 0.297857 0.297857i
\(580\) −430252. + 430252.i −1.27899 + 1.27899i
\(581\) −211278. −0.625897
\(582\) 129673.i 0.382829i
\(583\) 218290. 218290.i 0.642240 0.642240i
\(584\) 146664.i 0.430030i
\(585\) 164994. 33187.6i 0.482120 0.0969759i
\(586\) 47538.4 0.138436
\(587\) −432681. 432681.i −1.25572 1.25572i −0.953118 0.302598i \(-0.902146\pi\)
−0.302598 0.953118i \(-0.597854\pi\)
\(588\) −203825. −0.589527
\(589\) 62703.6i 0.180743i
\(590\) −894031. 894031.i −2.56832 2.56832i
\(591\) −82707.0 82707.0i −0.236792 0.236792i
\(592\) 211753. 211753.i 0.604207 0.604207i
\(593\) 351836. 351836.i 1.00053 1.00053i 0.000531251 1.00000i \(-0.499831\pi\)
1.00000 0.000531251i \(-0.000169102\pi\)
\(594\) 84459.8 0.239374
\(595\) 147395.i 0.416341i
\(596\) 28298.7 28298.7i 0.0796663 0.0796663i
\(597\) 121127.i 0.339855i
\(598\) −79342.4 394454.i −0.221872 1.10305i
\(599\) −484810. −1.35119 −0.675597 0.737271i \(-0.736114\pi\)
−0.675597 + 0.737271i \(0.736114\pi\)
\(600\) 90712.9 + 90712.9i 0.251980 + 0.251980i
\(601\) 214570. 0.594046 0.297023 0.954870i \(-0.404006\pi\)
0.297023 + 0.954870i \(0.404006\pi\)
\(602\) 410915.i 1.13386i
\(603\) 113900. + 113900.i 0.313249 + 0.313249i
\(604\) −128968. 128968.i −0.353516 0.353516i
\(605\) 129681. 129681.i 0.354294 0.354294i
\(606\) 125852. 125852.i 0.342701 0.342701i
\(607\) −2800.08 −0.00759964 −0.00379982 0.999993i \(-0.501210\pi\)
−0.00379982 + 0.999993i \(0.501210\pi\)
\(608\) 917096.i 2.48089i
\(609\) 67663.3 67663.3i 0.182440 0.182440i
\(610\) 113862.i 0.305998i
\(611\) 1597.32 + 7941.17i 0.00427869 + 0.0212717i
\(612\) 96658.4 0.258070
\(613\) −92722.6 92722.6i −0.246754 0.246754i 0.572883 0.819637i \(-0.305825\pi\)
−0.819637 + 0.572883i \(0.805825\pi\)
\(614\) −317265. −0.841560
\(615\) 217638.i 0.575418i
\(616\) −55982.2 55982.2i −0.147533 0.147533i
\(617\) 260927. + 260927.i 0.685407 + 0.685407i 0.961213 0.275806i \(-0.0889447\pi\)
−0.275806 + 0.961213i \(0.588945\pi\)
\(618\) −152803. + 152803.i −0.400089 + 0.400089i
\(619\) 103595. 103595.i 0.270369 0.270369i −0.558880 0.829249i \(-0.688769\pi\)
0.829249 + 0.558880i \(0.188769\pi\)
\(620\) −74939.2 −0.194951
\(621\) 54556.5i 0.141470i
\(622\) 246783. 246783.i 0.637874 0.637874i
\(623\) 290266.i 0.747859i
\(624\) −67202.5 + 101045.i −0.172590 + 0.259504i
\(625\) 309460. 0.792218
\(626\) 731248. + 731248.i 1.86602 + 1.86602i
\(627\) 338755. 0.861690
\(628\) 520606.i 1.32005i
\(629\) −255341. 255341.i −0.645385 0.645385i
\(630\) −103392. 103392.i −0.260498 0.260498i
\(631\) −300176. + 300176.i −0.753907 + 0.753907i −0.975206 0.221299i \(-0.928970\pi\)
0.221299 + 0.975206i \(0.428970\pi\)
\(632\) −222599. + 222599.i −0.557299 + 0.557299i
\(633\) 52198.2 0.130271
\(634\) 498599.i 1.24043i
\(635\) −286769. + 286769.i −0.711189 + 0.711189i
\(636\) 350475.i 0.866449i
\(637\) −256934. 170881.i −0.633203 0.421130i
\(638\) −462279. −1.13570
\(639\) −81698.1 81698.1i −0.200083 0.200083i
\(640\) −596770. −1.45696
\(641\) 466494.i 1.13535i −0.823253 0.567675i \(-0.807843\pi\)
0.823253 0.567675i \(-0.192157\pi\)
\(642\) 190359. + 190359.i 0.461853 + 0.461853i
\(643\) 439463. + 439463.i 1.06292 + 1.06292i 0.997883 + 0.0650372i \(0.0207166\pi\)
0.0650372 + 0.997883i \(0.479283\pi\)
\(644\) −141671. + 141671.i −0.341594 + 0.341594i
\(645\) −379262. + 379262.i −0.911633 + 0.911633i
\(646\) 676409. 1.62086
\(647\) 562437.i 1.34358i 0.740740 + 0.671792i \(0.234475\pi\)
−0.740740 + 0.671792i \(0.765525\pi\)
\(648\) 17306.4 17306.4i 0.0412152 0.0412152i
\(649\) 550555.i 1.30711i
\(650\) 150042. + 745938.i 0.355128 + 1.76553i
\(651\) 11785.3 0.0278085
\(652\) −520754. 520754.i −1.22500 1.22500i
\(653\) 37629.2 0.0882467 0.0441234 0.999026i \(-0.485951\pi\)
0.0441234 + 0.999026i \(0.485951\pi\)
\(654\) 543387.i 1.27044i
\(655\) −365733. 365733.i −0.852474 0.852474i
\(656\) 110965. + 110965.i 0.257856 + 0.257856i
\(657\) 83402.4 83402.4i 0.193218 0.193218i
\(658\) 4976.27 4976.27i 0.0114935 0.0114935i
\(659\) 18033.4 0.0415248 0.0207624 0.999784i \(-0.493391\pi\)
0.0207624 + 0.999784i \(0.493391\pi\)
\(660\) 404858.i 0.929426i
\(661\) 536607. 536607.i 1.22816 1.22816i 0.263495 0.964661i \(-0.415125\pi\)
0.964661 0.263495i \(-0.0848754\pi\)
\(662\) 1.16704e6i 2.66299i
\(663\) 121844. + 81035.7i 0.277189 + 0.184353i
\(664\) 295776. 0.670852
\(665\) −414689. 414689.i −0.937733 0.937733i
\(666\) −358223. −0.807616
\(667\) 298607.i 0.671195i
\(668\) −372794. 372794.i −0.835440 0.835440i
\(669\) 129618. + 129618.i 0.289610 + 0.289610i
\(670\) −952601. + 952601.i −2.12208 + 2.12208i
\(671\) −35058.7 + 35058.7i −0.0778666 + 0.0778666i
\(672\) 172370. 0.381701
\(673\) 75975.6i 0.167743i −0.996477 0.0838715i \(-0.973271\pi\)
0.996477 0.0838715i \(-0.0267285\pi\)
\(674\) −245594. + 245594.i −0.540628 + 0.540628i
\(675\) 103170.i 0.226436i
\(676\) 565875. 237244.i 1.23830 0.519162i
\(677\) 438381. 0.956478 0.478239 0.878230i \(-0.341275\pi\)
0.478239 + 0.878230i \(0.341275\pi\)
\(678\) −334372. 334372.i −0.727395 0.727395i
\(679\) −97754.1 −0.212029
\(680\) 206343.i 0.446244i
\(681\) 80940.0 + 80940.0i 0.174530 + 0.174530i
\(682\) −40258.7 40258.7i −0.0865549 0.0865549i
\(683\) −14323.9 + 14323.9i −0.0307057 + 0.0307057i −0.722293 0.691587i \(-0.756912\pi\)
0.691587 + 0.722293i \(0.256912\pi\)
\(684\) 271944. 271944.i 0.581255 0.581255i
\(685\) −1.07881e6 −2.29913
\(686\) 620620.i 1.31880i
\(687\) −129544. + 129544.i −0.274475 + 0.274475i
\(688\) 386741.i 0.817039i
\(689\) 293828. 441795.i 0.618949 0.930641i
\(690\) 456282. 0.958374
\(691\) 64315.1 + 64315.1i 0.134697 + 0.134697i 0.771241 0.636544i \(-0.219637\pi\)
−0.636544 + 0.771241i \(0.719637\pi\)
\(692\) 59730.8 0.124734
\(693\) 63669.9i 0.132577i
\(694\) 795981. + 795981.i 1.65266 + 1.65266i
\(695\) 328198. + 328198.i 0.679464 + 0.679464i
\(696\) −94724.2 + 94724.2i −0.195543 + 0.195543i
\(697\) 133806. 133806.i 0.275429 0.275429i
\(698\) 630216. 1.29354
\(699\) 116572.i 0.238583i
\(700\) 267910. 267910.i 0.546755 0.546755i
\(701\) 77204.1i 0.157110i −0.996910 0.0785551i \(-0.974969\pi\)
0.996910 0.0785551i \(-0.0250307\pi\)
\(702\) 142312. 28625.3i 0.288780 0.0580865i
\(703\) −1.43678e6 −2.90723
\(704\) −435088. 435088.i −0.877873 0.877873i
\(705\) −9185.89 −0.0184817
\(706\) 924298.i 1.85440i
\(707\) −94873.4 94873.4i −0.189804 0.189804i
\(708\) −441971. 441971.i −0.881712 0.881712i
\(709\) 561910. 561910.i 1.11783 1.11783i 0.125766 0.992060i \(-0.459861\pi\)
0.992060 0.125766i \(-0.0401389\pi\)
\(710\) 683279. 683279.i 1.35544 1.35544i
\(711\) −253167. −0.500804
\(712\) 406353.i 0.801574i
\(713\) −26005.0 + 26005.0i −0.0511538 + 0.0511538i
\(714\) 127133.i 0.249380i
\(715\) −339421. + 510348.i −0.663937 + 0.998285i
\(716\) −63857.3 −0.124562
\(717\) −347258. 347258.i −0.675481 0.675481i
\(718\) 232857. 0.451690
\(719\) 324777.i 0.628243i 0.949383 + 0.314121i \(0.101710\pi\)
−0.949383 + 0.314121i \(0.898290\pi\)
\(720\) −97309.2 97309.2i −0.187711 0.187711i
\(721\) 115191. + 115191.i 0.221588 + 0.221588i
\(722\) 1.33886e6 1.33886e6i 2.56839 2.56839i
\(723\) −180967. + 180967.i −0.346196 + 0.346196i
\(724\) 946013. 1.80476
\(725\) 564686.i 1.07431i
\(726\) 111853. 111853.i 0.212215 0.212215i
\(727\) 922269.i 1.74497i 0.488638 + 0.872487i \(0.337494\pi\)
−0.488638 + 0.872487i \(0.662506\pi\)
\(728\) −113302. 75354.5i −0.213783 0.142183i
\(729\) 19683.0 0.0370370
\(730\) 697533. + 697533.i 1.30894 + 1.30894i
\(731\) −466348. −0.872722
\(732\) 56288.4i 0.105050i
\(733\) 295621. + 295621.i 0.550209 + 0.550209i 0.926501 0.376292i \(-0.122801\pi\)
−0.376292 + 0.926501i \(0.622801\pi\)
\(734\) −28106.5 28106.5i −0.0521692 0.0521692i
\(735\) 247436. 247436.i 0.458024 0.458024i
\(736\) −380346. + 380346.i −0.702140 + 0.702140i
\(737\) −586623. −1.08000
\(738\) 187719.i 0.344663i
\(739\) 369186. 369186.i 0.676015 0.676015i −0.283081 0.959096i \(-0.591357\pi\)
0.959096 + 0.283081i \(0.0913566\pi\)
\(740\) 1.71714e6i 3.13576i
\(741\) 570791. 114812.i 1.03954 0.209098i
\(742\) −460972. −0.837272
\(743\) −671107. 671107.i −1.21567 1.21567i −0.969135 0.246530i \(-0.920710\pi\)
−0.246530 0.969135i \(-0.579290\pi\)
\(744\) −16498.6 −0.0298059
\(745\) 68707.2i 0.123791i
\(746\) 230689. + 230689.i 0.414523 + 0.414523i
\(747\) 168196. + 168196.i 0.301422 + 0.301422i
\(748\) −248911. + 248911.i −0.444878 + 0.444878i
\(749\) 143502. 143502.i 0.255796 0.255796i
\(750\) −129507. −0.230235
\(751\) 167627.i 0.297210i −0.988897 0.148605i \(-0.952522\pi\)
0.988897 0.148605i \(-0.0474784\pi\)
\(752\) 4683.51 4683.51i 0.00828201 0.00828201i
\(753\) 24777.2i 0.0436981i
\(754\) −778924. + 156676.i −1.37010 + 0.275588i
\(755\) 313125. 0.549319
\(756\) −51112.5 51112.5i −0.0894300 0.0894300i
\(757\) −578076. −1.00877 −0.504386 0.863478i \(-0.668281\pi\)
−0.504386 + 0.863478i \(0.668281\pi\)
\(758\) 797754.i 1.38845i
\(759\) 140492. + 140492.i 0.243875 + 0.243875i
\(760\) 580537. + 580537.i 1.00508 + 1.00508i
\(761\) −762616. + 762616.i −1.31685 + 1.31685i −0.400597 + 0.916254i \(0.631197\pi\)
−0.916254 + 0.400597i \(0.868803\pi\)
\(762\) −247347. + 247347.i −0.425987 + 0.425987i
\(763\) 409632. 0.703630
\(764\) 79252.6i 0.135777i
\(765\) −117340. + 117340.i −0.200503 + 0.200503i
\(766\) 137768.i 0.234795i
\(767\) −186595. 927666.i −0.317183 1.57689i
\(768\) 5516.94 0.00935354
\(769\) 698760. + 698760.i 1.18161 + 1.18161i 0.979326 + 0.202287i \(0.0648374\pi\)
0.202287 + 0.979326i \(0.435163\pi\)
\(770\) 532501. 0.898129
\(771\) 326026.i 0.548457i
\(772\) 412850. + 412850.i 0.692720 + 0.692720i
\(773\) −311294. 311294.i −0.520968 0.520968i 0.396895 0.917864i \(-0.370088\pi\)
−0.917864 + 0.396895i \(0.870088\pi\)
\(774\) −327125. + 327125.i −0.546049 + 0.546049i
\(775\) 49177.2 49177.2i 0.0818766 0.0818766i
\(776\) 136849. 0.227258
\(777\) 270046.i 0.447296i
\(778\) −933166. + 933166.i −1.54170 + 1.54170i
\(779\) 752912.i 1.24071i
\(780\) 137215. + 682172.i 0.225535 + 1.12126i
\(781\) 420771. 0.689833
\(782\) 280527. + 280527.i 0.458734 + 0.458734i
\(783\) −107732. −0.175720
\(784\) 252315.i 0.410498i
\(785\) 631996. + 631996.i 1.02559 + 1.02559i
\(786\) −315455. 315455.i −0.510614 0.510614i
\(787\) −528223. + 528223.i −0.852841 + 0.852841i −0.990482 0.137642i \(-0.956048\pi\)
0.137642 + 0.990482i \(0.456048\pi\)
\(788\) 341955. 341955.i 0.550702 0.550702i
\(789\) 236014. 0.379127
\(790\) 2.11735e6i 3.39265i
\(791\) −252066. + 252066.i −0.402866 + 0.402866i
\(792\) 89133.6i 0.142099i
\(793\) −47190.6 + 70955.0i −0.0750428 + 0.112833i
\(794\) −703706. −1.11622
\(795\) 425463. + 425463.i 0.673175 + 0.673175i
\(796\) −500805. −0.790393
\(797\) 550495.i 0.866636i 0.901241 + 0.433318i \(0.142657\pi\)
−0.901241 + 0.433318i \(0.857343\pi\)
\(798\) −357682. 357682.i −0.561682 0.561682i
\(799\) −5647.58 5647.58i −0.00884644 0.00884644i
\(800\) 719260. 719260.i 1.12384 1.12384i
\(801\) 231077. 231077.i 0.360158 0.360158i
\(802\) −1.47681e6 −2.29602
\(803\) 429549.i 0.666165i
\(804\) −470925. + 470925.i −0.728517 + 0.728517i
\(805\) 343967.i 0.530793i
\(806\) −81479.2 54190.0i −0.125423 0.0834160i
\(807\) 411565. 0.631963
\(808\) 132817. + 132817.i 0.203437 + 0.203437i
\(809\) 705446. 1.07787 0.538936 0.842347i \(-0.318827\pi\)
0.538936 + 0.842347i \(0.318827\pi\)
\(810\) 164618.i 0.250904i
\(811\) 476089. + 476089.i 0.723846 + 0.723846i 0.969386 0.245540i \(-0.0789654\pi\)
−0.245540 + 0.969386i \(0.578965\pi\)
\(812\) 279757. + 279757.i 0.424296 + 0.424296i
\(813\) −84076.5 + 84076.5i −0.127202 + 0.127202i
\(814\) 922481. 922481.i 1.39222 1.39222i
\(815\) 1.26435e6 1.90350
\(816\) 119653.i 0.179699i
\(817\) −1.31205e6 + 1.31205e6i −1.96565 + 1.96565i
\(818\) 799064.i 1.19419i
\(819\) −21579.1 107282.i −0.0321711 0.159940i
\(820\) 899831. 1.33824
\(821\) 162224. + 162224.i 0.240675 + 0.240675i 0.817129 0.576455i \(-0.195564\pi\)
−0.576455 + 0.817129i \(0.695564\pi\)
\(822\) −930506. −1.37713
\(823\) 1.34448e6i 1.98497i −0.122378 0.992484i \(-0.539052\pi\)
0.122378 0.992484i \(-0.460948\pi\)
\(824\) −161259. 161259.i −0.237504 0.237504i
\(825\) −265679. 265679.i −0.390346 0.390346i
\(826\) −581314. + 581314.i −0.852022 + 0.852022i
\(827\) −542193. + 542193.i −0.792762 + 0.792762i −0.981942 0.189180i \(-0.939417\pi\)
0.189180 + 0.981942i \(0.439417\pi\)
\(828\) 225566. 0.329013
\(829\) 485612.i 0.706611i −0.935508 0.353305i \(-0.885058\pi\)
0.935508 0.353305i \(-0.114942\pi\)
\(830\) −1.40671e6 + 1.40671e6i −2.04196 + 2.04196i
\(831\) 14986.9i 0.0217026i
\(832\) −880569. 585648.i −1.27209 0.846038i
\(833\) 304253. 0.438474
\(834\) 283081. + 283081.i 0.406985 + 0.406985i
\(835\) 905114. 1.29817
\(836\) 1.40060e6i 2.00401i
\(837\) −9382.13 9382.13i −0.0133922 0.0133922i
\(838\) 87135.4 + 87135.4i 0.124081 + 0.124081i
\(839\) 702797. 702797.i 0.998404 0.998404i −0.00159522 0.999999i \(-0.500508\pi\)
0.999999 + 0.00159522i \(0.000507774\pi\)
\(840\) 109113. 109113.i 0.154639 0.154639i
\(841\) −117625. −0.166305
\(842\) 1.48239e6i 2.09092i
\(843\) −536403. + 536403.i −0.754807 + 0.754807i
\(844\) 215815.i 0.302969i
\(845\) −398945. + 974957.i −0.558727 + 1.36544i
\(846\) −7923.10 −0.0110702
\(847\) −84320.5 84320.5i −0.117535 0.117535i
\(848\) −433853. −0.603324
\(849\) 408322.i 0.566484i
\(850\) −530494. 530494.i −0.734248 0.734248i
\(851\) −595874. 595874.i −0.822801 0.822801i
\(852\) 337784. 337784.i 0.465329 0.465329i
\(853\) 528758. 528758.i 0.726706 0.726706i −0.243256 0.969962i \(-0.578215\pi\)
0.969962 + 0.243256i \(0.0782154\pi\)
\(854\) 74034.9 0.101513
\(855\) 660259.i 0.903196i
\(856\) −200893. + 200893.i −0.274169 + 0.274169i
\(857\) 427769.i 0.582435i −0.956657 0.291217i \(-0.905940\pi\)
0.956657 0.291217i \(-0.0940603\pi\)
\(858\) −292761. + 440191.i −0.397685 + 0.597952i
\(859\) −110526. −0.149788 −0.0748941 0.997191i \(-0.523862\pi\)
−0.0748941 + 0.997191i \(0.523862\pi\)
\(860\) −1.56807e6 1.56807e6i −2.12016 2.12016i
\(861\) −141512. −0.190891
\(862\) 1.10437e6i 1.48627i
\(863\) 115225. + 115225.i 0.154713 + 0.154713i 0.780219 0.625506i \(-0.215108\pi\)
−0.625506 + 0.780219i \(0.715108\pi\)
\(864\) −137222. 137222.i −0.183822 0.183822i
\(865\) −72510.9 + 72510.9i −0.0969106 + 0.0969106i
\(866\) −298528. + 298528.i −0.398060 + 0.398060i
\(867\) 289705. 0.385405
\(868\) 48726.7i 0.0646737i
\(869\) 651945. 651945.i 0.863319 0.863319i
\(870\) 901014.i 1.19040i
\(871\) −988440. + 198819.i −1.30291 + 0.262073i
\(872\) −573457. −0.754168
\(873\) 77820.9 + 77820.9i 0.102110 + 0.102110i
\(874\) 1.57850e6 2.06643
\(875\) 97628.6i 0.127515i
\(876\) 344831. + 344831.i 0.449363 + 0.449363i
\(877\) 352595. + 352595.i 0.458435 + 0.458435i 0.898141 0.439707i \(-0.144918\pi\)
−0.439707 + 0.898141i \(0.644918\pi\)
\(878\) 490917. 490917.i 0.636823 0.636823i
\(879\) −28529.2 + 28529.2i −0.0369243 + 0.0369243i
\(880\) 501174. 0.647177
\(881\) 776892.i 1.00094i −0.865753 0.500471i \(-0.833160\pi\)
0.865753 0.500471i \(-0.166840\pi\)
\(882\) 213421. 213421.i 0.274347 0.274347i
\(883\) 990585.i 1.27049i −0.772312 0.635244i \(-0.780900\pi\)
0.772312 0.635244i \(-0.219100\pi\)
\(884\) −335045. + 503768.i −0.428745 + 0.644653i
\(885\) 1.07307e6 1.37007
\(886\) −399445. 399445.i −0.508849 0.508849i
\(887\) 951592. 1.20949 0.604747 0.796418i \(-0.293274\pi\)
0.604747 + 0.796418i \(0.293274\pi\)
\(888\) 378046.i 0.479423i
\(889\) 186462. + 186462.i 0.235932 + 0.235932i
\(890\) 1.93261e6 + 1.93261e6i 2.43985 + 2.43985i
\(891\) −50686.9 + 50686.9i −0.0638470 + 0.0638470i
\(892\) −535912. + 535912.i −0.673540 + 0.673540i
\(893\) −31778.4 −0.0398500
\(894\) 59262.0i 0.0741483i
\(895\) 77520.3 77520.3i 0.0967764 0.0967764i
\(896\) 388030.i 0.483336i
\(897\) 284340. + 189108.i 0.353389 + 0.235031i
\(898\) 151887. 0.188352
\(899\) 51351.8 + 51351.8i 0.0635384 + 0.0635384i
\(900\) −426560. −0.526617
\(901\) 523158.i 0.644442i
\(902\) 483406. + 483406.i 0.594154 + 0.594154i
\(903\) 246603. + 246603.i 0.302428 + 0.302428i
\(904\) 352875. 352875.i 0.431802 0.431802i
\(905\) −1.14842e6 + 1.14842e6i −1.40218 + 1.40218i
\(906\) 270080. 0.329030
\(907\) 122762.i 0.149228i 0.997212 + 0.0746141i \(0.0237725\pi\)
−0.997212 + 0.0746141i \(0.976227\pi\)
\(908\) −334650. + 334650.i −0.405900 + 0.405900i
\(909\) 151055.i 0.182814i
\(910\) 897246. 180476.i 1.08350 0.217940i
\(911\) 93939.2 0.113191 0.0565953 0.998397i \(-0.481976\pi\)
0.0565953 + 0.998397i \(0.481976\pi\)
\(912\) −336639. 336639.i −0.404739 0.404739i
\(913\) −866266. −1.03923
\(914\) 906796.i 1.08547i
\(915\) −68332.0 68332.0i −0.0816172 0.0816172i
\(916\) −535604. 535604.i −0.638341 0.638341i
\(917\) −237805. + 237805.i −0.282802 + 0.282802i
\(918\) −101209. + 101209.i −0.120097 + 0.120097i
\(919\) 217922. 0.258030 0.129015 0.991643i \(-0.458818\pi\)
0.129015 + 0.991643i \(0.458818\pi\)
\(920\) 481531.i 0.568917i
\(921\) 190400. 190400.i 0.224465 0.224465i
\(922\) 107215.i 0.126123i
\(923\) 708986. 142609.i 0.832212 0.167395i
\(924\) 263246. 0.308331
\(925\) 1.12684e6 + 1.12684e6i 1.31697 + 1.31697i
\(926\) −1.35346e6 −1.57842
\(927\) 183404.i 0.213427i
\(928\) 751065. + 751065.i 0.872131 + 0.872131i
\(929\) −489424. 489424.i −0.567092 0.567092i 0.364221 0.931313i \(-0.381335\pi\)
−0.931313 + 0.364221i \(0.881335\pi\)
\(930\) 78467.2 78467.2i 0.0907240 0.0907240i
\(931\) 856000. 856000.i 0.987584 0.987584i
\(932\) 481972. 0.554868
\(933\) 296204.i 0.340274i
\(934\) −16797.4 + 16797.4i −0.0192552 + 0.0192552i
\(935\) 604337.i 0.691283i
\(936\) 30209.3 + 150187.i 0.0344818 + 0.171428i
\(937\) 74994.8 0.0854185 0.0427093 0.999088i \(-0.486401\pi\)
0.0427093 + 0.999088i \(0.486401\pi\)
\(938\) 619397. + 619397.i 0.703985 + 0.703985i
\(939\) −877688. −0.995426
\(940\) 37979.4i 0.0429826i
\(941\) −746527. 746527.i −0.843075 0.843075i 0.146183 0.989258i \(-0.453301\pi\)
−0.989258 + 0.146183i \(0.953301\pi\)
\(942\) 545115. + 545115.i 0.614308 + 0.614308i
\(943\) 312255. 312255.i 0.351144 0.351144i
\(944\) −547115. + 547115.i −0.613953 + 0.613953i
\(945\) 124097. 0.138963
\(946\) 1.68480e6i 1.88263i
\(947\) −392710. + 392710.i −0.437897 + 0.437897i −0.891304 0.453407i \(-0.850208\pi\)
0.453407 + 0.891304i \(0.350208\pi\)
\(948\) 1.04673e6i 1.16471i
\(949\) 145584. + 723776.i 0.161652 + 0.803659i
\(950\) −2.98504e6 −3.30752
\(951\) −299224. 299224.i −0.330854 0.330854i
\(952\) 134168. 0.148039
\(953\) 920738.i 1.01380i 0.862006 + 0.506898i \(0.169208\pi\)
−0.862006 + 0.506898i \(0.830792\pi\)
\(954\) 366975. + 366975.i 0.403218 + 0.403218i
\(955\) 96209.5 + 96209.5i 0.105490 + 0.105490i
\(956\) 1.43575e6 1.43575e6i 1.57095 1.57095i
\(957\) 277427. 277427.i 0.302918 0.302918i
\(958\) −462756. −0.504221
\(959\) 701460.i 0.762721i
\(960\) 848018. 848018.i 0.920158 0.920158i
\(961\) 914577.i 0.990315i
\(962\) 1.24170e6 1.86700e6i 1.34173 2.01741i
\(963\) −228481. −0.246375
\(964\) −748214. 748214.i −0.805141 0.805141i
\(965\) −1.00237e6 −1.07640
\(966\) 296682.i 0.317934i
\(967\) −683545. 683545.i −0.730994 0.730994i 0.239823 0.970817i \(-0.422911\pi\)
−0.970817 + 0.239823i \(0.922911\pi\)
\(968\) 118043. + 118043.i 0.125977 + 0.125977i
\(969\) −405934. + 405934.i −0.432322 + 0.432322i
\(970\) −650853. + 650853.i −0.691734 + 0.691734i
\(971\) −107226. −0.113726 −0.0568632 0.998382i \(-0.518110\pi\)
−0.0568632 + 0.998382i \(0.518110\pi\)
\(972\) 81380.1i 0.0861362i
\(973\) 213400. 213400.i 0.225407 0.225407i
\(974\) 344080.i 0.362695i
\(975\) −537705. 357616.i −0.565633 0.376190i
\(976\) 69679.4 0.0731484
\(977\) −730243. 730243.i −0.765030 0.765030i 0.212197 0.977227i \(-0.431938\pi\)
−0.977227 + 0.212197i \(0.931938\pi\)
\(978\) 1.09054e6 1.14015
\(979\) 1.19012e6i 1.24173i
\(980\) 1.02303e6 + 1.02303e6i 1.06522 + 1.06522i
\(981\) −326103. 326103.i −0.338857 0.338857i
\(982\) −792514. + 792514.i −0.821833 + 0.821833i
\(983\) 180212. 180212.i 0.186500 0.186500i −0.607681 0.794181i \(-0.707900\pi\)
0.794181 + 0.607681i \(0.207900\pi\)
\(984\) 198107. 0.204602
\(985\) 830241.i 0.855720i
\(986\) 553953. 553953.i 0.569795 0.569795i
\(987\) 5972.82i 0.00613119i
\(988\) 474693. + 2.35996e6i 0.486294 + 2.41763i
\(989\) −1.08829e6 −1.11263
\(990\) −423918. 423918.i −0.432525 0.432525i
\(991\) −662719. −0.674811 −0.337405 0.941359i \(-0.609549\pi\)
−0.337405 + 0.941359i \(0.609549\pi\)
\(992\) 130817.i 0.132936i
\(993\) −700376. 700376.i −0.710285 0.710285i
\(994\) −444280. 444280.i −0.449659 0.449659i
\(995\) 607959. 607959.i 0.614084 0.614084i
\(996\) −695415. + 695415.i −0.701012 + 0.701012i
\(997\) 464482. 0.467281 0.233641 0.972323i \(-0.424936\pi\)
0.233641 + 0.972323i \(0.424936\pi\)
\(998\) 496899.i 0.498893i
\(999\) 214980. 214980.i 0.215411 0.215411i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 39.5.g.a.34.2 yes 20
3.2 odd 2 117.5.j.b.73.9 20
13.5 odd 4 inner 39.5.g.a.31.2 20
39.5 even 4 117.5.j.b.109.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.5.g.a.31.2 20 13.5 odd 4 inner
39.5.g.a.34.2 yes 20 1.1 even 1 trivial
117.5.j.b.73.9 20 3.2 odd 2
117.5.j.b.109.9 20 39.5 even 4