Properties

Label 39.5.g.a.31.8
Level $39$
Weight $5$
Character 39.31
Analytic conductor $4.031$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [39,5,Mod(31,39)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(39, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("39.31");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 39.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.03142856027\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 5446 x^{16} - 1452 x^{15} + 106320 x^{13} + 8376897 x^{12} - 1643220 x^{11} + 1054152 x^{10} + \cdots + 2103506496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 31.8
Root \(-2.89776 + 2.89776i\) of defining polynomial
Character \(\chi\) \(=\) 39.31
Dual form 39.5.g.a.34.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.89776 - 2.89776i) q^{2} +5.19615 q^{3} -0.794047i q^{4} +(18.6373 - 18.6373i) q^{5} +(15.0572 - 15.0572i) q^{6} +(-15.2549 - 15.2549i) q^{7} +(44.0632 + 44.0632i) q^{8} +27.0000 q^{9} -108.013i q^{10} +(-59.2741 - 59.2741i) q^{11} -4.12599i q^{12} +(-157.156 + 62.1541i) q^{13} -88.4101 q^{14} +(96.8421 - 96.8421i) q^{15} +268.074 q^{16} +272.906i q^{17} +(78.2396 - 78.2396i) q^{18} +(-54.5892 + 54.5892i) q^{19} +(-14.7989 - 14.7989i) q^{20} +(-79.2668 - 79.2668i) q^{21} -343.524 q^{22} +596.223i q^{23} +(228.959 + 228.959i) q^{24} -69.6962i q^{25} +(-275.292 + 635.507i) q^{26} +140.296 q^{27} +(-12.1131 + 12.1131i) q^{28} -1314.18 q^{29} -561.251i q^{30} +(874.924 - 874.924i) q^{31} +(71.8036 - 71.8036i) q^{32} +(-307.997 - 307.997i) q^{33} +(790.817 + 790.817i) q^{34} -568.619 q^{35} -21.4393i q^{36} +(-403.847 - 403.847i) q^{37} +316.373i q^{38} +(-816.604 + 322.962i) q^{39} +1642.44 q^{40} +(983.966 - 983.966i) q^{41} -459.392 q^{42} -2237.13i q^{43} +(-47.0664 + 47.0664i) q^{44} +(503.206 - 503.206i) q^{45} +(1727.71 + 1727.71i) q^{46} +(-369.867 - 369.867i) q^{47} +1392.95 q^{48} -1935.58i q^{49} +(-201.963 - 201.963i) q^{50} +1418.06i q^{51} +(49.3532 + 124.789i) q^{52} +4399.13 q^{53} +(406.545 - 406.545i) q^{54} -2209.42 q^{55} -1344.36i q^{56} +(-283.654 + 283.654i) q^{57} +(-3808.17 + 3808.17i) q^{58} +(976.401 + 976.401i) q^{59} +(-76.8972 - 76.8972i) q^{60} -6163.60 q^{61} -5070.64i q^{62} +(-411.882 - 411.882i) q^{63} +3873.05i q^{64} +(-1770.57 + 4087.33i) q^{65} -1785.01 q^{66} +(-1708.57 + 1708.57i) q^{67} +216.700 q^{68} +3098.07i q^{69} +(-1647.72 + 1647.72i) q^{70} +(672.586 - 672.586i) q^{71} +(1189.71 + 1189.71i) q^{72} +(-1169.63 - 1169.63i) q^{73} -2340.51 q^{74} -362.152i q^{75} +(43.3464 + 43.3464i) q^{76} +1808.44i q^{77} +(-1430.46 + 3302.19i) q^{78} +8345.50 q^{79} +(4996.17 - 4996.17i) q^{80} +729.000 q^{81} -5702.60i q^{82} +(6513.68 - 6513.68i) q^{83} +(-62.9415 + 62.9415i) q^{84} +(5086.23 + 5086.23i) q^{85} +(-6482.67 - 6482.67i) q^{86} -6828.65 q^{87} -5223.62i q^{88} +(8366.65 + 8366.65i) q^{89} -2916.35i q^{90} +(3345.55 + 1449.24i) q^{91} +473.429 q^{92} +(4546.24 - 4546.24i) q^{93} -2143.57 q^{94} +2034.79i q^{95} +(373.103 - 373.103i) q^{96} +(2271.58 - 2271.58i) q^{97} +(-5608.84 - 5608.84i) q^{98} +(-1600.40 - 1600.40i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 24 q^{5} - 24 q^{7} + 540 q^{9} + 372 q^{11} - 224 q^{13} + 480 q^{14} - 252 q^{15} - 2328 q^{16} - 840 q^{19} + 228 q^{20} + 936 q^{21} + 3536 q^{22} - 1404 q^{24} - 828 q^{26} - 1984 q^{28} - 5064 q^{29}+ \cdots + 10044 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/39\mathbb{Z}\right)^\times\).

\(n\) \(14\) \(28\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.89776 2.89776i 0.724440 0.724440i −0.245066 0.969506i \(-0.578810\pi\)
0.969506 + 0.245066i \(0.0788096\pi\)
\(3\) 5.19615 0.577350
\(4\) 0.794047i 0.0496279i
\(5\) 18.6373 18.6373i 0.745491 0.745491i −0.228138 0.973629i \(-0.573264\pi\)
0.973629 + 0.228138i \(0.0732637\pi\)
\(6\) 15.0572 15.0572i 0.418256 0.418256i
\(7\) −15.2549 15.2549i −0.311324 0.311324i 0.534098 0.845422i \(-0.320651\pi\)
−0.845422 + 0.534098i \(0.820651\pi\)
\(8\) 44.0632 + 44.0632i 0.688488 + 0.688488i
\(9\) 27.0000 0.333333
\(10\) 108.013i 1.08013i
\(11\) −59.2741 59.2741i −0.489869 0.489869i 0.418396 0.908265i \(-0.362592\pi\)
−0.908265 + 0.418396i \(0.862592\pi\)
\(12\) 4.12599i 0.0286527i
\(13\) −157.156 + 62.1541i −0.929915 + 0.367776i
\(14\) −88.4101 −0.451072
\(15\) 96.8421 96.8421i 0.430409 0.430409i
\(16\) 268.074 1.04717
\(17\) 272.906i 0.944312i 0.881515 + 0.472156i \(0.156524\pi\)
−0.881515 + 0.472156i \(0.843476\pi\)
\(18\) 78.2396 78.2396i 0.241480 0.241480i
\(19\) −54.5892 + 54.5892i −0.151217 + 0.151217i −0.778661 0.627445i \(-0.784101\pi\)
0.627445 + 0.778661i \(0.284101\pi\)
\(20\) −14.7989 14.7989i −0.0369972 0.0369972i
\(21\) −79.2668 79.2668i −0.179743 0.179743i
\(22\) −343.524 −0.709761
\(23\) 596.223i 1.12708i 0.826090 + 0.563538i \(0.190560\pi\)
−0.826090 + 0.563538i \(0.809440\pi\)
\(24\) 228.959 + 228.959i 0.397499 + 0.397499i
\(25\) 69.6962i 0.111514i
\(26\) −275.292 + 635.507i −0.407236 + 0.940099i
\(27\) 140.296 0.192450
\(28\) −12.1131 + 12.1131i −0.0154504 + 0.0154504i
\(29\) −1314.18 −1.56263 −0.781317 0.624135i \(-0.785452\pi\)
−0.781317 + 0.624135i \(0.785452\pi\)
\(30\) 561.251i 0.623612i
\(31\) 874.924 874.924i 0.910431 0.910431i −0.0858748 0.996306i \(-0.527368\pi\)
0.996306 + 0.0858748i \(0.0273685\pi\)
\(32\) 71.8036 71.8036i 0.0701207 0.0701207i
\(33\) −307.997 307.997i −0.282826 0.282826i
\(34\) 790.817 + 790.817i 0.684098 + 0.684098i
\(35\) −568.619 −0.464179
\(36\) 21.4393i 0.0165426i
\(37\) −403.847 403.847i −0.294994 0.294994i 0.544055 0.839049i \(-0.316888\pi\)
−0.839049 + 0.544055i \(0.816888\pi\)
\(38\) 316.373i 0.219095i
\(39\) −816.604 + 322.962i −0.536886 + 0.212335i
\(40\) 1642.44 1.02652
\(41\) 983.966 983.966i 0.585346 0.585346i −0.351022 0.936367i \(-0.614166\pi\)
0.936367 + 0.351022i \(0.114166\pi\)
\(42\) −459.392 −0.260426
\(43\) 2237.13i 1.20991i −0.796258 0.604957i \(-0.793190\pi\)
0.796258 0.604957i \(-0.206810\pi\)
\(44\) −47.0664 + 47.0664i −0.0243112 + 0.0243112i
\(45\) 503.206 503.206i 0.248497 0.248497i
\(46\) 1727.71 + 1727.71i 0.816500 + 0.816500i
\(47\) −369.867 369.867i −0.167437 0.167437i 0.618415 0.785852i \(-0.287775\pi\)
−0.785852 + 0.618415i \(0.787775\pi\)
\(48\) 1392.95 0.604581
\(49\) 1935.58i 0.806154i
\(50\) −201.963 201.963i −0.0807852 0.0807852i
\(51\) 1418.06i 0.545199i
\(52\) 49.3532 + 124.789i 0.0182519 + 0.0461497i
\(53\) 4399.13 1.56608 0.783041 0.621970i \(-0.213667\pi\)
0.783041 + 0.621970i \(0.213667\pi\)
\(54\) 406.545 406.545i 0.139419 0.139419i
\(55\) −2209.42 −0.730385
\(56\) 1344.36i 0.428686i
\(57\) −283.654 + 283.654i −0.0873050 + 0.0873050i
\(58\) −3808.17 + 3808.17i −1.13204 + 1.13204i
\(59\) 976.401 + 976.401i 0.280495 + 0.280495i 0.833306 0.552812i \(-0.186445\pi\)
−0.552812 + 0.833306i \(0.686445\pi\)
\(60\) −76.8972 76.8972i −0.0213603 0.0213603i
\(61\) −6163.60 −1.65644 −0.828219 0.560405i \(-0.810646\pi\)
−0.828219 + 0.560405i \(0.810646\pi\)
\(62\) 5070.64i 1.31911i
\(63\) −411.882 411.882i −0.103775 0.103775i
\(64\) 3873.05i 0.945568i
\(65\) −1770.57 + 4087.33i −0.419070 + 0.967416i
\(66\) −1785.01 −0.409781
\(67\) −1708.57 + 1708.57i −0.380612 + 0.380612i −0.871322 0.490711i \(-0.836737\pi\)
0.490711 + 0.871322i \(0.336737\pi\)
\(68\) 216.700 0.0468642
\(69\) 3098.07i 0.650718i
\(70\) −1647.72 + 1647.72i −0.336270 + 0.336270i
\(71\) 672.586 672.586i 0.133423 0.133423i −0.637241 0.770664i \(-0.719925\pi\)
0.770664 + 0.637241i \(0.219925\pi\)
\(72\) 1189.71 + 1189.71i 0.229496 + 0.229496i
\(73\) −1169.63 1169.63i −0.219485 0.219485i 0.588797 0.808281i \(-0.299602\pi\)
−0.808281 + 0.588797i \(0.799602\pi\)
\(74\) −2340.51 −0.427412
\(75\) 362.152i 0.0643826i
\(76\) 43.3464 + 43.3464i 0.00750457 + 0.00750457i
\(77\) 1808.44i 0.305016i
\(78\) −1430.46 + 3302.19i −0.235118 + 0.542767i
\(79\) 8345.50 1.33720 0.668602 0.743620i \(-0.266893\pi\)
0.668602 + 0.743620i \(0.266893\pi\)
\(80\) 4996.17 4996.17i 0.780652 0.780652i
\(81\) 729.000 0.111111
\(82\) 5702.60i 0.848096i
\(83\) 6513.68 6513.68i 0.945519 0.945519i −0.0530714 0.998591i \(-0.516901\pi\)
0.998591 + 0.0530714i \(0.0169011\pi\)
\(84\) −62.9415 + 62.9415i −0.00892028 + 0.00892028i
\(85\) 5086.23 + 5086.23i 0.703976 + 0.703976i
\(86\) −6482.67 6482.67i −0.876510 0.876510i
\(87\) −6828.65 −0.902187
\(88\) 5223.62i 0.674537i
\(89\) 8366.65 + 8366.65i 1.05626 + 1.05626i 0.998320 + 0.0579425i \(0.0184540\pi\)
0.0579425 + 0.998320i \(0.481546\pi\)
\(90\) 2916.35i 0.360043i
\(91\) 3345.55 + 1449.24i 0.404003 + 0.175008i
\(92\) 473.429 0.0559345
\(93\) 4546.24 4546.24i 0.525638 0.525638i
\(94\) −2143.57 −0.242596
\(95\) 2034.79i 0.225461i
\(96\) 373.103 373.103i 0.0404842 0.0404842i
\(97\) 2271.58 2271.58i 0.241426 0.241426i −0.576014 0.817440i \(-0.695393\pi\)
0.817440 + 0.576014i \(0.195393\pi\)
\(98\) −5608.84 5608.84i −0.584011 0.584011i
\(99\) −1600.40 1600.40i −0.163290 0.163290i
\(100\) −55.3421 −0.00553421
\(101\) 6490.97i 0.636308i 0.948039 + 0.318154i \(0.103063\pi\)
−0.948039 + 0.318154i \(0.896937\pi\)
\(102\) 4109.20 + 4109.20i 0.394964 + 0.394964i
\(103\) 5614.96i 0.529264i −0.964350 0.264632i \(-0.914750\pi\)
0.964350 0.264632i \(-0.0852504\pi\)
\(104\) −9663.49 4186.07i −0.893444 0.387026i
\(105\) −2954.63 −0.267994
\(106\) 12747.6 12747.6i 1.13453 1.13453i
\(107\) 9686.14 0.846025 0.423012 0.906124i \(-0.360973\pi\)
0.423012 + 0.906124i \(0.360973\pi\)
\(108\) 111.402i 0.00955090i
\(109\) −16372.1 + 16372.1i −1.37801 + 1.37801i −0.530029 + 0.847980i \(0.677819\pi\)
−0.847980 + 0.530029i \(0.822181\pi\)
\(110\) −6402.36 + 6402.36i −0.529121 + 0.529121i
\(111\) −2098.45 2098.45i −0.170315 0.170315i
\(112\) −4089.44 4089.44i −0.326008 0.326008i
\(113\) −19245.1 −1.50717 −0.753585 0.657350i \(-0.771677\pi\)
−0.753585 + 0.657350i \(0.771677\pi\)
\(114\) 1643.92i 0.126495i
\(115\) 11112.0 + 11112.0i 0.840225 + 0.840225i
\(116\) 1043.52i 0.0775503i
\(117\) −4243.20 + 1678.16i −0.309972 + 0.122592i
\(118\) 5658.76 0.406403
\(119\) 4163.15 4163.15i 0.293987 0.293987i
\(120\) 8534.35 0.592664
\(121\) 7614.16i 0.520057i
\(122\) −17860.7 + 17860.7i −1.19999 + 1.19999i
\(123\) 5112.84 5112.84i 0.337950 0.337950i
\(124\) −694.731 694.731i −0.0451828 0.0451828i
\(125\) 10349.4 + 10349.4i 0.662358 + 0.662358i
\(126\) −2387.07 −0.150357
\(127\) 26337.0i 1.63290i −0.577417 0.816449i \(-0.695939\pi\)
0.577417 0.816449i \(-0.304061\pi\)
\(128\) 12372.0 + 12372.0i 0.755129 + 0.755129i
\(129\) 11624.5i 0.698544i
\(130\) 6713.43 + 16974.8i 0.397245 + 1.00443i
\(131\) −3094.41 −0.180316 −0.0901581 0.995927i \(-0.528737\pi\)
−0.0901581 + 0.995927i \(0.528737\pi\)
\(132\) −244.564 + 244.564i −0.0140361 + 0.0140361i
\(133\) 1665.51 0.0941549
\(134\) 9902.03i 0.551461i
\(135\) 2614.74 2614.74i 0.143470 0.143470i
\(136\) −12025.1 + 12025.1i −0.650147 + 0.650147i
\(137\) −10453.9 10453.9i −0.556978 0.556978i 0.371467 0.928446i \(-0.378855\pi\)
−0.928446 + 0.371467i \(0.878855\pi\)
\(138\) 8977.46 + 8977.46i 0.471406 + 0.471406i
\(139\) 5922.48 0.306531 0.153265 0.988185i \(-0.451021\pi\)
0.153265 + 0.988185i \(0.451021\pi\)
\(140\) 451.511i 0.0230363i
\(141\) −1921.89 1921.89i −0.0966695 0.0966695i
\(142\) 3897.99i 0.193314i
\(143\) 12999.4 + 5631.13i 0.635698 + 0.275374i
\(144\) 7238.00 0.349055
\(145\) −24492.6 + 24492.6i −1.16493 + 1.16493i
\(146\) −6778.64 −0.318007
\(147\) 10057.6i 0.465433i
\(148\) −320.674 + 320.674i −0.0146400 + 0.0146400i
\(149\) −22740.7 + 22740.7i −1.02431 + 1.02431i −0.0246105 + 0.999697i \(0.507835\pi\)
−0.999697 + 0.0246105i \(0.992165\pi\)
\(150\) −1049.43 1049.43i −0.0466414 0.0466414i
\(151\) −30969.3 30969.3i −1.35824 1.35824i −0.876082 0.482161i \(-0.839852\pi\)
−0.482161 0.876082i \(-0.660148\pi\)
\(152\) −4810.76 −0.208222
\(153\) 7368.46i 0.314771i
\(154\) 5240.43 + 5240.43i 0.220966 + 0.220966i
\(155\) 32612.4i 1.35744i
\(156\) 256.447 + 648.422i 0.0105378 + 0.0266446i
\(157\) −16868.7 −0.684358 −0.342179 0.939635i \(-0.611165\pi\)
−0.342179 + 0.939635i \(0.611165\pi\)
\(158\) 24183.3 24183.3i 0.968725 0.968725i
\(159\) 22858.5 0.904178
\(160\) 2676.45i 0.104549i
\(161\) 9095.32 9095.32i 0.350886 0.350886i
\(162\) 2112.47 2112.47i 0.0804934 0.0804934i
\(163\) 23110.4 + 23110.4i 0.869826 + 0.869826i 0.992453 0.122626i \(-0.0391317\pi\)
−0.122626 + 0.992453i \(0.539132\pi\)
\(164\) −781.315 781.315i −0.0290495 0.0290495i
\(165\) −11480.5 −0.421688
\(166\) 37750.2i 1.36994i
\(167\) 16613.8 + 16613.8i 0.595710 + 0.595710i 0.939168 0.343458i \(-0.111598\pi\)
−0.343458 + 0.939168i \(0.611598\pi\)
\(168\) 6985.50i 0.247502i
\(169\) 20834.7 19535.7i 0.729482 0.684000i
\(170\) 29477.3 1.01998
\(171\) −1473.91 + 1473.91i −0.0504056 + 0.0504056i
\(172\) −1776.39 −0.0600455
\(173\) 9230.43i 0.308411i 0.988039 + 0.154206i \(0.0492818\pi\)
−0.988039 + 0.154206i \(0.950718\pi\)
\(174\) −19787.8 + 19787.8i −0.653581 + 0.653581i
\(175\) −1063.21 + 1063.21i −0.0347170 + 0.0347170i
\(176\) −15889.9 15889.9i −0.512973 0.512973i
\(177\) 5073.53 + 5073.53i 0.161944 + 0.161944i
\(178\) 48489.1 1.53040
\(179\) 28771.7i 0.897965i −0.893541 0.448982i \(-0.851787\pi\)
0.893541 0.448982i \(-0.148213\pi\)
\(180\) −399.570 399.570i −0.0123324 0.0123324i
\(181\) 2334.88i 0.0712700i −0.999365 0.0356350i \(-0.988655\pi\)
0.999365 0.0356350i \(-0.0113454\pi\)
\(182\) 13894.1 5495.05i 0.419458 0.165893i
\(183\) −32027.0 −0.956345
\(184\) −26271.5 + 26271.5i −0.775978 + 0.775978i
\(185\) −15053.2 −0.439831
\(186\) 26347.8i 0.761586i
\(187\) 16176.3 16176.3i 0.462589 0.462589i
\(188\) −293.692 + 293.692i −0.00830953 + 0.00830953i
\(189\) −2140.20 2140.20i −0.0599144 0.0599144i
\(190\) 5896.34 + 5896.34i 0.163333 + 0.163333i
\(191\) −11500.7 −0.315251 −0.157625 0.987499i \(-0.550384\pi\)
−0.157625 + 0.987499i \(0.550384\pi\)
\(192\) 20124.9i 0.545924i
\(193\) 36690.3 + 36690.3i 0.985002 + 0.985002i 0.999889 0.0148869i \(-0.00473884\pi\)
−0.0148869 + 0.999889i \(0.504739\pi\)
\(194\) 13165.0i 0.349797i
\(195\) −9200.15 + 21238.4i −0.241950 + 0.558538i
\(196\) −1536.94 −0.0400078
\(197\) 3775.20 3775.20i 0.0972763 0.0972763i −0.656794 0.754070i \(-0.728088\pi\)
0.754070 + 0.656794i \(0.228088\pi\)
\(198\) −9275.16 −0.236587
\(199\) 47612.3i 1.20230i 0.799136 + 0.601151i \(0.205291\pi\)
−0.799136 + 0.601151i \(0.794709\pi\)
\(200\) 3071.04 3071.04i 0.0767760 0.0767760i
\(201\) −8877.97 + 8877.97i −0.219746 + 0.219746i
\(202\) 18809.3 + 18809.3i 0.460967 + 0.460967i
\(203\) 20047.6 + 20047.6i 0.486486 + 0.486486i
\(204\) 1126.01 0.0270571
\(205\) 36676.9i 0.872740i
\(206\) −16270.8 16270.8i −0.383420 0.383420i
\(207\) 16098.0i 0.375692i
\(208\) −42129.4 + 16661.9i −0.973774 + 0.385122i
\(209\) 6471.46 0.148153
\(210\) −8561.82 + 8561.82i −0.194146 + 0.194146i
\(211\) −75668.4 −1.69961 −0.849806 0.527096i \(-0.823281\pi\)
−0.849806 + 0.527096i \(0.823281\pi\)
\(212\) 3493.11i 0.0777215i
\(213\) 3494.86 3494.86i 0.0770318 0.0770318i
\(214\) 28068.1 28068.1i 0.612894 0.612894i
\(215\) −41694.0 41694.0i −0.901980 0.901980i
\(216\) 6181.90 + 6181.90i 0.132500 + 0.132500i
\(217\) −26693.8 −0.566879
\(218\) 94885.0i 1.99657i
\(219\) −6077.59 6077.59i −0.126719 0.126719i
\(220\) 1754.38i 0.0362475i
\(221\) −16962.2 42888.7i −0.347295 0.878129i
\(222\) −12161.6 −0.246766
\(223\) −953.201 + 953.201i −0.0191679 + 0.0191679i −0.716626 0.697458i \(-0.754314\pi\)
0.697458 + 0.716626i \(0.254314\pi\)
\(224\) −2190.71 −0.0436606
\(225\) 1881.80i 0.0371713i
\(226\) −55767.6 + 55767.6i −1.09186 + 1.09186i
\(227\) 6110.06 6110.06i 0.118575 0.118575i −0.645329 0.763905i \(-0.723280\pi\)
0.763905 + 0.645329i \(0.223280\pi\)
\(228\) 225.235 + 225.235i 0.00433277 + 0.00433277i
\(229\) 9576.99 + 9576.99i 0.182624 + 0.182624i 0.792498 0.609874i \(-0.208780\pi\)
−0.609874 + 0.792498i \(0.708780\pi\)
\(230\) 64399.7 1.21739
\(231\) 9396.93i 0.176101i
\(232\) −57906.8 57906.8i −1.07585 1.07585i
\(233\) 72801.5i 1.34100i 0.741910 + 0.670500i \(0.233920\pi\)
−0.741910 + 0.670500i \(0.766080\pi\)
\(234\) −7432.88 + 17158.7i −0.135745 + 0.313366i
\(235\) −13786.6 −0.249645
\(236\) 775.309 775.309i 0.0139204 0.0139204i
\(237\) 43364.5 0.772036
\(238\) 24127.7i 0.425952i
\(239\) 72643.5 72643.5i 1.27175 1.27175i 0.326578 0.945170i \(-0.394105\pi\)
0.945170 0.326578i \(-0.105895\pi\)
\(240\) 25960.9 25960.9i 0.450710 0.450710i
\(241\) 64322.5 + 64322.5i 1.10746 + 1.10746i 0.993483 + 0.113978i \(0.0363593\pi\)
0.113978 + 0.993483i \(0.463641\pi\)
\(242\) −22064.0 22064.0i −0.376751 0.376751i
\(243\) 3788.00 0.0641500
\(244\) 4894.19i 0.0822056i
\(245\) −36073.9 36073.9i −0.600981 0.600981i
\(246\) 29631.6i 0.489649i
\(247\) 5186.06 11971.9i 0.0850048 0.196232i
\(248\) 77104.0 1.25364
\(249\) 33846.1 33846.1i 0.545896 0.545896i
\(250\) 59979.9 0.959678
\(251\) 49293.7i 0.782427i 0.920300 + 0.391213i \(0.127945\pi\)
−0.920300 + 0.391213i \(0.872055\pi\)
\(252\) −327.054 + 327.054i −0.00515013 + 0.00515013i
\(253\) 35340.6 35340.6i 0.552119 0.552119i
\(254\) −76318.4 76318.4i −1.18294 1.18294i
\(255\) 26428.8 + 26428.8i 0.406441 + 0.406441i
\(256\) 9733.62 0.148523
\(257\) 82424.4i 1.24793i 0.781453 + 0.623964i \(0.214479\pi\)
−0.781453 + 0.623964i \(0.785521\pi\)
\(258\) −33684.9 33684.9i −0.506053 0.506053i
\(259\) 12321.3i 0.183678i
\(260\) 3245.54 + 1405.92i 0.0480109 + 0.0207976i
\(261\) −35482.7 −0.520878
\(262\) −8966.85 + 8966.85i −0.130628 + 0.130628i
\(263\) 41367.3 0.598062 0.299031 0.954243i \(-0.403337\pi\)
0.299031 + 0.954243i \(0.403337\pi\)
\(264\) 27142.7i 0.389444i
\(265\) 81987.7 81987.7i 1.16750 1.16750i
\(266\) 4826.24 4826.24i 0.0682096 0.0682096i
\(267\) 43474.4 + 43474.4i 0.609833 + 0.609833i
\(268\) 1356.68 + 1356.68i 0.0188890 + 0.0188890i
\(269\) −59626.2 −0.824011 −0.412005 0.911181i \(-0.635172\pi\)
−0.412005 + 0.911181i \(0.635172\pi\)
\(270\) 15153.8i 0.207871i
\(271\) −75798.8 75798.8i −1.03210 1.03210i −0.999467 0.0326374i \(-0.989609\pi\)
−0.0326374 0.999467i \(-0.510391\pi\)
\(272\) 73159.1i 0.988850i
\(273\) 17384.0 + 7530.46i 0.233251 + 0.101041i
\(274\) −60586.0 −0.806996
\(275\) −4131.18 + 4131.18i −0.0546272 + 0.0546272i
\(276\) 2460.01 0.0322938
\(277\) 134127.i 1.74806i −0.485876 0.874028i \(-0.661499\pi\)
0.485876 0.874028i \(-0.338501\pi\)
\(278\) 17161.9 17161.9i 0.222063 0.222063i
\(279\) 23623.0 23623.0i 0.303477 0.303477i
\(280\) −25055.2 25055.2i −0.319582 0.319582i
\(281\) −19968.0 19968.0i −0.252885 0.252885i 0.569268 0.822152i \(-0.307227\pi\)
−0.822152 + 0.569268i \(0.807227\pi\)
\(282\) −11138.3 −0.140063
\(283\) 151960.i 1.89739i 0.316186 + 0.948697i \(0.397598\pi\)
−0.316186 + 0.948697i \(0.602402\pi\)
\(284\) −534.065 534.065i −0.00662151 0.00662151i
\(285\) 10573.1i 0.130170i
\(286\) 53986.8 21351.4i 0.660017 0.261033i
\(287\) −30020.6 −0.364465
\(288\) 1938.70 1938.70i 0.0233736 0.0233736i
\(289\) 9043.27 0.108275
\(290\) 141948.i 1.68784i
\(291\) 11803.5 11803.5i 0.139387 0.139387i
\(292\) −928.744 + 928.744i −0.0108926 + 0.0108926i
\(293\) 22398.8 + 22398.8i 0.260909 + 0.260909i 0.825423 0.564514i \(-0.190937\pi\)
−0.564514 + 0.825423i \(0.690937\pi\)
\(294\) −29144.4 29144.4i −0.337179 0.337179i
\(295\) 36394.9 0.418212
\(296\) 35589.6i 0.406200i
\(297\) −8315.93 8315.93i −0.0942753 0.0942753i
\(298\) 131794.i 1.48410i
\(299\) −37057.7 93699.8i −0.414511 1.04808i
\(300\) −287.566 −0.00319518
\(301\) −34127.2 + 34127.2i −0.376676 + 0.376676i
\(302\) −179483. −1.96793
\(303\) 33728.1i 0.367372i
\(304\) −14634.0 + 14634.0i −0.158349 + 0.158349i
\(305\) −114873. + 114873.i −1.23486 + 1.23486i
\(306\) 21352.1 + 21352.1i 0.228033 + 0.228033i
\(307\) 36789.1 + 36789.1i 0.390339 + 0.390339i 0.874808 0.484469i \(-0.160987\pi\)
−0.484469 + 0.874808i \(0.660987\pi\)
\(308\) 1435.99 0.0151373
\(309\) 29176.2i 0.305571i
\(310\) −94503.0 94503.0i −0.983382 0.983382i
\(311\) 78846.4i 0.815194i 0.913162 + 0.407597i \(0.133633\pi\)
−0.913162 + 0.407597i \(0.866367\pi\)
\(312\) −50213.0 21751.5i −0.515830 0.223450i
\(313\) 20618.6 0.210460 0.105230 0.994448i \(-0.466442\pi\)
0.105230 + 0.994448i \(0.466442\pi\)
\(314\) −48881.6 + 48881.6i −0.495777 + 0.495777i
\(315\) −15352.7 −0.154726
\(316\) 6626.72i 0.0663627i
\(317\) 42129.4 42129.4i 0.419244 0.419244i −0.465699 0.884943i \(-0.654197\pi\)
0.884943 + 0.465699i \(0.154197\pi\)
\(318\) 66238.6 66238.6i 0.655023 0.655023i
\(319\) 77896.6 + 77896.6i 0.765485 + 0.765485i
\(320\) 72183.1 + 72183.1i 0.704913 + 0.704913i
\(321\) 50330.6 0.488453
\(322\) 52712.2i 0.508392i
\(323\) −14897.7 14897.7i −0.142796 0.142796i
\(324\) 578.860i 0.00551422i
\(325\) 4331.90 + 10953.2i 0.0410121 + 0.103698i
\(326\) 133937. 1.26027
\(327\) −85072.0 + 85072.0i −0.795594 + 0.795594i
\(328\) 86713.5 0.806007
\(329\) 11284.6i 0.104254i
\(330\) −33267.6 + 33267.6i −0.305488 + 0.305488i
\(331\) 68308.6 68308.6i 0.623476 0.623476i −0.322943 0.946418i \(-0.604672\pi\)
0.946418 + 0.322943i \(0.104672\pi\)
\(332\) −5172.17 5172.17i −0.0469242 0.0469242i
\(333\) −10903.9 10903.9i −0.0983314 0.0983314i
\(334\) 96285.5 0.863113
\(335\) 63686.0i 0.567485i
\(336\) −21249.4 21249.4i −0.188221 0.188221i
\(337\) 87835.7i 0.773412i −0.922203 0.386706i \(-0.873613\pi\)
0.922203 0.386706i \(-0.126387\pi\)
\(338\) 3764.29 116984.i 0.0329495 1.02398i
\(339\) −100000. −0.870165
\(340\) 4038.70 4038.70i 0.0349369 0.0349369i
\(341\) −103721. −0.891983
\(342\) 8542.08i 0.0730317i
\(343\) −66154.0 + 66154.0i −0.562300 + 0.562300i
\(344\) 98575.2 98575.2i 0.833011 0.833011i
\(345\) 57739.5 + 57739.5i 0.485104 + 0.485104i
\(346\) 26747.6 + 26747.6i 0.223425 + 0.223425i
\(347\) 98270.4 0.816138 0.408069 0.912951i \(-0.366202\pi\)
0.408069 + 0.912951i \(0.366202\pi\)
\(348\) 5422.27i 0.0447737i
\(349\) −17440.9 17440.9i −0.143192 0.143192i 0.631877 0.775069i \(-0.282285\pi\)
−0.775069 + 0.631877i \(0.782285\pi\)
\(350\) 6161.85i 0.0503008i
\(351\) −22048.3 + 8719.97i −0.178962 + 0.0707784i
\(352\) −8512.19 −0.0686999
\(353\) 63740.5 63740.5i 0.511524 0.511524i −0.403469 0.914993i \(-0.632196\pi\)
0.914993 + 0.403469i \(0.132196\pi\)
\(354\) 29403.8 0.234637
\(355\) 25070.3i 0.198931i
\(356\) 6643.52 6643.52i 0.0524201 0.0524201i
\(357\) 21632.4 21632.4i 0.169734 0.169734i
\(358\) −83373.5 83373.5i −0.650522 0.650522i
\(359\) −168217. 168217.i −1.30521 1.30521i −0.924831 0.380377i \(-0.875794\pi\)
−0.380377 0.924831i \(-0.624206\pi\)
\(360\) 44345.8 0.342174
\(361\) 124361.i 0.954267i
\(362\) −6765.91 6765.91i −0.0516308 0.0516308i
\(363\) 39564.3i 0.300255i
\(364\) 1150.76 2656.52i 0.00868527 0.0200498i
\(365\) −43597.6 −0.327248
\(366\) −92806.7 + 92806.7i −0.692815 + 0.692815i
\(367\) 4967.29 0.0368797 0.0184399 0.999830i \(-0.494130\pi\)
0.0184399 + 0.999830i \(0.494130\pi\)
\(368\) 159832.i 1.18023i
\(369\) 26567.1 26567.1i 0.195115 0.195115i
\(370\) −43620.7 + 43620.7i −0.318632 + 0.318632i
\(371\) −67108.2 67108.2i −0.487560 0.487560i
\(372\) −3609.93 3609.93i −0.0260863 0.0260863i
\(373\) −115465. −0.829914 −0.414957 0.909841i \(-0.636203\pi\)
−0.414957 + 0.909841i \(0.636203\pi\)
\(374\) 93749.9i 0.670236i
\(375\) 53776.8 + 53776.8i 0.382413 + 0.382413i
\(376\) 32595.1i 0.230556i
\(377\) 206530. 81681.3i 1.45312 0.574698i
\(378\) −12403.6 −0.0868088
\(379\) −79418.8 + 79418.8i −0.552898 + 0.552898i −0.927276 0.374378i \(-0.877856\pi\)
0.374378 + 0.927276i \(0.377856\pi\)
\(380\) 1615.72 0.0111892
\(381\) 136851.i 0.942754i
\(382\) −33326.2 + 33326.2i −0.228380 + 0.228380i
\(383\) 30297.2 30297.2i 0.206540 0.206540i −0.596255 0.802795i \(-0.703345\pi\)
0.802795 + 0.596255i \(0.203345\pi\)
\(384\) 64287.0 + 64287.0i 0.435974 + 0.435974i
\(385\) 33704.4 + 33704.4i 0.227387 + 0.227387i
\(386\) 212640. 1.42715
\(387\) 60402.5i 0.403304i
\(388\) −1803.74 1803.74i −0.0119815 0.0119815i
\(389\) 135764.i 0.897193i −0.893734 0.448597i \(-0.851924\pi\)
0.893734 0.448597i \(-0.148076\pi\)
\(390\) 34884.0 + 88203.7i 0.229349 + 0.579906i
\(391\) −162713. −1.06431
\(392\) 85287.7 85287.7i 0.555028 0.555028i
\(393\) −16079.0 −0.104106
\(394\) 21879.2i 0.140942i
\(395\) 155537. 155537.i 0.996874 0.996874i
\(396\) −1270.79 + 1270.79i −0.00810372 + 0.00810372i
\(397\) −122596. 122596.i −0.777851 0.777851i 0.201614 0.979465i \(-0.435381\pi\)
−0.979465 + 0.201614i \(0.935381\pi\)
\(398\) 137969. + 137969.i 0.870996 + 0.870996i
\(399\) 8654.22 0.0543604
\(400\) 18683.8i 0.116774i
\(401\) 132123. + 132123.i 0.821653 + 0.821653i 0.986345 0.164692i \(-0.0526631\pi\)
−0.164692 + 0.986345i \(0.552663\pi\)
\(402\) 51452.5i 0.318386i
\(403\) −83119.1 + 191879.i −0.511789 + 1.18146i
\(404\) 5154.14 0.0315786
\(405\) 13586.6 13586.6i 0.0828323 0.0828323i
\(406\) 116186. 0.704860
\(407\) 47875.4i 0.289017i
\(408\) −62484.4 + 62484.4i −0.375363 + 0.375363i
\(409\) 2700.68 2700.68i 0.0161445 0.0161445i −0.698988 0.715133i \(-0.746366\pi\)
0.715133 + 0.698988i \(0.246366\pi\)
\(410\) −106281. 106281.i −0.632248 0.632248i
\(411\) −54320.2 54320.2i −0.321572 0.321572i
\(412\) −4458.54 −0.0262663
\(413\) 29789.8i 0.174650i
\(414\) 46648.2 + 46648.2i 0.272167 + 0.272167i
\(415\) 242795.i 1.40975i
\(416\) −6821.45 + 15747.2i −0.0394176 + 0.0909950i
\(417\) 30774.1 0.176976
\(418\) 18752.7 18752.7i 0.107328 0.107328i
\(419\) −94447.5 −0.537975 −0.268988 0.963144i \(-0.586689\pi\)
−0.268988 + 0.963144i \(0.586689\pi\)
\(420\) 2346.12i 0.0133000i
\(421\) 15371.4 15371.4i 0.0867262 0.0867262i −0.662413 0.749139i \(-0.730468\pi\)
0.749139 + 0.662413i \(0.230468\pi\)
\(422\) −219269. + 219269.i −1.23127 + 1.23127i
\(423\) −9986.42 9986.42i −0.0558122 0.0558122i
\(424\) 193840. + 193840.i 1.07823 + 1.07823i
\(425\) 19020.5 0.105304
\(426\) 20254.5i 0.111610i
\(427\) 94025.1 + 94025.1i 0.515689 + 0.515689i
\(428\) 7691.25i 0.0419865i
\(429\) 67546.8 + 29260.2i 0.367020 + 0.158987i
\(430\) −241639. −1.30686
\(431\) −42041.0 + 42041.0i −0.226317 + 0.226317i −0.811152 0.584835i \(-0.801159\pi\)
0.584835 + 0.811152i \(0.301159\pi\)
\(432\) 37609.8 0.201527
\(433\) 29381.2i 0.156709i 0.996926 + 0.0783545i \(0.0249666\pi\)
−0.996926 + 0.0783545i \(0.975033\pi\)
\(434\) −77352.1 + 77352.1i −0.410670 + 0.410670i
\(435\) −127268. + 127268.i −0.672572 + 0.672572i
\(436\) 13000.2 + 13000.2i 0.0683877 + 0.0683877i
\(437\) −32547.4 32547.4i −0.170433 0.170433i
\(438\) −35222.8 −0.183601
\(439\) 354668.i 1.84032i 0.391542 + 0.920160i \(0.371942\pi\)
−0.391542 + 0.920160i \(0.628058\pi\)
\(440\) −97354.0 97354.0i −0.502862 0.502862i
\(441\) 52260.6i 0.268718i
\(442\) −173434. 75128.8i −0.887747 0.384558i
\(443\) −22527.8 −0.114792 −0.0573960 0.998351i \(-0.518280\pi\)
−0.0573960 + 0.998351i \(0.518280\pi\)
\(444\) −1666.27 + 1666.27i −0.00845238 + 0.00845238i
\(445\) 311863. 1.57487
\(446\) 5524.30i 0.0277720i
\(447\) −118164. + 118164.i −0.591384 + 0.591384i
\(448\) 59082.9 59082.9i 0.294378 0.294378i
\(449\) −53263.7 53263.7i −0.264204 0.264204i 0.562556 0.826759i \(-0.309818\pi\)
−0.826759 + 0.562556i \(0.809818\pi\)
\(450\) −5453.00 5453.00i −0.0269284 0.0269284i
\(451\) −116647. −0.573485
\(452\) 15281.5i 0.0747978i
\(453\) −160921. 160921.i −0.784182 0.784182i
\(454\) 35411.0i 0.171801i
\(455\) 89361.7 35342.0i 0.431647 0.170714i
\(456\) −24997.4 −0.120217
\(457\) 94033.6 94033.6i 0.450247 0.450247i −0.445189 0.895436i \(-0.646864\pi\)
0.895436 + 0.445189i \(0.146864\pi\)
\(458\) 55503.7 0.264601
\(459\) 38287.7i 0.181733i
\(460\) 8823.43 8823.43i 0.0416986 0.0416986i
\(461\) −220771. + 220771.i −1.03882 + 1.03882i −0.0396051 + 0.999215i \(0.512610\pi\)
−0.999215 + 0.0396051i \(0.987390\pi\)
\(462\) 27230.1 + 27230.1i 0.127575 + 0.127575i
\(463\) −148393. 148393.i −0.692231 0.692231i 0.270491 0.962722i \(-0.412814\pi\)
−0.962722 + 0.270491i \(0.912814\pi\)
\(464\) −352296. −1.63634
\(465\) 169459.i 0.783716i
\(466\) 210962. + 210962.i 0.971474 + 0.971474i
\(467\) 89596.5i 0.410826i 0.978675 + 0.205413i \(0.0658537\pi\)
−0.978675 + 0.205413i \(0.934146\pi\)
\(468\) 1332.54 + 3369.30i 0.00608398 + 0.0153832i
\(469\) 52128.0 0.236987
\(470\) −39950.4 + 39950.4i −0.180853 + 0.180853i
\(471\) −87652.6 −0.395114
\(472\) 86046.8i 0.386234i
\(473\) −132604. + 132604.i −0.592699 + 0.592699i
\(474\) 125660. 125660.i 0.559294 0.559294i
\(475\) 3804.66 + 3804.66i 0.0168628 + 0.0168628i
\(476\) −3305.74 3305.74i −0.0145900 0.0145900i
\(477\) 118776. 0.522028
\(478\) 421007.i 1.84261i
\(479\) 290497. + 290497.i 1.26611 + 1.26611i 0.948083 + 0.318023i \(0.103019\pi\)
0.318023 + 0.948083i \(0.396981\pi\)
\(480\) 13907.2i 0.0603613i
\(481\) 88567.6 + 38366.1i 0.382811 + 0.165828i
\(482\) 372782. 1.60458
\(483\) 47260.7 47260.7i 0.202584 0.202584i
\(484\) −6046.00 −0.0258094
\(485\) 84672.0i 0.359962i
\(486\) 10976.7 10976.7i 0.0464729 0.0464729i
\(487\) 186744. 186744.i 0.787388 0.787388i −0.193677 0.981065i \(-0.562041\pi\)
0.981065 + 0.193677i \(0.0620414\pi\)
\(488\) −271588. 271588.i −1.14044 1.14044i
\(489\) 120085. + 120085.i 0.502195 + 0.502195i
\(490\) −209067. −0.870750
\(491\) 26475.0i 0.109818i 0.998491 + 0.0549088i \(0.0174868\pi\)
−0.998491 + 0.0549088i \(0.982513\pi\)
\(492\) −4059.83 4059.83i −0.0167717 0.0167717i
\(493\) 358646.i 1.47561i
\(494\) −19663.9 49719.8i −0.0805778 0.203740i
\(495\) −59654.2 −0.243462
\(496\) 234545. 234545.i 0.953372 0.953372i
\(497\) −20520.4 −0.0830757
\(498\) 196156.i 0.790938i
\(499\) 72703.0 72703.0i 0.291979 0.291979i −0.545883 0.837862i \(-0.683806\pi\)
0.837862 + 0.545883i \(0.183806\pi\)
\(500\) 8217.87 8217.87i 0.0328715 0.0328715i
\(501\) 86327.6 + 86327.6i 0.343933 + 0.343933i
\(502\) 142841. + 142841.i 0.566822 + 0.566822i
\(503\) 245797. 0.971496 0.485748 0.874099i \(-0.338547\pi\)
0.485748 + 0.874099i \(0.338547\pi\)
\(504\) 36297.7i 0.142895i
\(505\) 120974. + 120974.i 0.474362 + 0.474362i
\(506\) 204817.i 0.799955i
\(507\) 108261. 101511.i 0.421167 0.394907i
\(508\) −20912.8 −0.0810374
\(509\) −105992. + 105992.i −0.409109 + 0.409109i −0.881428 0.472319i \(-0.843417\pi\)
0.472319 + 0.881428i \(0.343417\pi\)
\(510\) 153169. 0.588884
\(511\) 35685.3i 0.136662i
\(512\) −169747. + 169747.i −0.647533 + 0.647533i
\(513\) −7658.66 + 7658.66i −0.0291017 + 0.0291017i
\(514\) 238846. + 238846.i 0.904049 + 0.904049i
\(515\) −104648. 104648.i −0.394561 0.394561i
\(516\) −9230.37 −0.0346673
\(517\) 43847.1i 0.164044i
\(518\) 35704.2 + 35704.2i 0.133064 + 0.133064i
\(519\) 47962.7i 0.178061i
\(520\) −258118. + 102084.i −0.954579 + 0.377530i
\(521\) 408225. 1.50392 0.751959 0.659209i \(-0.229109\pi\)
0.751959 + 0.659209i \(0.229109\pi\)
\(522\) −102820. + 102820.i −0.377345 + 0.377345i
\(523\) −145126. −0.530567 −0.265284 0.964170i \(-0.585466\pi\)
−0.265284 + 0.964170i \(0.585466\pi\)
\(524\) 2457.10i 0.00894872i
\(525\) −5524.59 + 5524.59i −0.0200439 + 0.0200439i
\(526\) 119873. 119873.i 0.433260 0.433260i
\(527\) 238772. + 238772.i 0.859731 + 0.859731i
\(528\) −82566.1 82566.1i −0.296165 0.296165i
\(529\) −75641.2 −0.270300
\(530\) 475162.i 1.69157i
\(531\) 26362.8 + 26362.8i 0.0934982 + 0.0934982i
\(532\) 1322.49i 0.00467271i
\(533\) −93478.3 + 215793.i −0.329046 + 0.759597i
\(534\) 251957. 0.883576
\(535\) 180523. 180523.i 0.630704 0.630704i
\(536\) −150570. −0.524093
\(537\) 149502.i 0.518440i
\(538\) −172783. + 172783.i −0.596947 + 0.596947i
\(539\) −114730. + 114730.i −0.394910 + 0.394910i
\(540\) −2076.22 2076.22i −0.00712011 0.00712011i
\(541\) −376207. 376207.i −1.28538 1.28538i −0.937560 0.347823i \(-0.886921\pi\)
−0.347823 0.937560i \(-0.613079\pi\)
\(542\) −439294. −1.49540
\(543\) 12132.4i 0.0411477i
\(544\) 19595.6 + 19595.6i 0.0662158 + 0.0662158i
\(545\) 610263.i 2.05459i
\(546\) 72196.1 28553.1i 0.242174 0.0957785i
\(547\) −110782. −0.370249 −0.185124 0.982715i \(-0.559269\pi\)
−0.185124 + 0.982715i \(0.559269\pi\)
\(548\) −8300.91 + 8300.91i −0.0276417 + 0.0276417i
\(549\) −166417. −0.552146
\(550\) 23942.4i 0.0791483i
\(551\) 71739.8 71739.8i 0.236296 0.236296i
\(552\) −136511. + 136511.i −0.448011 + 0.448011i
\(553\) −127310. 127310.i −0.416304 0.416304i
\(554\) −388667. 388667.i −1.26636 1.26636i
\(555\) −78218.8 −0.253937
\(556\) 4702.73i 0.0152125i
\(557\) 141690. + 141690.i 0.456696 + 0.456696i 0.897569 0.440873i \(-0.145331\pi\)
−0.440873 + 0.897569i \(0.645331\pi\)
\(558\) 136907.i 0.439702i
\(559\) 139047. + 351577.i 0.444977 + 1.12512i
\(560\) −152432. −0.486072
\(561\) 84054.3 84054.3i 0.267076 0.267076i
\(562\) −115725. −0.366400
\(563\) 301845.i 0.952287i −0.879368 0.476143i \(-0.842034\pi\)
0.879368 0.476143i \(-0.157966\pi\)
\(564\) −1526.07 + 1526.07i −0.00479751 + 0.00479751i
\(565\) −358675. + 358675.i −1.12358 + 1.12358i
\(566\) 440345. + 440345.i 1.37455 + 1.37455i
\(567\) −11120.8 11120.8i −0.0345916 0.0345916i
\(568\) 59272.6 0.183720
\(569\) 149750.i 0.462532i 0.972891 + 0.231266i \(0.0742867\pi\)
−0.972891 + 0.231266i \(0.925713\pi\)
\(570\) 30638.3 + 30638.3i 0.0943006 + 0.0943006i
\(571\) 477531.i 1.46463i 0.680964 + 0.732317i \(0.261561\pi\)
−0.680964 + 0.732317i \(0.738439\pi\)
\(572\) 4471.38 10322.1i 0.0136663 0.0315484i
\(573\) −59759.2 −0.182010
\(574\) −86992.5 + 86992.5i −0.264033 + 0.264033i
\(575\) 41554.5 0.125685
\(576\) 104572.i 0.315189i
\(577\) 108891. 108891.i 0.327069 0.327069i −0.524402 0.851471i \(-0.675711\pi\)
0.851471 + 0.524402i \(0.175711\pi\)
\(578\) 26205.2 26205.2i 0.0784391 0.0784391i
\(579\) 190649. + 190649.i 0.568691 + 0.568691i
\(580\) 19448.3 + 19448.3i 0.0578131 + 0.0578131i
\(581\) −198731. −0.588726
\(582\) 68407.2i 0.201956i
\(583\) −260754. 260754.i −0.767175 0.767175i
\(584\) 103076.i 0.302225i
\(585\) −47805.4 + 110358.i −0.139690 + 0.322472i
\(586\) 129813. 0.378026
\(587\) 379654. 379654.i 1.10182 1.10182i 0.107632 0.994191i \(-0.465673\pi\)
0.994191 0.107632i \(-0.0343270\pi\)
\(588\) −7986.17 −0.0230985
\(589\) 95522.9i 0.275345i
\(590\) 105464. 105464.i 0.302970 0.302970i
\(591\) 19616.5 19616.5i 0.0561625 0.0561625i
\(592\) −108261. 108261.i −0.308908 0.308908i
\(593\) 20445.7 + 20445.7i 0.0581423 + 0.0581423i 0.735580 0.677438i \(-0.236910\pi\)
−0.677438 + 0.735580i \(0.736910\pi\)
\(594\) −48195.2 −0.136594
\(595\) 155180.i 0.438330i
\(596\) 18057.1 + 18057.1i 0.0508343 + 0.0508343i
\(597\) 247401.i 0.694149i
\(598\) −378904. 164135.i −1.05956 0.458986i
\(599\) 45314.1 0.126293 0.0631466 0.998004i \(-0.479886\pi\)
0.0631466 + 0.998004i \(0.479886\pi\)
\(600\) 15957.6 15957.6i 0.0443267 0.0443267i
\(601\) −71319.6 −0.197451 −0.0987256 0.995115i \(-0.531477\pi\)
−0.0987256 + 0.995115i \(0.531477\pi\)
\(602\) 197785.i 0.545758i
\(603\) −46131.3 + 46131.3i −0.126871 + 0.126871i
\(604\) −24591.1 + 24591.1i −0.0674068 + 0.0674068i
\(605\) −141907. 141907.i −0.387698 0.387698i
\(606\) 97736.0 + 97736.0i 0.266139 + 0.266139i
\(607\) 37835.4 0.102688 0.0513441 0.998681i \(-0.483649\pi\)
0.0513441 + 0.998681i \(0.483649\pi\)
\(608\) 7839.41i 0.0212069i
\(609\) 104170. + 104170.i 0.280873 + 0.280873i
\(610\) 665748.i 1.78916i
\(611\) 81115.5 + 35138.0i 0.217281 + 0.0941226i
\(612\) 5850.91 0.0156214
\(613\) 269915. 269915.i 0.718301 0.718301i −0.249956 0.968257i \(-0.580416\pi\)
0.968257 + 0.249956i \(0.0804162\pi\)
\(614\) 213212. 0.565555
\(615\) 190579.i 0.503877i
\(616\) −79685.7 + 79685.7i −0.210000 + 0.210000i
\(617\) 128460. 128460.i 0.337440 0.337440i −0.517963 0.855403i \(-0.673310\pi\)
0.855403 + 0.517963i \(0.173310\pi\)
\(618\) −84545.6 84545.6i −0.221368 0.221368i
\(619\) −78942.1 78942.1i −0.206029 0.206029i 0.596548 0.802577i \(-0.296538\pi\)
−0.802577 + 0.596548i \(0.796538\pi\)
\(620\) −25895.8 −0.0673668
\(621\) 83647.8i 0.216906i
\(622\) 228478. + 228478.i 0.590560 + 0.590560i
\(623\) 255265.i 0.657680i
\(624\) −218911. + 86577.8i −0.562209 + 0.222350i
\(625\) 429328. 1.09908
\(626\) 59747.7 59747.7i 0.152466 0.152466i
\(627\) 33626.7 0.0855360
\(628\) 13394.6i 0.0339633i
\(629\) 110212. 110212.i 0.278567 0.278567i
\(630\) −44488.5 + 44488.5i −0.112090 + 0.112090i
\(631\) −138220. 138220.i −0.347146 0.347146i 0.511899 0.859045i \(-0.328942\pi\)
−0.859045 + 0.511899i \(0.828942\pi\)
\(632\) 367729. + 367729.i 0.920649 + 0.920649i
\(633\) −393185. −0.981271
\(634\) 244162.i 0.607435i
\(635\) −490850. 490850.i −1.21731 1.21731i
\(636\) 18150.7i 0.0448725i
\(637\) 120304. + 304187.i 0.296484 + 0.749655i
\(638\) 451451. 1.10910
\(639\) 18159.8 18159.8i 0.0444743 0.0444743i
\(640\) 461162. 1.12588
\(641\) 369011.i 0.898098i −0.893507 0.449049i \(-0.851763\pi\)
0.893507 0.449049i \(-0.148237\pi\)
\(642\) 145846. 145846.i 0.353855 0.353855i
\(643\) 111450. 111450.i 0.269561 0.269561i −0.559362 0.828923i \(-0.688954\pi\)
0.828923 + 0.559362i \(0.188954\pi\)
\(644\) −7222.11 7222.11i −0.0174138 0.0174138i
\(645\) −216648. 216648.i −0.520758 0.520758i
\(646\) −86340.2 −0.206894
\(647\) 401104.i 0.958184i −0.877765 0.479092i \(-0.840966\pi\)
0.877765 0.479092i \(-0.159034\pi\)
\(648\) 32122.1 + 32122.1i 0.0764987 + 0.0764987i
\(649\) 115751.i 0.274811i
\(650\) 44292.5 + 19186.8i 0.104834 + 0.0454125i
\(651\) −138705. −0.327288
\(652\) 18350.8 18350.8i 0.0431677 0.0431677i
\(653\) −341135. −0.800018 −0.400009 0.916511i \(-0.630993\pi\)
−0.400009 + 0.916511i \(0.630993\pi\)
\(654\) 493037.i 1.15272i
\(655\) −57671.3 + 57671.3i −0.134424 + 0.134424i
\(656\) 263776. 263776.i 0.612954 0.612954i
\(657\) −31580.1 31580.1i −0.0731615 0.0731615i
\(658\) 32700.0 + 32700.0i 0.0755259 + 0.0755259i
\(659\) 32739.6 0.0753881 0.0376941 0.999289i \(-0.487999\pi\)
0.0376941 + 0.999289i \(0.487999\pi\)
\(660\) 9116.03i 0.0209275i
\(661\) 20237.5 + 20237.5i 0.0463184 + 0.0463184i 0.729887 0.683568i \(-0.239573\pi\)
−0.683568 + 0.729887i \(0.739573\pi\)
\(662\) 395884.i 0.903342i
\(663\) −88138.3 222856.i −0.200511 0.506988i
\(664\) 574028. 1.30196
\(665\) 31040.5 31040.5i 0.0701916 0.0701916i
\(666\) −63193.7 −0.142471
\(667\) 783542.i 1.76121i
\(668\) 13192.1 13192.1i 0.0295639 0.0295639i
\(669\) −4952.98 + 4952.98i −0.0110666 + 0.0110666i
\(670\) 184547. + 184547.i 0.411109 + 0.411109i
\(671\) 365342. + 365342.i 0.811437 + 0.811437i
\(672\) −11383.3 −0.0252074
\(673\) 151692.i 0.334914i 0.985879 + 0.167457i \(0.0535556\pi\)
−0.985879 + 0.167457i \(0.946444\pi\)
\(674\) −254527. 254527.i −0.560291 0.560291i
\(675\) 9778.11i 0.0214609i
\(676\) −15512.3 16543.8i −0.0339455 0.0362027i
\(677\) −753102. −1.64315 −0.821574 0.570102i \(-0.806904\pi\)
−0.821574 + 0.570102i \(0.806904\pi\)
\(678\) −289777. + 289777.i −0.630383 + 0.630383i
\(679\) −69305.3 −0.150323
\(680\) 448231.i 0.969358i
\(681\) 31748.8 31748.8i 0.0684594 0.0684594i
\(682\) −300558. + 300558.i −0.646189 + 0.646189i
\(683\) 50909.1 + 50909.1i 0.109132 + 0.109132i 0.759564 0.650432i \(-0.225412\pi\)
−0.650432 + 0.759564i \(0.725412\pi\)
\(684\) 1170.35 + 1170.35i 0.00250152 + 0.00250152i
\(685\) −389666. −0.830445
\(686\) 383397.i 0.814705i
\(687\) 49763.5 + 49763.5i 0.105438 + 0.105438i
\(688\) 599717.i 1.26698i
\(689\) −691347. + 273424.i −1.45632 + 0.575967i
\(690\) 334631. 0.702858
\(691\) −281346. + 281346.i −0.589230 + 0.589230i −0.937423 0.348193i \(-0.886795\pi\)
0.348193 + 0.937423i \(0.386795\pi\)
\(692\) 7329.40 0.0153058
\(693\) 48827.9i 0.101672i
\(694\) 284764. 284764.i 0.591243 0.591243i
\(695\) 110379. 110379.i 0.228516 0.228516i
\(696\) −300893. 300893.i −0.621145 0.621145i
\(697\) 268530. + 268530.i 0.552749 + 0.552749i
\(698\) −101079. −0.207468
\(699\) 378288.i 0.774227i
\(700\) 844.238 + 844.238i 0.00172293 + 0.00172293i
\(701\) 212436.i 0.432307i 0.976359 + 0.216154i \(0.0693512\pi\)
−0.976359 + 0.216154i \(0.930649\pi\)
\(702\) −38622.4 + 89159.2i −0.0783727 + 0.180922i
\(703\) 44091.4 0.0892161
\(704\) 229571. 229571.i 0.463204 0.463204i
\(705\) −71637.5 −0.144133
\(706\) 369410.i 0.741138i
\(707\) 99019.1 99019.1i 0.198098 0.198098i
\(708\) 4028.62 4028.62i 0.00803693 0.00803693i
\(709\) 27433.3 + 27433.3i 0.0545741 + 0.0545741i 0.733867 0.679293i \(-0.237713\pi\)
−0.679293 + 0.733867i \(0.737713\pi\)
\(710\) −72647.8 72647.8i −0.144114 0.144114i
\(711\) 225328. 0.445735
\(712\) 737324.i 1.45445i
\(713\) 521650. + 521650.i 1.02613 + 1.02613i
\(714\) 125371.i 0.245924i
\(715\) 347222. 137324.i 0.679196 0.268618i
\(716\) −22846.1 −0.0445641
\(717\) 377467. 377467.i 0.734244 0.734244i
\(718\) −974903. −1.89109
\(719\) 537471.i 1.03967i −0.854265 0.519837i \(-0.825993\pi\)
0.854265 0.519837i \(-0.174007\pi\)
\(720\) 134897. 134897.i 0.260217 0.260217i
\(721\) −85655.6 + 85655.6i −0.164773 + 0.164773i
\(722\) 360369. + 360369.i 0.691310 + 0.691310i
\(723\) 334229. + 334229.i 0.639393 + 0.639393i
\(724\) −1854.00 −0.00353698
\(725\) 91593.1i 0.174256i
\(726\) −114648. 114648.i −0.217517 0.217517i
\(727\) 330967.i 0.626204i 0.949720 + 0.313102i \(0.101368\pi\)
−0.949720 + 0.313102i \(0.898632\pi\)
\(728\) 83557.4 + 211274.i 0.157660 + 0.398642i
\(729\) 19683.0 0.0370370
\(730\) −126335. + 126335.i −0.237071 + 0.237071i
\(731\) 610526. 1.14254
\(732\) 25431.0i 0.0474614i
\(733\) −164154. + 164154.i −0.305522 + 0.305522i −0.843170 0.537648i \(-0.819313\pi\)
0.537648 + 0.843170i \(0.319313\pi\)
\(734\) 14394.0 14394.0i 0.0267171 0.0267171i
\(735\) −187445. 187445.i −0.346976 0.346976i
\(736\) 42811.0 + 42811.0i 0.0790314 + 0.0790314i
\(737\) 202547. 0.372899
\(738\) 153970.i 0.282699i
\(739\) −268903. 268903.i −0.492387 0.492387i 0.416670 0.909058i \(-0.363197\pi\)
−0.909058 + 0.416670i \(0.863197\pi\)
\(740\) 11953.0i 0.0218279i
\(741\) 26947.6 62208.0i 0.0490776 0.113295i
\(742\) −388927. −0.706416
\(743\) −397022. + 397022.i −0.719180 + 0.719180i −0.968437 0.249258i \(-0.919813\pi\)
0.249258 + 0.968437i \(0.419813\pi\)
\(744\) 400644. 0.723790
\(745\) 847648.i 1.52722i
\(746\) −334590. + 334590.i −0.601223 + 0.601223i
\(747\) 175869. 175869.i 0.315173 0.315173i
\(748\) −12844.7 12844.7i −0.0229573 0.0229573i
\(749\) −147761. 147761.i −0.263388 0.263388i
\(750\) 311665. 0.554071
\(751\) 100943.i 0.178976i −0.995988 0.0894882i \(-0.971477\pi\)
0.995988 0.0894882i \(-0.0285231\pi\)
\(752\) −99151.9 99151.9i −0.175334 0.175334i
\(753\) 256137.i 0.451734i
\(754\) 361782. 835168.i 0.636361 1.46903i
\(755\) −1.15437e6 −2.02512
\(756\) −1699.42 + 1699.42i −0.00297343 + 0.00297343i
\(757\) −418346. −0.730035 −0.365018 0.931001i \(-0.618937\pi\)
−0.365018 + 0.931001i \(0.618937\pi\)
\(758\) 460273.i 0.801083i
\(759\) 183635. 183635.i 0.318766 0.318766i
\(760\) −89659.4 + 89659.4i −0.155227 + 0.155227i
\(761\) −70616.1 70616.1i −0.121937 0.121937i 0.643505 0.765442i \(-0.277480\pi\)
−0.765442 + 0.643505i \(0.777480\pi\)
\(762\) −396562. 396562.i −0.682969 0.682969i
\(763\) 499510. 0.858015
\(764\) 9132.06i 0.0156452i
\(765\) 137328. + 137328.i 0.234659 + 0.234659i
\(766\) 175588.i 0.299253i
\(767\) −214134. 92759.6i −0.363995 0.157677i
\(768\) 50577.4 0.0857499
\(769\) −642589. + 642589.i −1.08663 + 1.08663i −0.0907545 + 0.995873i \(0.528928\pi\)
−0.995873 + 0.0907545i \(0.971072\pi\)
\(770\) 195335. 0.329456
\(771\) 428290.i 0.720491i
\(772\) 29133.9 29133.9i 0.0488836 0.0488836i
\(773\) 152962. 152962.i 0.255990 0.255990i −0.567431 0.823421i \(-0.692063\pi\)
0.823421 + 0.567431i \(0.192063\pi\)
\(774\) −175032. 175032.i −0.292170 0.292170i
\(775\) −60978.9 60978.9i −0.101526 0.101526i
\(776\) 200186. 0.332438
\(777\) 64023.3i 0.106046i
\(778\) −393412. 393412.i −0.649963 0.649963i
\(779\) 107428.i 0.177028i
\(780\) 16864.3 + 7305.35i 0.0277191 + 0.0120075i
\(781\) −79733.8 −0.130720
\(782\) −471503. + 471503.i −0.771030 + 0.771030i
\(783\) −184374. −0.300729
\(784\) 518878.i 0.844177i
\(785\) −314387. + 314387.i −0.510183 + 0.510183i
\(786\) −46593.1 + 46593.1i −0.0754183 + 0.0754183i
\(787\) 210034. + 210034.i 0.339110 + 0.339110i 0.856032 0.516922i \(-0.172922\pi\)
−0.516922 + 0.856032i \(0.672922\pi\)
\(788\) −2997.68 2997.68i −0.00482762 0.00482762i
\(789\) 214951. 0.345291
\(790\) 901420.i 1.44435i
\(791\) 293581. + 293581.i 0.469219 + 0.469219i
\(792\) 141038.i 0.224846i
\(793\) 968645. 383093.i 1.54035 0.609197i
\(794\) −710510. −1.12701
\(795\) 426021. 426021.i 0.674057 0.674057i
\(796\) 37806.4 0.0596677
\(797\) 508211.i 0.800069i −0.916500 0.400035i \(-0.868998\pi\)
0.916500 0.400035i \(-0.131002\pi\)
\(798\) 25077.9 25077.9i 0.0393808 0.0393808i
\(799\) 100939. 100939.i 0.158112 0.158112i
\(800\) −5004.44 5004.44i −0.00781944 0.00781944i
\(801\) 225900. + 225900.i 0.352087 + 0.352087i
\(802\) 765719. 1.19048
\(803\) 138658.i 0.215037i
\(804\) 7049.52 + 7049.52i 0.0109056 + 0.0109056i
\(805\) 339024.i 0.523165i
\(806\) 315161. + 796880.i 0.485135 + 1.22666i
\(807\) −309827. −0.475743
\(808\) −286013. + 286013.i −0.438090 + 0.438090i
\(809\) −302513. −0.462218 −0.231109 0.972928i \(-0.574235\pi\)
−0.231109 + 0.972928i \(0.574235\pi\)
\(810\) 78741.3i 0.120014i
\(811\) 261828. 261828.i 0.398083 0.398083i −0.479473 0.877557i \(-0.659172\pi\)
0.877557 + 0.479473i \(0.159172\pi\)
\(812\) 15918.7 15918.7i 0.0241433 0.0241433i
\(813\) −393862. 393862.i −0.595886 0.595886i
\(814\) 138731. + 138731.i 0.209376 + 0.209376i
\(815\) 861431. 1.29690
\(816\) 380146.i 0.570913i
\(817\) 122123. + 122123.i 0.182959 + 0.182959i
\(818\) 15651.8i 0.0233915i
\(819\) 90329.7 + 39129.4i 0.134668 + 0.0583359i
\(820\) −29123.2 −0.0433123
\(821\) −141594. + 141594.i −0.210068 + 0.210068i −0.804296 0.594228i \(-0.797458\pi\)
0.594228 + 0.804296i \(0.297458\pi\)
\(822\) −314814. −0.465919
\(823\) 1.05798e6i 1.56199i 0.624540 + 0.780993i \(0.285287\pi\)
−0.624540 + 0.780993i \(0.714713\pi\)
\(824\) 247413. 247413.i 0.364392 0.364392i
\(825\) −21466.3 + 21466.3i −0.0315390 + 0.0315390i
\(826\) −86323.7 86323.7i −0.126523 0.126523i
\(827\) 95483.6 + 95483.6i 0.139610 + 0.139610i 0.773458 0.633848i \(-0.218525\pi\)
−0.633848 + 0.773458i \(0.718525\pi\)
\(828\) 12782.6 0.0186448
\(829\) 623513.i 0.907270i −0.891188 0.453635i \(-0.850127\pi\)
0.891188 0.453635i \(-0.149873\pi\)
\(830\) −703561. 703561.i −1.02128 1.02128i
\(831\) 696942.i 1.00924i
\(832\) −240726. 608671.i −0.347757 0.879298i
\(833\) 528231. 0.761261
\(834\) 89176.1 89176.1i 0.128208 0.128208i
\(835\) 619271. 0.888193
\(836\) 5138.64i 0.00735251i
\(837\) 122748. 122748.i 0.175213 0.175213i
\(838\) −273686. + 273686.i −0.389731 + 0.389731i
\(839\) −666830. 666830.i −0.947308 0.947308i 0.0513717 0.998680i \(-0.483641\pi\)
−0.998680 + 0.0513717i \(0.983641\pi\)
\(840\) −130191. 130191.i −0.184511 0.184511i
\(841\) 1.01978e6 1.44182
\(842\) 89085.5i 0.125656i
\(843\) −103757. 103757.i −0.146003 0.146003i
\(844\) 60084.3i 0.0843482i
\(845\) 24210.4 752395.i 0.0339070 1.05374i
\(846\) −57876.5 −0.0808652
\(847\) −116153. + 116153.i −0.161907 + 0.161907i
\(848\) 1.17929e6 1.63995
\(849\) 789610.i 1.09546i
\(850\) 55117.0 55117.0i 0.0762864 0.0762864i
\(851\) 240783. 240783.i 0.332481 0.332481i
\(852\) −2775.08 2775.08i −0.00382293 0.00382293i
\(853\) −515777. 515777.i −0.708866 0.708866i 0.257431 0.966297i \(-0.417124\pi\)
−0.966297 + 0.257431i \(0.917124\pi\)
\(854\) 544925. 0.747172
\(855\) 54939.3i 0.0751538i
\(856\) 426802. + 426802.i 0.582478 + 0.582478i
\(857\) 489846.i 0.666957i −0.942758 0.333479i \(-0.891778\pi\)
0.942758 0.333479i \(-0.108222\pi\)
\(858\) 280524. 110945.i 0.381061 0.150707i
\(859\) 1.37694e6 1.86607 0.933037 0.359780i \(-0.117148\pi\)
0.933037 + 0.359780i \(0.117148\pi\)
\(860\) −33107.0 + 33107.0i −0.0447634 + 0.0447634i
\(861\) −155992. −0.210424
\(862\) 243649.i 0.327907i
\(863\) −715898. + 715898.i −0.961235 + 0.961235i −0.999276 0.0380415i \(-0.987888\pi\)
0.0380415 + 0.999276i \(0.487888\pi\)
\(864\) 10073.8 10073.8i 0.0134947 0.0134947i
\(865\) 172030. + 172030.i 0.229918 + 0.229918i
\(866\) 85139.8 + 85139.8i 0.113526 + 0.113526i
\(867\) 46990.2 0.0625128
\(868\) 21196.1i 0.0281330i
\(869\) −494672. 494672.i −0.655055 0.655055i
\(870\) 737582.i 0.974477i
\(871\) 162316. 374705.i 0.213957 0.493916i
\(872\) −1.44282e6 −1.89748
\(873\) 61332.5 61332.5i 0.0804753 0.0804753i
\(874\) −188629. −0.246937
\(875\) 315756.i 0.412417i
\(876\) −4825.90 + 4825.90i −0.00628883 + 0.00628883i
\(877\) −123217. + 123217.i −0.160203 + 0.160203i −0.782657 0.622454i \(-0.786136\pi\)
0.622454 + 0.782657i \(0.286136\pi\)
\(878\) 1.02774e6 + 1.02774e6i 1.33320 + 1.33320i
\(879\) 116387. + 116387.i 0.150636 + 0.150636i
\(880\) −592288. −0.764834
\(881\) 863892.i 1.11303i 0.830837 + 0.556516i \(0.187862\pi\)
−0.830837 + 0.556516i \(0.812138\pi\)
\(882\) −151439. 151439.i −0.194670 0.194670i
\(883\) 268829.i 0.344790i 0.985028 + 0.172395i \(0.0551505\pi\)
−0.985028 + 0.172395i \(0.944850\pi\)
\(884\) −34055.7 + 13468.8i −0.0435797 + 0.0172355i
\(885\) 189114. 0.241455
\(886\) −65280.2 + 65280.2i −0.0831599 + 0.0831599i
\(887\) 1.04691e6 1.33065 0.665323 0.746556i \(-0.268294\pi\)
0.665323 + 0.746556i \(0.268294\pi\)
\(888\) 184929.i 0.234520i
\(889\) −401768. + 401768.i −0.508361 + 0.508361i
\(890\) 903706. 903706.i 1.14090 1.14090i
\(891\) −43210.8 43210.8i −0.0544299 0.0544299i
\(892\) 756.886 + 756.886i 0.000951263 + 0.000951263i
\(893\) 40381.5 0.0506384
\(894\) 684822.i 0.856845i
\(895\) −536226. 536226.i −0.669425 0.669425i
\(896\) 377468.i 0.470180i
\(897\) −192557. 486878.i −0.239318 0.605112i
\(898\) −308691. −0.382800
\(899\) −1.14980e6 + 1.14980e6i −1.42267 + 1.42267i
\(900\) −1494.24 −0.00184474
\(901\) 1.20055e6i 1.47887i
\(902\) −338016. + 338016.i −0.415456 + 0.415456i
\(903\) −177330. + 177330.i −0.217474 + 0.217474i
\(904\) −847999. 847999.i −1.03767 1.03767i
\(905\) −43515.7 43515.7i −0.0531311 0.0531311i
\(906\) −932623. −1.13619
\(907\) 293077.i 0.356260i 0.984007 + 0.178130i \(0.0570047\pi\)
−0.984007 + 0.178130i \(0.942995\pi\)
\(908\) −4851.68 4851.68i −0.00588464 0.00588464i
\(909\) 175256.i 0.212103i
\(910\) 156536. 361362.i 0.189031 0.436374i
\(911\) −1.22775e6 −1.47936 −0.739681 0.672958i \(-0.765024\pi\)
−0.739681 + 0.672958i \(0.765024\pi\)
\(912\) −76040.3 + 76040.3i −0.0914228 + 0.0914228i
\(913\) −772185. −0.926361
\(914\) 544974.i 0.652354i
\(915\) −596897. + 596897.i −0.712946 + 0.712946i
\(916\) 7604.58 7604.58i 0.00906326 0.00906326i
\(917\) 47204.8 + 47204.8i 0.0561368 + 0.0561368i
\(918\) 110949. + 110949.i 0.131655 + 0.131655i
\(919\) −952406. −1.12769 −0.563847 0.825879i \(-0.690679\pi\)
−0.563847 + 0.825879i \(0.690679\pi\)
\(920\) 979259.i 1.15697i
\(921\) 191162. + 191162.i 0.225363 + 0.225363i
\(922\) 1.27948e6i 1.50513i
\(923\) −63896.6 + 147504.i −0.0750023 + 0.173142i
\(924\) 7461.61 0.00873954
\(925\) −28146.6 + 28146.6i −0.0328960 + 0.0328960i
\(926\) −860015. −1.00296
\(927\) 151604.i 0.176421i
\(928\) −94362.5 + 94362.5i −0.109573 + 0.109573i
\(929\) 865268. 865268.i 1.00258 1.00258i 0.00258353 0.999997i \(-0.499178\pi\)
0.999997 0.00258353i \(-0.000822365\pi\)
\(930\) −491052. 491052.i −0.567756 0.567756i
\(931\) 105662. + 105662.i 0.121904 + 0.121904i
\(932\) 57807.8 0.0665511
\(933\) 409698.i 0.470653i
\(934\) 259629. + 259629.i 0.297619 + 0.297619i
\(935\) 602963.i 0.689712i
\(936\) −260914. 113024.i −0.297815 0.129009i
\(937\) −829106. −0.944345 −0.472173 0.881506i \(-0.656530\pi\)
−0.472173 + 0.881506i \(0.656530\pi\)
\(938\) 151054. 151054.i 0.171683 0.171683i
\(939\) 107137. 0.121509
\(940\) 10947.2i 0.0123894i
\(941\) 1.18512e6 1.18512e6i 1.33839 1.33839i 0.440774 0.897618i \(-0.354704\pi\)
0.897618 0.440774i \(-0.145296\pi\)
\(942\) −253996. + 253996.i −0.286237 + 0.286237i
\(943\) 586664. + 586664.i 0.659729 + 0.659729i
\(944\) 261748. + 261748.i 0.293724 + 0.293724i
\(945\) −79775.1 −0.0893313
\(946\) 768509.i 0.858750i
\(947\) 94860.4 + 94860.4i 0.105775 + 0.105775i 0.758014 0.652238i \(-0.226170\pi\)
−0.652238 + 0.758014i \(0.726170\pi\)
\(948\) 34433.4i 0.0383145i
\(949\) 256512. + 111117.i 0.284823 + 0.123381i
\(950\) 22050.0 0.0244322
\(951\) 218911. 218911.i 0.242051 0.242051i
\(952\) 366884. 0.404813
\(953\) 313080.i 0.344723i −0.985034 0.172361i \(-0.944860\pi\)
0.985034 0.172361i \(-0.0551397\pi\)
\(954\) 344186. 344186.i 0.378178 0.378178i
\(955\) −214341. + 214341.i −0.235016 + 0.235016i
\(956\) −57682.4 57682.4i −0.0631142 0.0631142i
\(957\) 404762. + 404762.i 0.441953 + 0.441953i
\(958\) 1.68358e6 1.83444
\(959\) 318947.i 0.346802i
\(960\) 375074. + 375074.i 0.406982 + 0.406982i
\(961\) 607464.i 0.657770i
\(962\) 367824. 145472.i 0.397456 0.157192i
\(963\) 261526. 0.282008
\(964\) 51075.1 51075.1i 0.0549610 0.0549610i
\(965\) 1.36762e6 1.46862
\(966\) 273900.i 0.293520i
\(967\) 359201. 359201.i 0.384136 0.384136i −0.488454 0.872590i \(-0.662439\pi\)
0.872590 + 0.488454i \(0.162439\pi\)
\(968\) 335504. 335504.i 0.358053 0.358053i
\(969\) −77410.9 77410.9i −0.0824431 0.0824431i
\(970\) −245359. 245359.i −0.260771 0.260771i
\(971\) −1.68455e6 −1.78668 −0.893338 0.449385i \(-0.851643\pi\)
−0.893338 + 0.449385i \(0.851643\pi\)
\(972\) 3007.85i 0.00318363i
\(973\) −90346.8 90346.8i −0.0954305 0.0954305i
\(974\) 1.08228e6i 1.14083i
\(975\) 22509.2 + 56914.2i 0.0236784 + 0.0598703i
\(976\) −1.65230e6 −1.73456
\(977\) 857213. 857213.i 0.898048 0.898048i −0.0972150 0.995263i \(-0.530993\pi\)
0.995263 + 0.0972150i \(0.0309934\pi\)
\(978\) 695957. 0.727620
\(979\) 991852.i 1.03486i
\(980\) −28644.4 + 28644.4i −0.0298254 + 0.0298254i
\(981\) −442047. + 442047.i −0.459336 + 0.459336i
\(982\) 76718.1 + 76718.1i 0.0795564 + 0.0795564i
\(983\) 821373. + 821373.i 0.850029 + 0.850029i 0.990136 0.140107i \(-0.0447448\pi\)
−0.140107 + 0.990136i \(0.544745\pi\)
\(984\) 450576. 0.465348
\(985\) 140719.i 0.145037i
\(986\) −1.03927e6 1.03927e6i −1.06899 1.06899i
\(987\) 58636.4i 0.0601912i
\(988\) −9506.29 4117.98i −0.00973861 0.00421861i
\(989\) 1.33383e6 1.36366
\(990\) −172864. + 172864.i −0.176374 + 0.176374i
\(991\) −1.01521e6 −1.03374 −0.516868 0.856065i \(-0.672902\pi\)
−0.516868 + 0.856065i \(0.672902\pi\)
\(992\) 125645.i 0.127680i
\(993\) 354942. 354942.i 0.359964 0.359964i
\(994\) −59463.3 + 59463.3i −0.0601834 + 0.0601834i
\(995\) 887364. + 887364.i 0.896305 + 0.896305i
\(996\) −26875.4 26875.4i −0.0270917 0.0270917i
\(997\) 590999. 0.594561 0.297280 0.954790i \(-0.403920\pi\)
0.297280 + 0.954790i \(0.403920\pi\)
\(998\) 421352.i 0.423043i
\(999\) −56658.2 56658.2i −0.0567717 0.0567717i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 39.5.g.a.31.8 20
3.2 odd 2 117.5.j.b.109.3 20
13.8 odd 4 inner 39.5.g.a.34.8 yes 20
39.8 even 4 117.5.j.b.73.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.5.g.a.31.8 20 1.1 even 1 trivial
39.5.g.a.34.8 yes 20 13.8 odd 4 inner
117.5.j.b.73.3 20 39.8 even 4
117.5.j.b.109.3 20 3.2 odd 2