Properties

Label 39.5.g.a.31.9
Level $39$
Weight $5$
Character 39.31
Analytic conductor $4.031$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [39,5,Mod(31,39)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(39, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("39.31");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 39.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.03142856027\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 5446 x^{16} - 1452 x^{15} + 106320 x^{13} + 8376897 x^{12} - 1643220 x^{11} + 1054152 x^{10} + \cdots + 2103506496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 31.9
Root \(-4.67933 + 4.67933i\) of defining polynomial
Character \(\chi\) \(=\) 39.31
Dual form 39.5.g.a.34.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.67933 - 4.67933i) q^{2} -5.19615 q^{3} -27.7923i q^{4} +(13.1418 - 13.1418i) q^{5} +(-24.3145 + 24.3145i) q^{6} +(-30.2175 - 30.2175i) q^{7} +(-55.1800 - 55.1800i) q^{8} +27.0000 q^{9} -122.989i q^{10} +(58.8012 + 58.8012i) q^{11} +144.413i q^{12} +(120.640 + 118.351i) q^{13} -282.795 q^{14} +(-68.2867 + 68.2867i) q^{15} -71.7343 q^{16} +257.703i q^{17} +(126.342 - 126.342i) q^{18} +(336.208 - 336.208i) q^{19} +(-365.240 - 365.240i) q^{20} +(157.015 + 157.015i) q^{21} +550.300 q^{22} -486.231i q^{23} +(286.724 + 286.724i) q^{24} +279.587i q^{25} +(1118.32 - 10.7102i) q^{26} -140.296 q^{27} +(-839.813 + 839.813i) q^{28} -771.373 q^{29} +639.072i q^{30} +(-1304.18 + 1304.18i) q^{31} +(547.211 - 547.211i) q^{32} +(-305.540 - 305.540i) q^{33} +(1205.88 + 1205.88i) q^{34} -794.223 q^{35} -750.392i q^{36} +(1053.22 + 1053.22i) q^{37} -3146.45i q^{38} +(-626.864 - 614.971i) q^{39} -1450.33 q^{40} +(-1126.29 + 1126.29i) q^{41} +1469.45 q^{42} -1930.35i q^{43} +(1634.22 - 1634.22i) q^{44} +(354.828 - 354.828i) q^{45} +(-2275.24 - 2275.24i) q^{46} +(-65.7645 - 65.7645i) q^{47} +372.742 q^{48} -574.806i q^{49} +(1308.28 + 1308.28i) q^{50} -1339.06i q^{51} +(3289.25 - 3352.86i) q^{52} -5040.23 q^{53} +(-656.492 + 656.492i) q^{54} +1545.50 q^{55} +3334.80i q^{56} +(-1746.99 + 1746.99i) q^{57} +(-3609.51 + 3609.51i) q^{58} +(-206.279 - 206.279i) q^{59} +(1897.84 + 1897.84i) q^{60} +6998.83 q^{61} +12205.4i q^{62} +(-815.872 - 815.872i) q^{63} -6268.91i q^{64} +(3140.77 - 30.0794i) q^{65} -2859.44 q^{66} +(-939.648 + 939.648i) q^{67} +7162.15 q^{68} +2526.53i q^{69} +(-3716.43 + 3716.43i) q^{70} +(-3049.34 + 3049.34i) q^{71} +(-1489.86 - 1489.86i) q^{72} +(-840.175 - 840.175i) q^{73} +9856.69 q^{74} -1452.78i q^{75} +(-9343.97 - 9343.97i) q^{76} -3553.65i q^{77} +(-5810.95 + 55.6521i) q^{78} +4044.54 q^{79} +(-942.716 + 942.716i) q^{80} +729.000 q^{81} +10540.5i q^{82} +(2060.82 - 2060.82i) q^{83} +(4363.80 - 4363.80i) q^{84} +(3386.67 + 3386.67i) q^{85} +(-9032.76 - 9032.76i) q^{86} +4008.17 q^{87} -6489.30i q^{88} +(6032.18 + 6032.18i) q^{89} -3320.71i q^{90} +(-69.1630 - 7221.71i) q^{91} -13513.5 q^{92} +(6776.74 - 6776.74i) q^{93} -615.468 q^{94} -8836.73i q^{95} +(-2843.39 + 2843.39i) q^{96} +(5575.10 - 5575.10i) q^{97} +(-2689.71 - 2689.71i) q^{98} +(1587.63 + 1587.63i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 24 q^{5} - 24 q^{7} + 540 q^{9} + 372 q^{11} - 224 q^{13} + 480 q^{14} - 252 q^{15} - 2328 q^{16} - 840 q^{19} + 228 q^{20} + 936 q^{21} + 3536 q^{22} - 1404 q^{24} - 828 q^{26} - 1984 q^{28} - 5064 q^{29}+ \cdots + 10044 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/39\mathbb{Z}\right)^\times\).

\(n\) \(14\) \(28\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.67933 4.67933i 1.16983 1.16983i 0.187584 0.982249i \(-0.439934\pi\)
0.982249 0.187584i \(-0.0600658\pi\)
\(3\) −5.19615 −0.577350
\(4\) 27.7923i 1.73702i
\(5\) 13.1418 13.1418i 0.525671 0.525671i −0.393608 0.919279i \(-0.628773\pi\)
0.919279 + 0.393608i \(0.128773\pi\)
\(6\) −24.3145 + 24.3145i −0.675403 + 0.675403i
\(7\) −30.2175 30.2175i −0.616684 0.616684i 0.327996 0.944679i \(-0.393627\pi\)
−0.944679 + 0.327996i \(0.893627\pi\)
\(8\) −55.1800 55.1800i −0.862187 0.862187i
\(9\) 27.0000 0.333333
\(10\) 122.989i 1.22989i
\(11\) 58.8012 + 58.8012i 0.485960 + 0.485960i 0.907029 0.421069i \(-0.138345\pi\)
−0.421069 + 0.907029i \(0.638345\pi\)
\(12\) 144.413i 1.00287i
\(13\) 120.640 + 118.351i 0.713846 + 0.700303i
\(14\) −282.795 −1.44283
\(15\) −68.2867 + 68.2867i −0.303496 + 0.303496i
\(16\) −71.7343 −0.280212
\(17\) 257.703i 0.891706i 0.895106 + 0.445853i \(0.147100\pi\)
−0.895106 + 0.445853i \(0.852900\pi\)
\(18\) 126.342 126.342i 0.389944 0.389944i
\(19\) 336.208 336.208i 0.931323 0.931323i −0.0664659 0.997789i \(-0.521172\pi\)
0.997789 + 0.0664659i \(0.0211724\pi\)
\(20\) −365.240 365.240i −0.913100 0.913100i
\(21\) 157.015 + 157.015i 0.356042 + 0.356042i
\(22\) 550.300 1.13698
\(23\) 486.231i 0.919151i −0.888139 0.459576i \(-0.848001\pi\)
0.888139 0.459576i \(-0.151999\pi\)
\(24\) 286.724 + 286.724i 0.497784 + 0.497784i
\(25\) 279.587i 0.447340i
\(26\) 1118.32 10.7102i 1.65432 0.0158436i
\(27\) −140.296 −0.192450
\(28\) −839.813 + 839.813i −1.07119 + 1.07119i
\(29\) −771.373 −0.917209 −0.458604 0.888641i \(-0.651650\pi\)
−0.458604 + 0.888641i \(0.651650\pi\)
\(30\) 639.072i 0.710080i
\(31\) −1304.18 + 1304.18i −1.35711 + 1.35711i −0.479654 + 0.877458i \(0.659238\pi\)
−0.877458 + 0.479654i \(0.840762\pi\)
\(32\) 547.211 547.211i 0.534386 0.534386i
\(33\) −305.540 305.540i −0.280569 0.280569i
\(34\) 1205.88 + 1205.88i 1.04315 + 1.04315i
\(35\) −794.223 −0.648345
\(36\) 750.392i 0.579006i
\(37\) 1053.22 + 1053.22i 0.769333 + 0.769333i 0.977989 0.208656i \(-0.0669091\pi\)
−0.208656 + 0.977989i \(0.566909\pi\)
\(38\) 3146.45i 2.17898i
\(39\) −626.864 614.971i −0.412139 0.404320i
\(40\) −1450.33 −0.906454
\(41\) −1126.29 + 1126.29i −0.670010 + 0.670010i −0.957718 0.287708i \(-0.907107\pi\)
0.287708 + 0.957718i \(0.407107\pi\)
\(42\) 1469.45 0.833020
\(43\) 1930.35i 1.04400i −0.852946 0.521999i \(-0.825186\pi\)
0.852946 0.521999i \(-0.174814\pi\)
\(44\) 1634.22 1634.22i 0.844121 0.844121i
\(45\) 354.828 354.828i 0.175224 0.175224i
\(46\) −2275.24 2275.24i −1.07525 1.07525i
\(47\) −65.7645 65.7645i −0.0297712 0.0297712i 0.692064 0.721836i \(-0.256701\pi\)
−0.721836 + 0.692064i \(0.756701\pi\)
\(48\) 372.742 0.161781
\(49\) 574.806i 0.239403i
\(50\) 1308.28 + 1308.28i 0.523313 + 0.523313i
\(51\) 1339.06i 0.514827i
\(52\) 3289.25 3352.86i 1.21644 1.23996i
\(53\) −5040.23 −1.79432 −0.897158 0.441710i \(-0.854372\pi\)
−0.897158 + 0.441710i \(0.854372\pi\)
\(54\) −656.492 + 656.492i −0.225134 + 0.225134i
\(55\) 1545.50 0.510910
\(56\) 3334.80i 1.06339i
\(57\) −1746.99 + 1746.99i −0.537699 + 0.537699i
\(58\) −3609.51 + 3609.51i −1.07298 + 1.07298i
\(59\) −206.279 206.279i −0.0592586 0.0592586i 0.676856 0.736115i \(-0.263342\pi\)
−0.736115 + 0.676856i \(0.763342\pi\)
\(60\) 1897.84 + 1897.84i 0.527178 + 0.527178i
\(61\) 6998.83 1.88090 0.940450 0.339932i \(-0.110404\pi\)
0.940450 + 0.339932i \(0.110404\pi\)
\(62\) 12205.4i 3.17519i
\(63\) −815.872 815.872i −0.205561 0.205561i
\(64\) 6268.91i 1.53050i
\(65\) 3140.77 30.0794i 0.743377 0.00711939i
\(66\) −2859.44 −0.656438
\(67\) −939.648 + 939.648i −0.209322 + 0.209322i −0.803979 0.594657i \(-0.797288\pi\)
0.594657 + 0.803979i \(0.297288\pi\)
\(68\) 7162.15 1.54891
\(69\) 2526.53i 0.530672i
\(70\) −3716.43 + 3716.43i −0.758456 + 0.758456i
\(71\) −3049.34 + 3049.34i −0.604908 + 0.604908i −0.941611 0.336703i \(-0.890688\pi\)
0.336703 + 0.941611i \(0.390688\pi\)
\(72\) −1489.86 1489.86i −0.287396 0.287396i
\(73\) −840.175 840.175i −0.157661 0.157661i 0.623869 0.781529i \(-0.285560\pi\)
−0.781529 + 0.623869i \(0.785560\pi\)
\(74\) 9856.69 1.79998
\(75\) 1452.78i 0.258272i
\(76\) −9343.97 9343.97i −1.61772 1.61772i
\(77\) 3553.65i 0.599367i
\(78\) −5810.95 + 55.6521i −0.955121 + 0.00914728i
\(79\) 4044.54 0.648059 0.324030 0.946047i \(-0.394962\pi\)
0.324030 + 0.946047i \(0.394962\pi\)
\(80\) −942.716 + 942.716i −0.147299 + 0.147299i
\(81\) 729.000 0.111111
\(82\) 10540.5i 1.56760i
\(83\) 2060.82 2060.82i 0.299147 0.299147i −0.541533 0.840680i \(-0.682156\pi\)
0.840680 + 0.541533i \(0.182156\pi\)
\(84\) 4363.80 4363.80i 0.618452 0.618452i
\(85\) 3386.67 + 3386.67i 0.468744 + 0.468744i
\(86\) −9032.76 9032.76i −1.22130 1.22130i
\(87\) 4008.17 0.529551
\(88\) 6489.30i 0.837977i
\(89\) 6032.18 + 6032.18i 0.761543 + 0.761543i 0.976601 0.215059i \(-0.0689942\pi\)
−0.215059 + 0.976601i \(0.568994\pi\)
\(90\) 3320.71i 0.409965i
\(91\) −69.1630 7221.71i −0.00835202 0.872082i
\(92\) −13513.5 −1.59658
\(93\) 6776.74 6776.74i 0.783529 0.783529i
\(94\) −615.468 −0.0696546
\(95\) 8836.73i 0.979139i
\(96\) −2843.39 + 2843.39i −0.308528 + 0.308528i
\(97\) 5575.10 5575.10i 0.592528 0.592528i −0.345785 0.938314i \(-0.612387\pi\)
0.938314 + 0.345785i \(0.112387\pi\)
\(98\) −2689.71 2689.71i −0.280061 0.280061i
\(99\) 1587.63 + 1587.63i 0.161987 + 0.161987i
\(100\) 7770.37 0.777037
\(101\) 14591.5i 1.43040i 0.698920 + 0.715200i \(0.253665\pi\)
−0.698920 + 0.715200i \(0.746335\pi\)
\(102\) −6265.92 6265.92i −0.602261 0.602261i
\(103\) 13071.3i 1.23210i 0.787708 + 0.616048i \(0.211267\pi\)
−0.787708 + 0.616048i \(0.788733\pi\)
\(104\) −126.298 13187.5i −0.0116770 1.21926i
\(105\) 4126.90 0.374322
\(106\) −23584.9 + 23584.9i −2.09905 + 2.09905i
\(107\) −14255.0 −1.24509 −0.622545 0.782584i \(-0.713901\pi\)
−0.622545 + 0.782584i \(0.713901\pi\)
\(108\) 3899.15i 0.334289i
\(109\) −4886.68 + 4886.68i −0.411302 + 0.411302i −0.882192 0.470890i \(-0.843933\pi\)
0.470890 + 0.882192i \(0.343933\pi\)
\(110\) 7231.92 7231.92i 0.597680 0.597680i
\(111\) −5472.67 5472.67i −0.444174 0.444174i
\(112\) 2167.63 + 2167.63i 0.172802 + 0.172802i
\(113\) −3433.45 −0.268890 −0.134445 0.990921i \(-0.542925\pi\)
−0.134445 + 0.990921i \(0.542925\pi\)
\(114\) 16349.4i 1.25804i
\(115\) −6389.94 6389.94i −0.483171 0.483171i
\(116\) 21438.2i 1.59321i
\(117\) 3257.28 + 3195.48i 0.237949 + 0.233434i
\(118\) −1930.50 −0.138645
\(119\) 7787.14 7787.14i 0.549900 0.549900i
\(120\) 7536.11 0.523341
\(121\) 7725.84i 0.527685i
\(122\) 32749.8 32749.8i 2.20034 2.20034i
\(123\) 5852.36 5852.36i 0.386831 0.386831i
\(124\) 36246.3 + 36246.3i 2.35733 + 2.35733i
\(125\) 11887.9 + 11887.9i 0.760825 + 0.760825i
\(126\) −7635.47 −0.480944
\(127\) 21948.2i 1.36079i −0.732846 0.680395i \(-0.761808\pi\)
0.732846 0.680395i \(-0.238192\pi\)
\(128\) −20578.9 20578.9i −1.25604 1.25604i
\(129\) 10030.4i 0.602753i
\(130\) 14555.9 14837.4i 0.861298 0.877955i
\(131\) −1658.15 −0.0966231 −0.0483116 0.998832i \(-0.515384\pi\)
−0.0483116 + 0.998832i \(0.515384\pi\)
\(132\) −8491.65 + 8491.65i −0.487354 + 0.487354i
\(133\) −20318.7 −1.14866
\(134\) 8793.84i 0.489744i
\(135\) −1843.74 + 1843.74i −0.101165 + 0.101165i
\(136\) 14220.0 14220.0i 0.768817 0.768817i
\(137\) −21604.3 21604.3i −1.15106 1.15106i −0.986340 0.164724i \(-0.947327\pi\)
−0.164724 0.986340i \(-0.552673\pi\)
\(138\) 11822.5 + 11822.5i 0.620798 + 0.620798i
\(139\) −4658.17 −0.241094 −0.120547 0.992708i \(-0.538465\pi\)
−0.120547 + 0.992708i \(0.538465\pi\)
\(140\) 22073.3i 1.12619i
\(141\) 341.723 + 341.723i 0.0171884 + 0.0171884i
\(142\) 28537.8i 1.41528i
\(143\) 134.587 + 14053.0i 0.00658157 + 0.687220i
\(144\) −1936.83 −0.0934040
\(145\) −10137.2 + 10137.2i −0.482150 + 0.482150i
\(146\) −7862.91 −0.368874
\(147\) 2986.78i 0.138219i
\(148\) 29271.3 29271.3i 1.33634 1.33634i
\(149\) 393.889 393.889i 0.0177420 0.0177420i −0.698180 0.715922i \(-0.746007\pi\)
0.715922 + 0.698180i \(0.246007\pi\)
\(150\) −6798.04 6798.04i −0.302135 0.302135i
\(151\) −7620.89 7620.89i −0.334235 0.334235i 0.519957 0.854192i \(-0.325948\pi\)
−0.854192 + 0.519957i \(0.825948\pi\)
\(152\) −37103.8 −1.60595
\(153\) 6957.98i 0.297235i
\(154\) −16628.7 16628.7i −0.701159 0.701159i
\(155\) 34278.6i 1.42679i
\(156\) −17091.4 + 17422.0i −0.702311 + 0.715893i
\(157\) 25587.3 1.03807 0.519034 0.854754i \(-0.326292\pi\)
0.519034 + 0.854754i \(0.326292\pi\)
\(158\) 18925.7 18925.7i 0.758121 0.758121i
\(159\) 26189.8 1.03595
\(160\) 14382.7i 0.561822i
\(161\) −14692.7 + 14692.7i −0.566826 + 0.566826i
\(162\) 3411.23 3411.23i 0.129981 0.129981i
\(163\) −16600.8 16600.8i −0.624820 0.624820i 0.321940 0.946760i \(-0.395665\pi\)
−0.946760 + 0.321940i \(0.895665\pi\)
\(164\) 31302.1 + 31302.1i 1.16382 + 1.16382i
\(165\) −8030.67 −0.294974
\(166\) 19286.6i 0.699904i
\(167\) −37894.4 37894.4i −1.35876 1.35876i −0.875451 0.483307i \(-0.839435\pi\)
−0.483307 0.875451i \(-0.660565\pi\)
\(168\) 17328.1i 0.613950i
\(169\) 547.013 + 28555.8i 0.0191524 + 0.999817i
\(170\) 31694.7 1.09670
\(171\) 9077.60 9077.60i 0.310441 0.310441i
\(172\) −53648.9 −1.81344
\(173\) 1712.90i 0.0572321i 0.999590 + 0.0286161i \(0.00911002\pi\)
−0.999590 + 0.0286161i \(0.990890\pi\)
\(174\) 18755.6 18755.6i 0.619486 0.619486i
\(175\) 8448.43 8448.43i 0.275867 0.275867i
\(176\) −4218.06 4218.06i −0.136172 0.136172i
\(177\) 1071.86 + 1071.86i 0.0342130 + 0.0342130i
\(178\) 56453.1 1.78176
\(179\) 2700.43i 0.0842803i −0.999112 0.0421401i \(-0.986582\pi\)
0.999112 0.0421401i \(-0.0134176\pi\)
\(180\) −9861.48 9861.48i −0.304367 0.304367i
\(181\) 31325.6i 0.956186i 0.878309 + 0.478093i \(0.158672\pi\)
−0.878309 + 0.478093i \(0.841328\pi\)
\(182\) −34116.4 33469.1i −1.02996 1.01042i
\(183\) −36367.0 −1.08594
\(184\) −26830.2 + 26830.2i −0.792481 + 0.792481i
\(185\) 27682.3 0.808832
\(186\) 63421.2i 1.83320i
\(187\) −15153.2 + 15153.2i −0.433333 + 0.433333i
\(188\) −1827.75 + 1827.75i −0.0517131 + 0.0517131i
\(189\) 4239.40 + 4239.40i 0.118681 + 0.118681i
\(190\) −41350.0 41350.0i −1.14543 1.14543i
\(191\) 52778.0 1.44672 0.723362 0.690469i \(-0.242596\pi\)
0.723362 + 0.690469i \(0.242596\pi\)
\(192\) 32574.2i 0.883632i
\(193\) 1405.79 + 1405.79i 0.0377403 + 0.0377403i 0.725725 0.687985i \(-0.241504\pi\)
−0.687985 + 0.725725i \(0.741504\pi\)
\(194\) 52175.5i 1.38632i
\(195\) −16319.9 + 156.297i −0.429189 + 0.00411038i
\(196\) −15975.2 −0.415847
\(197\) 10175.2 10175.2i 0.262188 0.262188i −0.563755 0.825942i \(-0.690644\pi\)
0.825942 + 0.563755i \(0.190644\pi\)
\(198\) 14858.1 0.378995
\(199\) 7439.54i 0.187862i −0.995579 0.0939312i \(-0.970057\pi\)
0.995579 0.0939312i \(-0.0299434\pi\)
\(200\) 15427.6 15427.6i 0.385691 0.385691i
\(201\) 4882.55 4882.55i 0.120852 0.120852i
\(202\) 68278.5 + 68278.5i 1.67333 + 1.67333i
\(203\) 23308.9 + 23308.9i 0.565627 + 0.565627i
\(204\) −37215.6 −0.894263
\(205\) 29602.8i 0.704410i
\(206\) 61165.0 + 61165.0i 1.44135 + 1.44135i
\(207\) 13128.2i 0.306384i
\(208\) −8654.02 8489.84i −0.200028 0.196233i
\(209\) 39538.8 0.905172
\(210\) 19311.1 19311.1i 0.437895 0.437895i
\(211\) −45876.3 −1.03044 −0.515221 0.857057i \(-0.672290\pi\)
−0.515221 + 0.857057i \(0.672290\pi\)
\(212\) 140080.i 3.11676i
\(213\) 15844.9 15844.9i 0.349244 0.349244i
\(214\) −66704.1 + 66704.1i −1.45655 + 1.45655i
\(215\) −25368.3 25368.3i −0.548800 0.548800i
\(216\) 7741.54 + 7741.54i 0.165928 + 0.165928i
\(217\) 78818.4 1.67382
\(218\) 45732.8i 0.962309i
\(219\) 4365.67 + 4365.67i 0.0910255 + 0.0910255i
\(220\) 42953.1i 0.887460i
\(221\) −30499.4 + 31089.3i −0.624464 + 0.636541i
\(222\) −51216.9 −1.03922
\(223\) 26187.3 26187.3i 0.526601 0.526601i −0.392956 0.919557i \(-0.628548\pi\)
0.919557 + 0.392956i \(0.128548\pi\)
\(224\) −33070.7 −0.659094
\(225\) 7548.86i 0.149113i
\(226\) −16066.3 + 16066.3i −0.314556 + 0.314556i
\(227\) −20418.0 + 20418.0i −0.396244 + 0.396244i −0.876906 0.480662i \(-0.840396\pi\)
0.480662 + 0.876906i \(0.340396\pi\)
\(228\) 48552.7 + 48552.7i 0.933993 + 0.933993i
\(229\) −52109.2 52109.2i −0.993672 0.993672i 0.00630803 0.999980i \(-0.497992\pi\)
−0.999980 + 0.00630803i \(0.997992\pi\)
\(230\) −59801.3 −1.13046
\(231\) 18465.3i 0.346045i
\(232\) 42564.3 + 42564.3i 0.790806 + 0.790806i
\(233\) 45782.3i 0.843308i −0.906757 0.421654i \(-0.861450\pi\)
0.906757 0.421654i \(-0.138550\pi\)
\(234\) 30194.6 289.177i 0.551439 0.00528119i
\(235\) −1728.53 −0.0312997
\(236\) −5732.97 + 5732.97i −0.102933 + 0.102933i
\(237\) −21016.0 −0.374157
\(238\) 72877.2i 1.28658i
\(239\) −54954.6 + 54954.6i −0.962073 + 0.962073i −0.999307 0.0372339i \(-0.988145\pi\)
0.0372339 + 0.999307i \(0.488145\pi\)
\(240\) 4898.50 4898.50i 0.0850433 0.0850433i
\(241\) 23474.0 + 23474.0i 0.404159 + 0.404159i 0.879696 0.475537i \(-0.157746\pi\)
−0.475537 + 0.879696i \(0.657746\pi\)
\(242\) −36151.8 36151.8i −0.617304 0.617304i
\(243\) −3788.00 −0.0641500
\(244\) 194513.i 3.26716i
\(245\) −7553.98 7553.98i −0.125847 0.125847i
\(246\) 54770.3i 0.905054i
\(247\) 80350.6 769.526i 1.31703 0.0126133i
\(248\) 143930. 2.34017
\(249\) −10708.4 + 10708.4i −0.172713 + 0.172713i
\(250\) 111255. 1.78008
\(251\) 51668.4i 0.820120i −0.912059 0.410060i \(-0.865508\pi\)
0.912059 0.410060i \(-0.134492\pi\)
\(252\) −22674.9 + 22674.9i −0.357063 + 0.357063i
\(253\) 28591.0 28591.0i 0.446671 0.446671i
\(254\) −102703. 102703.i −1.59190 1.59190i
\(255\) −17597.7 17597.7i −0.270629 0.270629i
\(256\) −92288.7 −1.40821
\(257\) 87980.2i 1.33204i −0.745932 0.666022i \(-0.767996\pi\)
0.745932 0.666022i \(-0.232004\pi\)
\(258\) 46935.6 + 46935.6i 0.705120 + 0.705120i
\(259\) 63651.1i 0.948869i
\(260\) −835.976 87289.1i −0.0123665 1.29126i
\(261\) −20827.1 −0.305736
\(262\) −7759.03 + 7759.03i −0.113033 + 0.113033i
\(263\) 113585. 1.64214 0.821068 0.570831i \(-0.193379\pi\)
0.821068 + 0.570831i \(0.193379\pi\)
\(264\) 33719.4i 0.483806i
\(265\) −66237.6 + 66237.6i −0.943220 + 0.943220i
\(266\) −95077.9 + 95077.9i −1.34374 + 1.34374i
\(267\) −31344.1 31344.1i −0.439677 0.439677i
\(268\) 26114.9 + 26114.9i 0.363596 + 0.363596i
\(269\) 5647.94 0.0780523 0.0390262 0.999238i \(-0.487574\pi\)
0.0390262 + 0.999238i \(0.487574\pi\)
\(270\) 17254.9i 0.236693i
\(271\) −3722.39 3722.39i −0.0506854 0.0506854i 0.681310 0.731995i \(-0.261411\pi\)
−0.731995 + 0.681310i \(0.761411\pi\)
\(272\) 18486.1i 0.249867i
\(273\) 359.382 + 37525.1i 0.00482204 + 0.503497i
\(274\) −202187. −2.69310
\(275\) −16440.1 + 16440.1i −0.217389 + 0.217389i
\(276\) 70218.1 0.921787
\(277\) 31673.1i 0.412792i 0.978469 + 0.206396i \(0.0661736\pi\)
−0.978469 + 0.206396i \(0.933826\pi\)
\(278\) −21797.1 + 21797.1i −0.282039 + 0.282039i
\(279\) −35213.0 + 35213.0i −0.452371 + 0.452371i
\(280\) 43825.2 + 43825.2i 0.558995 + 0.558995i
\(281\) −10897.2 10897.2i −0.138007 0.138007i 0.634728 0.772736i \(-0.281112\pi\)
−0.772736 + 0.634728i \(0.781112\pi\)
\(282\) 3198.07 0.0402151
\(283\) 30994.4i 0.387000i 0.981100 + 0.193500i \(0.0619839\pi\)
−0.981100 + 0.193500i \(0.938016\pi\)
\(284\) 84748.2 + 84748.2i 1.05074 + 1.05074i
\(285\) 45917.0i 0.565306i
\(286\) 66388.2 + 65128.7i 0.811632 + 0.796233i
\(287\) 68067.2 0.826369
\(288\) 14774.7 14774.7i 0.178129 0.178129i
\(289\) 17110.2 0.204861
\(290\) 94870.7i 1.12807i
\(291\) −28969.1 + 28969.1i −0.342096 + 0.342096i
\(292\) −23350.4 + 23350.4i −0.273860 + 0.273860i
\(293\) −113536. 113536.i −1.32251 1.32251i −0.911741 0.410765i \(-0.865262\pi\)
−0.410765 0.911741i \(-0.634738\pi\)
\(294\) 13976.1 + 13976.1i 0.161694 + 0.161694i
\(295\) −5421.75 −0.0623011
\(296\) 116233.i 1.32662i
\(297\) −8249.58 8249.58i −0.0935231 0.0935231i
\(298\) 3686.28i 0.0415103i
\(299\) 57546.0 58658.9i 0.643684 0.656133i
\(300\) −40376.0 −0.448623
\(301\) −58330.4 + 58330.4i −0.643817 + 0.643817i
\(302\) −71321.3 −0.781998
\(303\) 75819.7i 0.825842i
\(304\) −24117.6 + 24117.6i −0.260968 + 0.260968i
\(305\) 91977.0 91977.0i 0.988735 0.988735i
\(306\) 32558.7 + 32558.7i 0.347716 + 0.347716i
\(307\) 75222.4 + 75222.4i 0.798124 + 0.798124i 0.982800 0.184675i \(-0.0591233\pi\)
−0.184675 + 0.982800i \(0.559123\pi\)
\(308\) −98764.0 −1.04111
\(309\) 67920.5i 0.711351i
\(310\) 160401. + 160401.i 1.66910 + 1.66910i
\(311\) 150426.i 1.55525i 0.628726 + 0.777627i \(0.283577\pi\)
−0.628726 + 0.777627i \(0.716423\pi\)
\(312\) 656.265 + 68524.4i 0.00674171 + 0.703941i
\(313\) 126604. 1.29229 0.646144 0.763216i \(-0.276381\pi\)
0.646144 + 0.763216i \(0.276381\pi\)
\(314\) 119732. 119732.i 1.21437 1.21437i
\(315\) −21444.0 −0.216115
\(316\) 112407.i 1.12569i
\(317\) −42350.8 + 42350.8i −0.421447 + 0.421447i −0.885702 0.464255i \(-0.846322\pi\)
0.464255 + 0.885702i \(0.346322\pi\)
\(318\) 122551. 122551.i 1.21189 1.21189i
\(319\) −45357.6 45357.6i −0.445727 0.445727i
\(320\) −82384.6 82384.6i −0.804537 0.804537i
\(321\) 74071.4 0.718853
\(322\) 137504.i 1.32618i
\(323\) 86641.7 + 86641.7i 0.830466 + 0.830466i
\(324\) 20260.6i 0.193002i
\(325\) −33089.5 + 33729.4i −0.313273 + 0.319332i
\(326\) −155362. −1.46187
\(327\) 25391.9 25391.9i 0.237465 0.237465i
\(328\) 124297. 1.15535
\(329\) 3974.48i 0.0367188i
\(330\) −37578.2 + 37578.2i −0.345070 + 0.345070i
\(331\) 23593.9 23593.9i 0.215349 0.215349i −0.591186 0.806535i \(-0.701340\pi\)
0.806535 + 0.591186i \(0.201340\pi\)
\(332\) −57275.0 57275.0i −0.519624 0.519624i
\(333\) 28436.8 + 28436.8i 0.256444 + 0.256444i
\(334\) −354641. −3.17904
\(335\) 24697.3i 0.220069i
\(336\) −11263.3 11263.3i −0.0997674 0.0997674i
\(337\) 114863.i 1.01139i −0.862711 0.505697i \(-0.831235\pi\)
0.862711 0.505697i \(-0.168765\pi\)
\(338\) 136182. + 131062.i 1.19202 + 1.14721i
\(339\) 17840.7 0.155244
\(340\) 94123.4 94123.4i 0.814216 0.814216i
\(341\) −153375. −1.31900
\(342\) 84954.2i 0.726328i
\(343\) −89921.4 + 89921.4i −0.764319 + 0.764319i
\(344\) −106517. + 106517.i −0.900122 + 0.900122i
\(345\) 33203.1 + 33203.1i 0.278959 + 0.278959i
\(346\) 8015.22 + 8015.22i 0.0669520 + 0.0669520i
\(347\) 93409.6 0.775769 0.387885 0.921708i \(-0.373206\pi\)
0.387885 + 0.921708i \(0.373206\pi\)
\(348\) 111396.i 0.919839i
\(349\) −14479.3 14479.3i −0.118877 0.118877i 0.645166 0.764043i \(-0.276788\pi\)
−0.764043 + 0.645166i \(0.776788\pi\)
\(350\) 79066.0i 0.645437i
\(351\) −16925.3 16604.2i −0.137380 0.134773i
\(352\) 64353.3 0.519380
\(353\) 127078. 127078.i 1.01981 1.01981i 0.0200140 0.999800i \(-0.493629\pi\)
0.999800 0.0200140i \(-0.00637109\pi\)
\(354\) 10031.2 0.0800469
\(355\) 80147.6i 0.635966i
\(356\) 167648. 167648.i 1.32281 1.32281i
\(357\) −40463.2 + 40463.2i −0.317485 + 0.317485i
\(358\) −12636.2 12636.2i −0.0985939 0.0985939i
\(359\) 40565.6 + 40565.6i 0.314752 + 0.314752i 0.846747 0.531995i \(-0.178558\pi\)
−0.531995 + 0.846747i \(0.678558\pi\)
\(360\) −39158.8 −0.302151
\(361\) 95750.0i 0.734724i
\(362\) 146583. + 146583.i 1.11858 + 1.11858i
\(363\) 40144.7i 0.304659i
\(364\) −200708. + 1922.20i −1.51482 + 0.0145076i
\(365\) −22082.8 −0.165755
\(366\) −170173. + 170173.i −1.27037 + 1.27037i
\(367\) −40747.7 −0.302532 −0.151266 0.988493i \(-0.548335\pi\)
−0.151266 + 0.988493i \(0.548335\pi\)
\(368\) 34879.4i 0.257557i
\(369\) −30409.8 + 30409.8i −0.223337 + 0.223337i
\(370\) 129534. 129534.i 0.946198 0.946198i
\(371\) 152303. + 152303.i 1.10652 + 1.10652i
\(372\) −188341. 188341.i −1.36100 1.36100i
\(373\) −44353.1 −0.318791 −0.159396 0.987215i \(-0.550955\pi\)
−0.159396 + 0.987215i \(0.550955\pi\)
\(374\) 141814.i 1.01386i
\(375\) −61771.3 61771.3i −0.439262 0.439262i
\(376\) 7257.77i 0.0513367i
\(377\) −93058.4 91292.8i −0.654746 0.642324i
\(378\) 39675.1 0.277673
\(379\) −27066.7 + 27066.7i −0.188433 + 0.188433i −0.795018 0.606585i \(-0.792539\pi\)
0.606585 + 0.795018i \(0.292539\pi\)
\(380\) −245593. −1.70078
\(381\) 114046.i 0.785652i
\(382\) 246966. 246966.i 1.69243 1.69243i
\(383\) −166419. + 166419.i −1.13451 + 1.13451i −0.145087 + 0.989419i \(0.546346\pi\)
−0.989419 + 0.145087i \(0.953654\pi\)
\(384\) 106931. + 106931.i 0.725174 + 0.725174i
\(385\) −46701.2 46701.2i −0.315070 0.315070i
\(386\) 13156.3 0.0882997
\(387\) 52119.5i 0.347999i
\(388\) −154945. 154945.i −1.02923 1.02923i
\(389\) 16474.9i 0.108874i 0.998517 + 0.0544371i \(0.0173364\pi\)
−0.998517 + 0.0544371i \(0.982664\pi\)
\(390\) −75634.9 + 77097.6i −0.497271 + 0.506888i
\(391\) 125303. 0.819613
\(392\) −31717.8 + 31717.8i −0.206410 + 0.206410i
\(393\) 8616.00 0.0557854
\(394\) 95226.6i 0.613431i
\(395\) 53152.4 53152.4i 0.340666 0.340666i
\(396\) 44123.9 44123.9i 0.281374 0.281374i
\(397\) −155869. 155869.i −0.988957 0.988957i 0.0109822 0.999940i \(-0.496504\pi\)
−0.999940 + 0.0109822i \(0.996504\pi\)
\(398\) −34812.1 34812.1i −0.219768 0.219768i
\(399\) 105579. 0.663181
\(400\) 20056.0i 0.125350i
\(401\) −142185. 142185.i −0.884230 0.884230i 0.109732 0.993961i \(-0.465001\pi\)
−0.993961 + 0.109732i \(0.965001\pi\)
\(402\) 45694.2i 0.282754i
\(403\) −311689. + 2985.07i −1.91916 + 0.0183800i
\(404\) 405531. 2.48463
\(405\) 9580.35 9580.35i 0.0584079 0.0584079i
\(406\) 218141. 1.32338
\(407\) 123861.i 0.747730i
\(408\) −73889.5 + 73889.5i −0.443877 + 0.443877i
\(409\) 9949.25 9949.25i 0.0594763 0.0594763i −0.676743 0.736219i \(-0.736609\pi\)
0.736219 + 0.676743i \(0.236609\pi\)
\(410\) 138521. + 138521.i 0.824042 + 0.824042i
\(411\) 112259. + 112259.i 0.664567 + 0.664567i
\(412\) 363282. 2.14017
\(413\) 12466.5i 0.0730876i
\(414\) −61431.4 61431.4i −0.358418 0.358418i
\(415\) 54165.8i 0.314506i
\(416\) 130779. 1252.48i 0.755701 0.00723742i
\(417\) 24204.6 0.139195
\(418\) 185015. 185015.i 1.05890 1.05890i
\(419\) −17793.2 −0.101351 −0.0506753 0.998715i \(-0.516137\pi\)
−0.0506753 + 0.998715i \(0.516137\pi\)
\(420\) 114696.i 0.650204i
\(421\) −123242. + 123242.i −0.695334 + 0.695334i −0.963400 0.268066i \(-0.913615\pi\)
0.268066 + 0.963400i \(0.413615\pi\)
\(422\) −214671. + 214671.i −1.20545 + 1.20545i
\(423\) −1775.64 1775.64i −0.00992373 0.00992373i
\(424\) 278120. + 278120.i 1.54704 + 1.54704i
\(425\) −72050.5 −0.398896
\(426\) 148287.i 0.817114i
\(427\) −211487. 211487.i −1.15992 1.15992i
\(428\) 396180.i 2.16274i
\(429\) −699.332 73021.3i −0.00379987 0.396767i
\(430\) −237413. −1.28401
\(431\) −81585.7 + 81585.7i −0.439197 + 0.439197i −0.891742 0.452545i \(-0.850516\pi\)
0.452545 + 0.891742i \(0.350516\pi\)
\(432\) 10064.0 0.0539268
\(433\) 60799.1i 0.324281i −0.986768 0.162141i \(-0.948160\pi\)
0.986768 0.162141i \(-0.0518398\pi\)
\(434\) 368817. 368817.i 1.95809 1.95809i
\(435\) 52674.5 52674.5i 0.278369 0.278369i
\(436\) 135812. + 135812.i 0.714439 + 0.714439i
\(437\) −163475. 163475.i −0.856027 0.856027i
\(438\) 40856.9 0.212969
\(439\) 275044.i 1.42716i 0.700572 + 0.713581i \(0.252928\pi\)
−0.700572 + 0.713581i \(0.747072\pi\)
\(440\) −85280.9 85280.9i −0.440500 0.440500i
\(441\) 15519.8i 0.0798010i
\(442\) 2760.06 + 288194.i 0.0141278 + 1.47516i
\(443\) −8716.50 −0.0444155 −0.0222077 0.999753i \(-0.507070\pi\)
−0.0222077 + 0.999753i \(0.507070\pi\)
\(444\) −152098. + 152098.i −0.771539 + 0.771539i
\(445\) 158547. 0.800642
\(446\) 245078.i 1.23207i
\(447\) −2046.71 + 2046.71i −0.0102433 + 0.0102433i
\(448\) −189431. + 189431.i −0.943832 + 0.943832i
\(449\) 246638. + 246638.i 1.22340 + 1.22340i 0.966416 + 0.256982i \(0.0827280\pi\)
0.256982 + 0.966416i \(0.417272\pi\)
\(450\) 35323.6 + 35323.6i 0.174438 + 0.174438i
\(451\) −132454. −0.651197
\(452\) 95423.5i 0.467066i
\(453\) 39599.3 + 39599.3i 0.192971 + 0.192971i
\(454\) 191086.i 0.927078i
\(455\) −95815.0 93997.2i −0.462819 0.454038i
\(456\) 192797. 0.927195
\(457\) 55246.3 55246.3i 0.264527 0.264527i −0.562363 0.826890i \(-0.690108\pi\)
0.826890 + 0.562363i \(0.190108\pi\)
\(458\) −487672. −2.32486
\(459\) 36154.7i 0.171609i
\(460\) −177591. + 177591.i −0.839277 + 0.839277i
\(461\) −31473.0 + 31473.0i −0.148093 + 0.148093i −0.777266 0.629172i \(-0.783394\pi\)
0.629172 + 0.777266i \(0.283394\pi\)
\(462\) 86405.2 + 86405.2i 0.404815 + 0.404815i
\(463\) 134703. + 134703.i 0.628371 + 0.628371i 0.947658 0.319287i \(-0.103443\pi\)
−0.319287 + 0.947658i \(0.603443\pi\)
\(464\) 55333.9 0.257013
\(465\) 178117.i 0.823757i
\(466\) −214231. 214231.i −0.986529 0.986529i
\(467\) 106801.i 0.489714i 0.969559 + 0.244857i \(0.0787410\pi\)
−0.969559 + 0.244857i \(0.921259\pi\)
\(468\) 88809.7 90527.2i 0.405479 0.413321i
\(469\) 56787.6 0.258171
\(470\) −8088.34 + 8088.34i −0.0366154 + 0.0366154i
\(471\) −132956. −0.599329
\(472\) 22765.0i 0.102184i
\(473\) 113507. 113507.i 0.507342 0.507342i
\(474\) −98341.0 + 98341.0i −0.437701 + 0.437701i
\(475\) 93999.4 + 93999.4i 0.416618 + 0.416618i
\(476\) −216422. 216422.i −0.955186 0.955186i
\(477\) −136086. −0.598105
\(478\) 514301.i 2.25093i
\(479\) 69279.4 + 69279.4i 0.301949 + 0.301949i 0.841776 0.539827i \(-0.181510\pi\)
−0.539827 + 0.841776i \(0.681510\pi\)
\(480\) 74734.4i 0.324368i
\(481\) 2410.64 + 251709.i 0.0104194 + 1.08795i
\(482\) 219685. 0.945597
\(483\) 76345.4 76345.4i 0.327257 0.327257i
\(484\) −214719. −0.916599
\(485\) 146533.i 0.622950i
\(486\) −17725.3 + 17725.3i −0.0750448 + 0.0750448i
\(487\) 334191. 334191.i 1.40908 1.40908i 0.644372 0.764713i \(-0.277119\pi\)
0.764713 0.644372i \(-0.222881\pi\)
\(488\) −386195. 386195.i −1.62169 1.62169i
\(489\) 86260.5 + 86260.5i 0.360740 + 0.360740i
\(490\) −70695.1 −0.294440
\(491\) 204363.i 0.847696i −0.905733 0.423848i \(-0.860679\pi\)
0.905733 0.423848i \(-0.139321\pi\)
\(492\) −162650. 162650.i −0.671932 0.671932i
\(493\) 198785.i 0.817880i
\(494\) 372386. 379588.i 1.52595 1.55546i
\(495\) 41728.6 0.170303
\(496\) 93554.7 93554.7i 0.380279 0.380279i
\(497\) 184287. 0.746074
\(498\) 100216.i 0.404090i
\(499\) 263314. 263314.i 1.05748 1.05748i 0.0592381 0.998244i \(-0.481133\pi\)
0.998244 0.0592381i \(-0.0188671\pi\)
\(500\) 330391. 330391.i 1.32157 1.32157i
\(501\) 196905. + 196905.i 0.784479 + 0.784479i
\(502\) −241773. 241773.i −0.959403 0.959403i
\(503\) 120971. 0.478131 0.239065 0.971003i \(-0.423159\pi\)
0.239065 + 0.971003i \(0.423159\pi\)
\(504\) 90039.6i 0.354464i
\(505\) 191758. + 191758.i 0.751920 + 0.751920i
\(506\) 267573.i 1.04506i
\(507\) −2842.36 148380.i −0.0110577 0.577244i
\(508\) −609990. −2.36371
\(509\) −50199.3 + 50199.3i −0.193759 + 0.193759i −0.797318 0.603559i \(-0.793749\pi\)
0.603559 + 0.797318i \(0.293749\pi\)
\(510\) −164691. −0.633182
\(511\) 50775.9i 0.194454i
\(512\) −102587. + 102587.i −0.391337 + 0.391337i
\(513\) −47168.6 + 47168.6i −0.179233 + 0.179233i
\(514\) −411688. 411688.i −1.55827 1.55827i
\(515\) 171780. + 171780.i 0.647677 + 0.647677i
\(516\) 278768. 1.04699
\(517\) 7734.07i 0.0289352i
\(518\) −297845. 297845.i −1.11002 1.11002i
\(519\) 8900.49i 0.0330430i
\(520\) −174967. 171648.i −0.647068 0.634792i
\(521\) −307242. −1.13189 −0.565946 0.824443i \(-0.691489\pi\)
−0.565946 + 0.824443i \(0.691489\pi\)
\(522\) −97456.7 + 97456.7i −0.357660 + 0.357660i
\(523\) 271249. 0.991664 0.495832 0.868418i \(-0.334863\pi\)
0.495832 + 0.868418i \(0.334863\pi\)
\(524\) 46083.7i 0.167836i
\(525\) −43899.3 + 43899.3i −0.159272 + 0.159272i
\(526\) 531501. 531501.i 1.92102 1.92102i
\(527\) −336092. 336092.i −1.21014 1.21014i
\(528\) 21917.7 + 21917.7i 0.0786189 + 0.0786189i
\(529\) 43420.3 0.155161
\(530\) 619895.i 2.20682i
\(531\) −5569.54 5569.54i −0.0197529 0.0197529i
\(532\) 564703.i 1.99525i
\(533\) −269173. + 2577.89i −0.947494 + 0.00907424i
\(534\) −293339. −1.02870
\(535\) −187337. + 187337.i −0.654508 + 0.654508i
\(536\) 103699. 0.360950
\(537\) 14031.8i 0.0486593i
\(538\) 26428.6 26428.6i 0.0913081 0.0913081i
\(539\) 33799.3 33799.3i 0.116340 0.116340i
\(540\) 51241.7 + 51241.7i 0.175726 + 0.175726i
\(541\) 184394. + 184394.i 0.630017 + 0.630017i 0.948072 0.318055i \(-0.103030\pi\)
−0.318055 + 0.948072i \(0.603030\pi\)
\(542\) −34836.6 −0.118587
\(543\) 162773.i 0.552054i
\(544\) 141018. + 141018.i 0.476515 + 0.476515i
\(545\) 128439.i 0.432419i
\(546\) 177274. + 173911.i 0.594648 + 0.583366i
\(547\) 373290. 1.24759 0.623795 0.781588i \(-0.285590\pi\)
0.623795 + 0.781588i \(0.285590\pi\)
\(548\) −600433. + 600433.i −1.99942 + 1.99942i
\(549\) 188968. 0.626967
\(550\) 153857.i 0.508619i
\(551\) −259341. + 259341.i −0.854217 + 0.854217i
\(552\) 139414. 139414.i 0.457539 0.457539i
\(553\) −122216. 122216.i −0.399647 0.399647i
\(554\) 148209. + 148209.i 0.482898 + 0.482898i
\(555\) −143841. −0.466979
\(556\) 129461.i 0.418784i
\(557\) 200107. + 200107.i 0.644987 + 0.644987i 0.951777 0.306790i \(-0.0992550\pi\)
−0.306790 + 0.951777i \(0.599255\pi\)
\(558\) 329546.i 1.05840i
\(559\) 228460. 232878.i 0.731115 0.745254i
\(560\) 56973.0 0.181674
\(561\) 78738.5 78738.5i 0.250185 0.250185i
\(562\) −101983. −0.322891
\(563\) 488676.i 1.54172i 0.637007 + 0.770858i \(0.280172\pi\)
−0.637007 + 0.770858i \(0.719828\pi\)
\(564\) 9497.25 9497.25i 0.0298566 0.0298566i
\(565\) −45121.7 + 45121.7i −0.141348 + 0.141348i
\(566\) 145033. + 145033.i 0.452725 + 0.452725i
\(567\) −22028.6 22028.6i −0.0685204 0.0685204i
\(568\) 336525. 1.04309
\(569\) 562947.i 1.73877i −0.494132 0.869387i \(-0.664514\pi\)
0.494132 0.869387i \(-0.335486\pi\)
\(570\) 214861. + 214861.i 0.661314 + 0.661314i
\(571\) 183359.i 0.562380i −0.959652 0.281190i \(-0.909271\pi\)
0.959652 0.281190i \(-0.0907291\pi\)
\(572\) 390564. 3740.47i 1.19371 0.0114323i
\(573\) −274242. −0.835267
\(574\) 318509. 318509.i 0.966713 0.966713i
\(575\) 135944. 0.411173
\(576\) 169261.i 0.510165i
\(577\) 196407. 196407.i 0.589938 0.589938i −0.347677 0.937614i \(-0.613029\pi\)
0.937614 + 0.347677i \(0.113029\pi\)
\(578\) 80064.2 80064.2i 0.239653 0.239653i
\(579\) −7304.69 7304.69i −0.0217894 0.0217894i
\(580\) 281736. + 281736.i 0.837503 + 0.837503i
\(581\) −124546. −0.368958
\(582\) 271112.i 0.800391i
\(583\) −296372. 296372.i −0.871966 0.871966i
\(584\) 92721.6i 0.271866i
\(585\) 84800.7 812.145i 0.247792 0.00237313i
\(586\) −1.06254e6 −3.09422
\(587\) −127057. + 127057.i −0.368742 + 0.368742i −0.867018 0.498276i \(-0.833966\pi\)
0.498276 + 0.867018i \(0.333966\pi\)
\(588\) 83009.5 0.240089
\(589\) 876953.i 2.52782i
\(590\) −25370.2 + 25370.2i −0.0728818 + 0.0728818i
\(591\) −52872.1 + 52872.1i −0.151374 + 0.151374i
\(592\) −75551.7 75551.7i −0.215576 0.215576i
\(593\) 168617. + 168617.i 0.479503 + 0.479503i 0.904973 0.425470i \(-0.139891\pi\)
−0.425470 + 0.904973i \(0.639891\pi\)
\(594\) −77205.0 −0.218813
\(595\) 204674.i 0.578133i
\(596\) −10947.1 10947.1i −0.0308181 0.0308181i
\(597\) 38657.0i 0.108462i
\(598\) −5207.65 543761.i −0.0145626 1.52057i
\(599\) −22624.2 −0.0630550 −0.0315275 0.999503i \(-0.510037\pi\)
−0.0315275 + 0.999503i \(0.510037\pi\)
\(600\) −80164.3 + 80164.3i −0.222679 + 0.222679i
\(601\) 621958. 1.72192 0.860958 0.508675i \(-0.169865\pi\)
0.860958 + 0.508675i \(0.169865\pi\)
\(602\) 545895.i 1.50632i
\(603\) −25370.5 + 25370.5i −0.0697741 + 0.0697741i
\(604\) −211802. + 211802.i −0.580572 + 0.580572i
\(605\) −101531. 101531.i −0.277389 0.277389i
\(606\) −354786. 354786.i −0.966097 0.966097i
\(607\) −600769. −1.63054 −0.815268 0.579084i \(-0.803410\pi\)
−0.815268 + 0.579084i \(0.803410\pi\)
\(608\) 367953.i 0.995371i
\(609\) −121117. 121117.i −0.326565 0.326565i
\(610\) 860782.i 2.31331i
\(611\) −150.525 15717.1i −0.000403204 0.0421009i
\(612\) 193378. 0.516303
\(613\) −230276. + 230276.i −0.612812 + 0.612812i −0.943678 0.330866i \(-0.892659\pi\)
0.330866 + 0.943678i \(0.392659\pi\)
\(614\) 703981. 1.86734
\(615\) 153821.i 0.406691i
\(616\) −196090. + 196090.i −0.516767 + 0.516767i
\(617\) 34766.2 34766.2i 0.0913244 0.0913244i −0.659969 0.751293i \(-0.729430\pi\)
0.751293 + 0.659969i \(0.229430\pi\)
\(618\) −317823. 317823.i −0.832162 0.832162i
\(619\) −420362. 420362.i −1.09709 1.09709i −0.994750 0.102339i \(-0.967367\pi\)
−0.102339 0.994750i \(-0.532633\pi\)
\(620\) 952680. 2.47836
\(621\) 68216.3i 0.176891i
\(622\) 703892. + 703892.i 1.81939 + 1.81939i
\(623\) 364555.i 0.939262i
\(624\) 44967.6 + 44114.5i 0.115486 + 0.113295i
\(625\) 137714. 0.352547
\(626\) 592423. 592423.i 1.51176 1.51176i
\(627\) −205450. −0.522601
\(628\) 711130.i 1.80314i
\(629\) −271417. + 271417.i −0.686018 + 0.686018i
\(630\) −100344. + 100344.i −0.252819 + 0.252819i
\(631\) 93922.3 + 93922.3i 0.235890 + 0.235890i 0.815146 0.579256i \(-0.196657\pi\)
−0.579256 + 0.815146i \(0.696657\pi\)
\(632\) −223177. 223177.i −0.558748 0.558748i
\(633\) 238380. 0.594926
\(634\) 396347.i 0.986045i
\(635\) −288438. 288438.i −0.715327 0.715327i
\(636\) 727875.i 1.79946i
\(637\) 68029.0 69344.6i 0.167654 0.170897i
\(638\) −424487. −1.04285
\(639\) −82332.3 + 82332.3i −0.201636 + 0.201636i
\(640\) −540888. −1.32053
\(641\) 123299.i 0.300084i −0.988680 0.150042i \(-0.952059\pi\)
0.988680 0.150042i \(-0.0479409\pi\)
\(642\) 346605. 346605.i 0.840938 0.840938i
\(643\) −280732. + 280732.i −0.678999 + 0.678999i −0.959774 0.280774i \(-0.909409\pi\)
0.280774 + 0.959774i \(0.409409\pi\)
\(644\) 408343. + 408343.i 0.984586 + 0.984586i
\(645\) 131817. + 131817.i 0.316850 + 0.316850i
\(646\) 810850. 1.94301
\(647\) 45435.6i 0.108539i −0.998526 0.0542697i \(-0.982717\pi\)
0.998526 0.0542697i \(-0.0172831\pi\)
\(648\) −40226.2 40226.2i −0.0957986 0.0957986i
\(649\) 24258.9i 0.0575946i
\(650\) 2994.45 + 312668.i 0.00708746 + 0.740042i
\(651\) −409552. −0.966379
\(652\) −461375. + 461375.i −1.08532 + 1.08532i
\(653\) −378723. −0.888168 −0.444084 0.895985i \(-0.646471\pi\)
−0.444084 + 0.895985i \(0.646471\pi\)
\(654\) 237635.i 0.555590i
\(655\) −21791.0 + 21791.0i −0.0507920 + 0.0507920i
\(656\) 80793.4 80793.4i 0.187745 0.187745i
\(657\) −22684.7 22684.7i −0.0525536 0.0525536i
\(658\) 18597.9 + 18597.9i 0.0429548 + 0.0429548i
\(659\) 289116. 0.665735 0.332867 0.942974i \(-0.391984\pi\)
0.332867 + 0.942974i \(0.391984\pi\)
\(660\) 223191.i 0.512375i
\(661\) −168774. 168774.i −0.386281 0.386281i 0.487078 0.873359i \(-0.338063\pi\)
−0.873359 + 0.487078i \(0.838063\pi\)
\(662\) 220807.i 0.503845i
\(663\) 158480. 161545.i 0.360534 0.367507i
\(664\) −227433. −0.515842
\(665\) −267024. + 267024.i −0.603819 + 0.603819i
\(666\) 266131. 0.599994
\(667\) 375065.i 0.843054i
\(668\) −1.05317e6 + 1.05317e6i −2.36019 + 2.36019i
\(669\) −136073. + 136073.i −0.304033 + 0.304033i
\(670\) 115567. + 115567.i 0.257444 + 0.257444i
\(671\) 411539. + 411539.i 0.914043 + 0.914043i
\(672\) 171840. 0.380528
\(673\) 163719.i 0.361467i 0.983532 + 0.180734i \(0.0578472\pi\)
−0.983532 + 0.180734i \(0.942153\pi\)
\(674\) −537482. 537482.i −1.18316 1.18316i
\(675\) 39225.0i 0.0860906i
\(676\) 793630. 15202.7i 1.73670 0.0332681i
\(677\) 462025. 1.00806 0.504032 0.863685i \(-0.331849\pi\)
0.504032 + 0.863685i \(0.331849\pi\)
\(678\) 83482.8 83482.8i 0.181609 0.181609i
\(679\) −336931. −0.730805
\(680\) 373753.i 0.808290i
\(681\) 106095. 106095.i 0.228771 0.228771i
\(682\) −717693. + 717693.i −1.54301 + 1.54301i
\(683\) −213724. 213724.i −0.458155 0.458155i 0.439895 0.898049i \(-0.355016\pi\)
−0.898049 + 0.439895i \(0.855016\pi\)
\(684\) −252287. 252287.i −0.539241 0.539241i
\(685\) −567838. −1.21016
\(686\) 841544.i 1.78825i
\(687\) 270767. + 270767.i 0.573697 + 0.573697i
\(688\) 138473.i 0.292541i
\(689\) −608054. 596517.i −1.28087 1.25656i
\(690\) 310737. 0.652671
\(691\) −344817. + 344817.i −0.722159 + 0.722159i −0.969045 0.246886i \(-0.920593\pi\)
0.246886 + 0.969045i \(0.420593\pi\)
\(692\) 47605.4 0.0994132
\(693\) 95948.5i 0.199789i
\(694\) 437094. 437094.i 0.907520 0.907520i
\(695\) −61216.6 + 61216.6i −0.126736 + 0.126736i
\(696\) −221171. 221171.i −0.456572 0.456572i
\(697\) −290248. 290248.i −0.597452 0.597452i
\(698\) −135507. −0.278132
\(699\) 237892.i 0.486884i
\(700\) −234801. 234801.i −0.479186 0.479186i
\(701\) 83587.3i 0.170100i −0.996377 0.0850500i \(-0.972895\pi\)
0.996377 0.0850500i \(-0.0271050\pi\)
\(702\) −156896. + 1502.61i −0.318374 + 0.00304909i
\(703\) 708198. 1.43299
\(704\) 368619. 368619.i 0.743760 0.743760i
\(705\) 8981.68 0.0180709
\(706\) 1.18928e6i 2.38602i
\(707\) 440919. 440919.i 0.882104 0.882104i
\(708\) 29789.4 29789.4i 0.0594285 0.0594285i
\(709\) 507737. + 507737.i 1.01006 + 1.01006i 0.999949 + 0.0101092i \(0.00321793\pi\)
0.0101092 + 0.999949i \(0.496782\pi\)
\(710\) 375037. + 375037.i 0.743973 + 0.743973i
\(711\) 109203. 0.216020
\(712\) 665711.i 1.31318i
\(713\) 634135. + 634135.i 1.24739 + 1.24739i
\(714\) 378681.i 0.742809i
\(715\) 186450. + 182912.i 0.364711 + 0.357792i
\(716\) −75051.0 −0.146396
\(717\) 285552. 285552.i 0.555453 0.555453i
\(718\) 379640. 0.736415
\(719\) 50596.5i 0.0978729i 0.998802 + 0.0489364i \(0.0155832\pi\)
−0.998802 + 0.0489364i \(0.984417\pi\)
\(720\) −25453.3 + 25453.3i −0.0490998 + 0.0490998i
\(721\) 394982. 394982.i 0.759814 0.759814i
\(722\) −448046. 448046.i −0.859505 0.859505i
\(723\) −121974. 121974.i −0.233341 0.233341i
\(724\) 870610. 1.66091
\(725\) 215666.i 0.410304i
\(726\) 187850. + 187850.i 0.356400 + 0.356400i
\(727\) 891410.i 1.68659i −0.537453 0.843294i \(-0.680613\pi\)
0.537453 0.843294i \(-0.319387\pi\)
\(728\) −394678. + 402310.i −0.744697 + 0.759099i
\(729\) 19683.0 0.0370370
\(730\) −103333. + 103333.i −0.193906 + 0.193906i
\(731\) 497458. 0.930939
\(732\) 1.01072e6i 1.88629i
\(733\) −439182. + 439182.i −0.817404 + 0.817404i −0.985731 0.168327i \(-0.946164\pi\)
0.168327 + 0.985731i \(0.446164\pi\)
\(734\) −190672. + 190672.i −0.353912 + 0.353912i
\(735\) 39251.6 + 39251.6i 0.0726579 + 0.0726579i
\(736\) −266071. 266071.i −0.491182 0.491182i
\(737\) −110505. −0.203445
\(738\) 284595.i 0.522533i
\(739\) 83855.7 + 83855.7i 0.153548 + 0.153548i 0.779701 0.626153i \(-0.215371\pi\)
−0.626153 + 0.779701i \(0.715371\pi\)
\(740\) 769353.i 1.40495i
\(741\) −417514. + 3998.57i −0.760387 + 0.00728230i
\(742\) 1.42535e6 2.58890
\(743\) −153273. + 153273.i −0.277643 + 0.277643i −0.832167 0.554524i \(-0.812900\pi\)
0.554524 + 0.832167i \(0.312900\pi\)
\(744\) −747881. −1.35110
\(745\) 10352.8i 0.0186529i
\(746\) −207543. + 207543.i −0.372933 + 0.372933i
\(747\) 55642.3 55642.3i 0.0997157 0.0997157i
\(748\) 421143. + 421143.i 0.752708 + 0.752708i
\(749\) 430752. + 430752.i 0.767827 + 0.767827i
\(750\) −578096. −1.02773
\(751\) 208551.i 0.369771i −0.982760 0.184886i \(-0.940808\pi\)
0.982760 0.184886i \(-0.0591915\pi\)
\(752\) 4717.57 + 4717.57i 0.00834225 + 0.00834225i
\(753\) 268477.i 0.473497i
\(754\) −862640. + 8261.59i −1.51735 + 0.0145319i
\(755\) −200304. −0.351395
\(756\) 117822. 117822.i 0.206151 0.206151i
\(757\) −762290. −1.33024 −0.665118 0.746739i \(-0.731619\pi\)
−0.665118 + 0.746739i \(0.731619\pi\)
\(758\) 253308.i 0.440870i
\(759\) −148563. + 148563.i −0.257886 + 0.257886i
\(760\) −487610. + 487610.i −0.844201 + 0.844201i
\(761\) 790313. + 790313.i 1.36468 + 1.36468i 0.867850 + 0.496826i \(0.165501\pi\)
0.496826 + 0.867850i \(0.334499\pi\)
\(762\) 533659. + 533659.i 0.919082 + 0.919082i
\(763\) 295326. 0.507287
\(764\) 1.46682e6i 2.51299i
\(765\) 91440.2 + 91440.2i 0.156248 + 0.156248i
\(766\) 1.55746e6i 2.65436i
\(767\) −472.140 49298.9i −0.000802565 0.0838005i
\(768\) 479546. 0.813033
\(769\) 170652. 170652.i 0.288574 0.288574i −0.547942 0.836516i \(-0.684589\pi\)
0.836516 + 0.547942i \(0.184589\pi\)
\(770\) −437061. −0.737158
\(771\) 457158.i 0.769056i
\(772\) 39070.1 39070.1i 0.0655555 0.0655555i
\(773\) 238774. 238774.i 0.399602 0.399602i −0.478490 0.878093i \(-0.658816\pi\)
0.878093 + 0.478490i \(0.158816\pi\)
\(774\) −243885. 243885.i −0.407101 0.407101i
\(775\) −364634. 364634.i −0.607090 0.607090i
\(776\) −615268. −1.02174
\(777\) 330741.i 0.547830i
\(778\) 77091.7 + 77091.7i 0.127365 + 0.127365i
\(779\) 757333.i 1.24799i
\(780\) 4343.86 + 453567.i 0.00713981 + 0.745509i
\(781\) −358610. −0.587923
\(782\) 586335. 586335.i 0.958810 0.958810i
\(783\) 108221. 0.176517
\(784\) 41233.3i 0.0670836i
\(785\) 336263. 336263.i 0.545682 0.545682i
\(786\) 40317.1 40317.1i 0.0652596 0.0652596i
\(787\) −460701. 460701.i −0.743823 0.743823i 0.229488 0.973311i \(-0.426295\pi\)
−0.973311 + 0.229488i \(0.926295\pi\)
\(788\) −282793. 282793.i −0.455424 0.455424i
\(789\) −590204. −0.948087
\(790\) 497435.i 0.797044i
\(791\) 103750. + 103750.i 0.165820 + 0.165820i
\(792\) 175211.i 0.279326i
\(793\) 844339. + 828320.i 1.34267 + 1.31720i
\(794\) −1.45872e6 −2.31383
\(795\) 344181. 344181.i 0.544568 0.544568i
\(796\) −206762. −0.326320
\(797\) 940096.i 1.47998i −0.672618 0.739989i \(-0.734830\pi\)
0.672618 0.739989i \(-0.265170\pi\)
\(798\) 494039. 494039.i 0.775811 0.775811i
\(799\) 16947.7 16947.7i 0.0265471 0.0265471i
\(800\) 152993. + 152993.i 0.239052 + 0.239052i
\(801\) 162869. + 162869.i 0.253848 + 0.253848i
\(802\) −1.33066e6 −2.06880
\(803\) 98806.5i 0.153234i
\(804\) −135697. 135697.i −0.209922 0.209922i
\(805\) 386176.i 0.595928i
\(806\) −1.44453e6 + 1.47246e6i −2.22359 + 2.26660i
\(807\) −29347.6 −0.0450635
\(808\) 805159. 805159.i 1.23327 1.23327i
\(809\) 612686. 0.936140 0.468070 0.883691i \(-0.344950\pi\)
0.468070 + 0.883691i \(0.344950\pi\)
\(810\) 89659.3i 0.136655i
\(811\) 431732. 431732.i 0.656406 0.656406i −0.298121 0.954528i \(-0.596360\pi\)
0.954528 + 0.298121i \(0.0963601\pi\)
\(812\) 647809. 647809.i 0.982505 0.982505i
\(813\) 19342.1 + 19342.1i 0.0292633 + 0.0292633i
\(814\) 579585. + 579585.i 0.874719 + 0.874719i
\(815\) −436329. −0.656900
\(816\) 96056.8i 0.144261i
\(817\) −648999. 648999.i −0.972300 0.972300i
\(818\) 93111.7i 0.139155i
\(819\) −1867.40 194986.i −0.00278401 0.290694i
\(820\) 822730. 1.22357
\(821\) −193284. + 193284.i −0.286754 + 0.286754i −0.835795 0.549041i \(-0.814993\pi\)
0.549041 + 0.835795i \(0.314993\pi\)
\(822\) 1.05060e6 1.55486
\(823\) 547967.i 0.809011i 0.914536 + 0.404506i \(0.132556\pi\)
−0.914536 + 0.404506i \(0.867444\pi\)
\(824\) 721275. 721275.i 1.06230 1.06230i
\(825\) 85425.1 85425.1i 0.125510 0.125510i
\(826\) 58334.8 + 58334.8i 0.0855003 + 0.0855003i
\(827\) −859953. 859953.i −1.25737 1.25737i −0.952343 0.305029i \(-0.901334\pi\)
−0.305029 0.952343i \(-0.598666\pi\)
\(828\) −364864. −0.532194
\(829\) 726172.i 1.05665i −0.849043 0.528324i \(-0.822821\pi\)
0.849043 0.528324i \(-0.177179\pi\)
\(830\) −253460. 253460.i −0.367919 0.367919i
\(831\) 164578.i 0.238326i
\(832\) 741933. 756282.i 1.07181 1.09254i
\(833\) 148129. 0.213477
\(834\) 113261. 113261.i 0.162835 0.162835i
\(835\) −995999. −1.42852
\(836\) 1.09887e6i 1.57230i
\(837\) 182972. 182972.i 0.261176 0.261176i
\(838\) −83260.3 + 83260.3i −0.118563 + 0.118563i
\(839\) −507389. 507389.i −0.720804 0.720804i 0.247965 0.968769i \(-0.420238\pi\)
−0.968769 + 0.247965i \(0.920238\pi\)
\(840\) −227722. 227722.i −0.322736 0.322736i
\(841\) −112265. −0.158728
\(842\) 1.15338e6i 1.62685i
\(843\) 56623.5 + 56623.5i 0.0796786 + 0.0796786i
\(844\) 1.27501e6i 1.78990i
\(845\) 382462. + 368085.i 0.535642 + 0.515507i
\(846\) −16617.6 −0.0232182
\(847\) −233456. + 233456.i −0.325415 + 0.325415i
\(848\) 361557. 0.502789
\(849\) 161052.i 0.223434i
\(850\) −337148. + 337148.i −0.466641 + 0.466641i
\(851\) 512107. 512107.i 0.707133 0.707133i
\(852\) −440365. 440365.i −0.606643 0.606643i
\(853\) 192677. + 192677.i 0.264808 + 0.264808i 0.827004 0.562196i \(-0.190043\pi\)
−0.562196 + 0.827004i \(0.690043\pi\)
\(854\) −1.97924e6 −2.71383
\(855\) 238592.i 0.326380i
\(856\) 786593. + 786593.i 1.07350 + 1.07350i
\(857\) 96833.2i 0.131845i 0.997825 + 0.0659223i \(0.0209990\pi\)
−0.997825 + 0.0659223i \(0.979001\pi\)
\(858\) −344963. 338419.i −0.468596 0.459705i
\(859\) 248211. 0.336383 0.168192 0.985754i \(-0.446207\pi\)
0.168192 + 0.985754i \(0.446207\pi\)
\(860\) −705042. + 705042.i −0.953275 + 0.953275i
\(861\) −353687. −0.477104
\(862\) 763533.i 1.02757i
\(863\) 1.02273e6 1.02273e6i 1.37321 1.37321i 0.517571 0.855640i \(-0.326836\pi\)
0.855640 0.517571i \(-0.173164\pi\)
\(864\) −76771.6 + 76771.6i −0.102843 + 0.102843i
\(865\) 22510.5 + 22510.5i 0.0300853 + 0.0300853i
\(866\) −284499. 284499.i −0.379355 0.379355i
\(867\) −88907.1 −0.118276
\(868\) 2.19054e6i 2.90745i
\(869\) 237824. + 237824.i 0.314931 + 0.314931i
\(870\) 492962.i 0.651291i
\(871\) −224567. + 2150.70i −0.296013 + 0.00283494i
\(872\) 539294. 0.709239
\(873\) 150528. 150528.i 0.197509 0.197509i
\(874\) −1.52990e6 −2.00282
\(875\) 718444.i 0.938376i
\(876\) 121332. 121332.i 0.158113 0.158113i
\(877\) 263404. 263404.i 0.342470 0.342470i −0.514825 0.857295i \(-0.672143\pi\)
0.857295 + 0.514825i \(0.172143\pi\)
\(878\) 1.28702e6 + 1.28702e6i 1.66954 + 1.66954i
\(879\) 589949. + 589949.i 0.763549 + 0.763549i
\(880\) −110866. −0.143163
\(881\) 580702.i 0.748171i 0.927394 + 0.374086i \(0.122043\pi\)
−0.927394 + 0.374086i \(0.877957\pi\)
\(882\) −72622.2 72622.2i −0.0933538 0.0933538i
\(883\) 1.28367e6i 1.64638i 0.567763 + 0.823192i \(0.307809\pi\)
−0.567763 + 0.823192i \(0.692191\pi\)
\(884\) 864042. + 847649.i 1.10568 + 1.08470i
\(885\) 28172.2 0.0359695
\(886\) −40787.4 + 40787.4i −0.0519587 + 0.0519587i
\(887\) 166700. 0.211879 0.105940 0.994373i \(-0.466215\pi\)
0.105940 + 0.994373i \(0.466215\pi\)
\(888\) 603964.i 0.765923i
\(889\) −663219. + 663219.i −0.839176 + 0.839176i
\(890\) 741894. 741894.i 0.936617 0.936617i
\(891\) 42866.1 + 42866.1i 0.0539956 + 0.0539956i
\(892\) −727805. 727805.i −0.914714 0.914714i
\(893\) −44221.1 −0.0554532
\(894\) 19154.5i 0.0239660i
\(895\) −35488.4 35488.4i −0.0443037 0.0443037i
\(896\) 1.24369e6i 1.54916i
\(897\) −299018. + 304801.i −0.371631 + 0.378818i
\(898\) 2.30820e6 2.86234
\(899\) 1.00601e6 1.00601e6i 1.24475 1.24475i
\(900\) 209800. 0.259012
\(901\) 1.29888e6i 1.60000i
\(902\) −619796. + 619796.i −0.761791 + 0.761791i
\(903\) 303094. 303094.i 0.371708 0.371708i
\(904\) 189458. + 189458.i 0.231833 + 0.231833i
\(905\) 411674. + 411674.i 0.502639 + 0.502639i
\(906\) 370596. 0.451486
\(907\) 1.06525e6i 1.29490i 0.762108 + 0.647450i \(0.224164\pi\)
−0.762108 + 0.647450i \(0.775836\pi\)
\(908\) 567464. + 567464.i 0.688282 + 0.688282i
\(909\) 393971.i 0.476800i
\(910\) −888194. + 8506.32i −1.07257 + 0.0102721i
\(911\) −794671. −0.957526 −0.478763 0.877944i \(-0.658915\pi\)
−0.478763 + 0.877944i \(0.658915\pi\)
\(912\) 125319. 125319.i 0.150670 0.150670i
\(913\) 242358. 0.290747
\(914\) 517031.i 0.618905i
\(915\) −477927. + 477927.i −0.570846 + 0.570846i
\(916\) −1.44823e6 + 1.44823e6i −1.72603 + 1.72603i
\(917\) 50105.1 + 50105.1i 0.0595859 + 0.0595859i
\(918\) −169180. 169180.i −0.200754 0.200754i
\(919\) 514196. 0.608833 0.304416 0.952539i \(-0.401539\pi\)
0.304416 + 0.952539i \(0.401539\pi\)
\(920\) 705193.i 0.833168i
\(921\) −390867. 390867.i −0.460797 0.460797i
\(922\) 294545.i 0.346489i
\(923\) −728766. + 6979.46i −0.855431 + 0.00819254i
\(924\) 513193. 0.601086
\(925\) −294466. + 294466.i −0.344153 + 0.344153i
\(926\) 1.26064e6 1.47018
\(927\) 352925.i 0.410699i
\(928\) −422104. + 422104.i −0.490143 + 0.490143i
\(929\) −746377. + 746377.i −0.864823 + 0.864823i −0.991894 0.127071i \(-0.959442\pi\)
0.127071 + 0.991894i \(0.459442\pi\)
\(930\) −833468. 833468.i −0.963658 0.963658i
\(931\) −193254. 193254.i −0.222961 0.222961i
\(932\) −1.27240e6 −1.46484
\(933\) 781635.i 0.897926i
\(934\) 499758. + 499758.i 0.572884 + 0.572884i
\(935\) 398281.i 0.455582i
\(936\) −3410.05 356063.i −0.00389233 0.406420i
\(937\) 379998. 0.432815 0.216408 0.976303i \(-0.430566\pi\)
0.216408 + 0.976303i \(0.430566\pi\)
\(938\) 265728. 265728.i 0.302017 0.302017i
\(939\) −657854. −0.746103
\(940\) 48039.7i 0.0543681i
\(941\) −906449. + 906449.i −1.02368 + 1.02368i −0.0239676 + 0.999713i \(0.507630\pi\)
−0.999713 + 0.0239676i \(0.992370\pi\)
\(942\) −622143. + 622143.i −0.701114 + 0.701114i
\(943\) 547636. + 547636.i 0.615841 + 0.615841i
\(944\) 14797.3 + 14797.3i 0.0166050 + 0.0166050i
\(945\) 111426. 0.124774
\(946\) 1.06227e6i 1.18701i
\(947\) 290385. + 290385.i 0.323798 + 0.323798i 0.850222 0.526424i \(-0.176468\pi\)
−0.526424 + 0.850222i \(0.676468\pi\)
\(948\) 584083.i 0.649918i
\(949\) −1923.03 200794.i −0.00213527 0.222956i
\(950\) 879709. 0.974747
\(951\) 220061. 220061.i 0.243323 0.243323i
\(952\) −859388. −0.948234
\(953\) 1.13841e6i 1.25347i −0.779234 0.626733i \(-0.784392\pi\)
0.779234 0.626733i \(-0.215608\pi\)
\(954\) −636793. + 636793.i −0.699683 + 0.699683i
\(955\) 693596. 693596.i 0.760501 0.760501i
\(956\) 1.52731e6 + 1.52731e6i 1.67114 + 1.67114i
\(957\) 235685. + 235685.i 0.257341 + 0.257341i
\(958\) 648362. 0.706459
\(959\) 1.30566e6i 1.41968i
\(960\) 428083. + 428083.i 0.464500 + 0.464500i
\(961\) 2.47827e6i 2.68350i
\(962\) 1.18911e6 + 1.16655e6i 1.28491 + 1.26053i
\(963\) −384886. −0.415030
\(964\) 652395. 652395.i 0.702032 0.702032i
\(965\) 36949.1 0.0396780
\(966\) 714491.i 0.765672i
\(967\) 19218.1 19218.1i 0.0205521 0.0205521i −0.696756 0.717308i \(-0.745374\pi\)
0.717308 + 0.696756i \(0.245374\pi\)
\(968\) −426312. + 426312.i −0.454964 + 0.454964i
\(969\) −450203. 450203.i −0.479470 0.479470i
\(970\) −685678. 685678.i −0.728747 0.728747i
\(971\) 416812. 0.442080 0.221040 0.975265i \(-0.429055\pi\)
0.221040 + 0.975265i \(0.429055\pi\)
\(972\) 105277.i 0.111430i
\(973\) 140758. + 140758.i 0.148678 + 0.148678i
\(974\) 3.12758e6i 3.29679i
\(975\) 171938. 175263.i 0.180868 0.184366i
\(976\) −502056. −0.527051
\(977\) 394416. 394416.i 0.413205 0.413205i −0.469649 0.882853i \(-0.655619\pi\)
0.882853 + 0.469649i \(0.155619\pi\)
\(978\) 807283. 0.844011
\(979\) 709399.i 0.740159i
\(980\) −209942. + 209942.i −0.218599 + 0.218599i
\(981\) −131940. + 131940.i −0.137101 + 0.137101i
\(982\) −956284. 956284.i −0.991663 0.991663i
\(983\) −159479. 159479.i −0.165043 0.165043i 0.619754 0.784796i \(-0.287233\pi\)
−0.784796 + 0.619754i \(0.787233\pi\)
\(984\) −645866. −0.667041
\(985\) 267441.i 0.275649i
\(986\) −930181. 930181.i −0.956783 0.956783i
\(987\) 20652.0i 0.0211996i
\(988\) −21386.9 2.23313e6i −0.0219095 2.28770i
\(989\) −938598. −0.959593
\(990\) 195262. 195262.i 0.199227 0.199227i
\(991\) 869851. 0.885722 0.442861 0.896590i \(-0.353964\pi\)
0.442861 + 0.896590i \(0.353964\pi\)
\(992\) 1.42733e6i 1.45044i
\(993\) −122597. + 122597.i −0.124332 + 0.124332i
\(994\) 862340. 862340.i 0.872782 0.872782i
\(995\) −97768.8 97768.8i −0.0987539 0.0987539i
\(996\) 297610. + 297610.i 0.300005 + 0.300005i
\(997\) 798123. 0.802934 0.401467 0.915874i \(-0.368501\pi\)
0.401467 + 0.915874i \(0.368501\pi\)
\(998\) 2.46427e6i 2.47415i
\(999\) −147762. 147762.i −0.148058 0.148058i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 39.5.g.a.31.9 20
3.2 odd 2 117.5.j.b.109.2 20
13.8 odd 4 inner 39.5.g.a.34.9 yes 20
39.8 even 4 117.5.j.b.73.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.5.g.a.31.9 20 1.1 even 1 trivial
39.5.g.a.34.9 yes 20 13.8 odd 4 inner
117.5.j.b.73.2 20 39.8 even 4
117.5.j.b.109.2 20 3.2 odd 2