# Properties

 Label 39.4.j.b.4.1 Level $39$ Weight $4$ Character 39.4 Analytic conductor $2.301$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$39 = 3 \cdot 13$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 39.j (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.30107449022$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{-17})$$ Defining polynomial: $$x^{4} - 17x^{2} + 289$$ x^4 - 17*x^2 + 289 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 4.1 Root $$-3.57071 - 2.06155i$$ of defining polynomial Character $$\chi$$ $$=$$ 39.4 Dual form 39.4.j.b.10.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-3.57071 - 2.06155i) q^{2} +(1.50000 - 2.59808i) q^{3} +(4.50000 + 7.79423i) q^{4} -13.4424i q^{5} +(-10.7121 + 6.18466i) q^{6} +(-27.2121 + 15.7109i) q^{7} -4.12311i q^{8} +(-4.50000 - 7.79423i) q^{9} +O(q^{10})$$ $$q+(-3.57071 - 2.06155i) q^{2} +(1.50000 - 2.59808i) q^{3} +(4.50000 + 7.79423i) q^{4} -13.4424i q^{5} +(-10.7121 + 6.18466i) q^{6} +(-27.2121 + 15.7109i) q^{7} -4.12311i q^{8} +(-4.50000 - 7.79423i) q^{9} +(-27.7121 + 47.9988i) q^{10} +(-35.0707 - 20.2481i) q^{11} +27.0000 q^{12} +(42.1364 - 20.5310i) q^{13} +129.556 q^{14} +(-34.9243 - 20.1635i) q^{15} +(27.5000 - 47.6314i) q^{16} +(-21.5707 - 37.3616i) q^{17} +37.1080i q^{18} +(23.3636 - 13.4890i) q^{19} +(104.773 - 60.4906i) q^{20} +94.2656i q^{21} +(83.4850 + 144.600i) q^{22} +(-9.50500 + 16.4631i) q^{23} +(-10.7121 - 6.18466i) q^{24} -55.6971 q^{25} +(-192.783 - 13.5562i) q^{26} -27.0000 q^{27} +(-244.909 - 141.398i) q^{28} +(77.0557 - 133.464i) q^{29} +(83.1364 + 143.997i) q^{30} -308.270i q^{31} +(-224.955 + 129.878i) q^{32} +(-105.212 + 60.7443i) q^{33} +177.877i q^{34} +(211.192 + 365.796i) q^{35} +(40.5000 - 70.1481i) q^{36} +(-37.6821 - 21.7558i) q^{37} -111.233 q^{38} +(9.86357 - 140.270i) q^{39} -55.4243 q^{40} +(41.4293 + 23.9192i) q^{41} +(194.334 - 336.596i) q^{42} +(171.061 + 296.286i) q^{43} -364.466i q^{44} +(-104.773 + 60.4906i) q^{45} +(67.8793 - 39.1901i) q^{46} +133.468i q^{47} +(-82.5000 - 142.894i) q^{48} +(322.167 - 558.010i) q^{49} +(198.879 + 114.823i) q^{50} -129.424 q^{51} +(349.637 + 236.032i) q^{52} -438.454 q^{53} +(96.4093 + 55.6619i) q^{54} +(-272.182 + 471.433i) q^{55} +(64.7779 + 112.199i) q^{56} -80.9338i q^{57} +(-550.288 + 317.709i) q^{58} +(511.434 - 295.277i) q^{59} -362.944i q^{60} +(270.652 + 468.783i) q^{61} +(-635.516 + 1100.75i) q^{62} +(244.909 + 141.398i) q^{63} +631.000 q^{64} +(-275.985 - 566.413i) q^{65} +500.910 q^{66} +(-199.485 - 115.173i) q^{67} +(194.136 - 336.254i) q^{68} +(28.5150 + 49.3894i) q^{69} -1741.54i q^{70} +(-389.202 + 224.706i) q^{71} +(-32.1364 + 18.5540i) q^{72} -389.711i q^{73} +(89.7014 + 155.367i) q^{74} +(-83.5457 + 144.705i) q^{75} +(210.272 + 121.401i) q^{76} +1272.47 q^{77} +(-324.394 + 480.530i) q^{78} -897.820 q^{79} +(-640.279 - 369.665i) q^{80} +(-40.5000 + 70.1481i) q^{81} +(-98.6214 - 170.817i) q^{82} +1300.24i q^{83} +(-734.728 + 424.195i) q^{84} +(-502.228 + 289.961i) q^{85} -1410.60i q^{86} +(-231.167 - 400.393i) q^{87} +(-83.4850 + 144.600i) q^{88} +(801.113 + 462.523i) q^{89} +498.819 q^{90} +(-824.061 + 1220.69i) q^{91} -171.090 q^{92} +(-800.910 - 462.406i) q^{93} +(275.151 - 476.575i) q^{94} +(-181.324 - 314.062i) q^{95} +779.267i q^{96} +(1351.43 - 780.247i) q^{97} +(-2300.73 + 1328.33i) q^{98} +364.466i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 6 q^{3} + 18 q^{4} - 66 q^{7} - 18 q^{9}+O(q^{10})$$ 4 * q + 6 * q^3 + 18 * q^4 - 66 * q^7 - 18 * q^9 $$4 q + 6 q^{3} + 18 q^{4} - 66 q^{7} - 18 q^{9} - 68 q^{10} - 126 q^{11} + 108 q^{12} + 40 q^{13} + 204 q^{14} - 54 q^{15} + 110 q^{16} - 72 q^{17} + 222 q^{19} + 162 q^{20} + 34 q^{22} - 138 q^{23} + 120 q^{25} - 714 q^{26} - 108 q^{27} - 594 q^{28} - 6 q^{29} + 204 q^{30} - 378 q^{33} + 402 q^{35} + 162 q^{36} + 492 q^{37} + 612 q^{38} + 168 q^{39} - 136 q^{40} + 180 q^{41} + 306 q^{42} + 470 q^{43} - 162 q^{45} - 714 q^{46} - 330 q^{48} + 346 q^{49} + 1224 q^{50} - 432 q^{51} - 144 q^{52} - 2268 q^{53} - 446 q^{55} + 102 q^{56} - 2244 q^{58} + 2160 q^{59} - 160 q^{61} - 1428 q^{62} + 594 q^{63} + 2524 q^{64} - 804 q^{65} + 204 q^{66} - 498 q^{67} + 648 q^{68} + 414 q^{69} - 1314 q^{71} + 1530 q^{74} + 180 q^{75} + 1998 q^{76} + 2976 q^{77} - 612 q^{78} + 8 q^{79} - 990 q^{80} - 162 q^{81} + 34 q^{82} - 1782 q^{84} - 852 q^{85} + 18 q^{87} - 34 q^{88} - 252 q^{89} + 1224 q^{90} - 1668 q^{91} - 2484 q^{92} - 1404 q^{93} + 2686 q^{94} - 54 q^{95} - 336 q^{97} - 6732 q^{98}+O(q^{100})$$ 4 * q + 6 * q^3 + 18 * q^4 - 66 * q^7 - 18 * q^9 - 68 * q^10 - 126 * q^11 + 108 * q^12 + 40 * q^13 + 204 * q^14 - 54 * q^15 + 110 * q^16 - 72 * q^17 + 222 * q^19 + 162 * q^20 + 34 * q^22 - 138 * q^23 + 120 * q^25 - 714 * q^26 - 108 * q^27 - 594 * q^28 - 6 * q^29 + 204 * q^30 - 378 * q^33 + 402 * q^35 + 162 * q^36 + 492 * q^37 + 612 * q^38 + 168 * q^39 - 136 * q^40 + 180 * q^41 + 306 * q^42 + 470 * q^43 - 162 * q^45 - 714 * q^46 - 330 * q^48 + 346 * q^49 + 1224 * q^50 - 432 * q^51 - 144 * q^52 - 2268 * q^53 - 446 * q^55 + 102 * q^56 - 2244 * q^58 + 2160 * q^59 - 160 * q^61 - 1428 * q^62 + 594 * q^63 + 2524 * q^64 - 804 * q^65 + 204 * q^66 - 498 * q^67 + 648 * q^68 + 414 * q^69 - 1314 * q^71 + 1530 * q^74 + 180 * q^75 + 1998 * q^76 + 2976 * q^77 - 612 * q^78 + 8 * q^79 - 990 * q^80 - 162 * q^81 + 34 * q^82 - 1782 * q^84 - 852 * q^85 + 18 * q^87 - 34 * q^88 - 252 * q^89 + 1224 * q^90 - 1668 * q^91 - 2484 * q^92 - 1404 * q^93 + 2686 * q^94 - 54 * q^95 - 336 * q^97 - 6732 * q^98

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/39\mathbb{Z}\right)^\times$$.

 $$n$$ $$14$$ $$28$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −3.57071 2.06155i −1.26244 0.728869i −0.288892 0.957362i $$-0.593287\pi$$
−0.973546 + 0.228493i $$0.926620\pi$$
$$3$$ 1.50000 2.59808i 0.288675 0.500000i
$$4$$ 4.50000 + 7.79423i 0.562500 + 0.974279i
$$5$$ 13.4424i 1.20232i −0.799128 0.601161i $$-0.794705\pi$$
0.799128 0.601161i $$-0.205295\pi$$
$$6$$ −10.7121 + 6.18466i −0.728869 + 0.420813i
$$7$$ −27.2121 + 15.7109i −1.46932 + 0.848311i −0.999408 0.0344037i $$-0.989047\pi$$
−0.469910 + 0.882715i $$0.655713\pi$$
$$8$$ 4.12311i 0.182217i
$$9$$ −4.50000 7.79423i −0.166667 0.288675i
$$10$$ −27.7121 + 47.9988i −0.876335 + 1.51786i
$$11$$ −35.0707 20.2481i −0.961293 0.555003i −0.0647219 0.997903i $$-0.520616\pi$$
−0.896571 + 0.442901i $$0.853949\pi$$
$$12$$ 27.0000 0.649519
$$13$$ 42.1364 20.5310i 0.898965 0.438021i
$$14$$ 129.556 2.47323
$$15$$ −34.9243 20.1635i −0.601161 0.347080i
$$16$$ 27.5000 47.6314i 0.429688 0.744241i
$$17$$ −21.5707 37.3616i −0.307745 0.533030i 0.670124 0.742249i $$-0.266241\pi$$
−0.977869 + 0.209219i $$0.932908\pi$$
$$18$$ 37.1080i 0.485913i
$$19$$ 23.3636 13.4890i 0.282104 0.162873i −0.352272 0.935898i $$-0.614591\pi$$
0.634375 + 0.773025i $$0.281257\pi$$
$$20$$ 104.773 60.4906i 1.17140 0.676306i
$$21$$ 94.2656i 0.979545i
$$22$$ 83.4850 + 144.600i 0.809048 + 1.40131i
$$23$$ −9.50500 + 16.4631i −0.0861709 + 0.149252i −0.905890 0.423514i $$-0.860796\pi$$
0.819719 + 0.572766i $$0.194130\pi$$
$$24$$ −10.7121 6.18466i −0.0911086 0.0526016i
$$25$$ −55.6971 −0.445577
$$26$$ −192.783 13.5562i −1.45415 0.102253i
$$27$$ −27.0000 −0.192450
$$28$$ −244.909 141.398i −1.65298 0.954350i
$$29$$ 77.0557 133.464i 0.493410 0.854611i −0.506561 0.862204i $$-0.669084\pi$$
0.999971 + 0.00759297i $$0.00241694\pi$$
$$30$$ 83.1364 + 143.997i 0.505952 + 0.876335i
$$31$$ 308.270i 1.78603i −0.450025 0.893016i $$-0.648585\pi$$
0.450025 0.893016i $$-0.351415\pi$$
$$32$$ −224.955 + 129.878i −1.24271 + 0.717480i
$$33$$ −105.212 + 60.7443i −0.555003 + 0.320431i
$$34$$ 177.877i 0.897223i
$$35$$ 211.192 + 365.796i 1.01994 + 1.76659i
$$36$$ 40.5000 70.1481i 0.187500 0.324760i
$$37$$ −37.6821 21.7558i −0.167430 0.0966657i 0.413944 0.910303i $$-0.364151\pi$$
−0.581373 + 0.813637i $$0.697484\pi$$
$$38$$ −111.233 −0.474851
$$39$$ 9.86357 140.270i 0.0404983 0.575928i
$$40$$ −55.4243 −0.219084
$$41$$ 41.4293 + 23.9192i 0.157809 + 0.0911110i 0.576825 0.816868i $$-0.304292\pi$$
−0.419016 + 0.907979i $$0.637625\pi$$
$$42$$ 194.334 336.596i 0.713960 1.23662i
$$43$$ 171.061 + 296.286i 0.606663 + 1.05077i 0.991786 + 0.127906i $$0.0408256\pi$$
−0.385123 + 0.922865i $$0.625841\pi$$
$$44$$ 364.466i 1.24876i
$$45$$ −104.773 + 60.4906i −0.347080 + 0.200387i
$$46$$ 67.8793 39.1901i 0.217571 0.125615i
$$47$$ 133.468i 0.414218i 0.978318 + 0.207109i $$0.0664055\pi$$
−0.978318 + 0.207109i $$0.933594\pi$$
$$48$$ −82.5000 142.894i −0.248080 0.429688i
$$49$$ 322.167 558.010i 0.939263 1.62685i
$$50$$ 198.879 + 114.823i 0.562514 + 0.324767i
$$51$$ −129.424 −0.355353
$$52$$ 349.637 + 236.032i 0.932422 + 0.629455i
$$53$$ −438.454 −1.13635 −0.568173 0.822909i $$-0.692350\pi$$
−0.568173 + 0.822909i $$0.692350\pi$$
$$54$$ 96.4093 + 55.6619i 0.242956 + 0.140271i
$$55$$ −272.182 + 471.433i −0.667291 + 1.15578i
$$56$$ 64.7779 + 112.199i 0.154577 + 0.267735i
$$57$$ 80.9338i 0.188069i
$$58$$ −550.288 + 317.709i −1.24580 + 0.719262i
$$59$$ 511.434 295.277i 1.12853 0.651555i 0.184963 0.982746i $$-0.440784\pi$$
0.943564 + 0.331190i $$0.107450\pi$$
$$60$$ 362.944i 0.780931i
$$61$$ 270.652 + 468.783i 0.568089 + 0.983960i 0.996755 + 0.0804965i $$0.0256506\pi$$
−0.428665 + 0.903463i $$0.641016\pi$$
$$62$$ −635.516 + 1100.75i −1.30178 + 2.25476i
$$63$$ 244.909 + 141.398i 0.489773 + 0.282770i
$$64$$ 631.000 1.23242
$$65$$ −275.985 566.413i −0.526642 1.08084i
$$66$$ 500.910 0.934208
$$67$$ −199.485 115.173i −0.363746 0.210009i 0.306977 0.951717i $$-0.400683\pi$$
−0.670723 + 0.741708i $$0.734016\pi$$
$$68$$ 194.136 336.254i 0.346213 0.599659i
$$69$$ 28.5150 + 49.3894i 0.0497508 + 0.0861709i
$$70$$ 1741.54i 2.97362i
$$71$$ −389.202 + 224.706i −0.650561 + 0.375601i −0.788671 0.614816i $$-0.789230\pi$$
0.138110 + 0.990417i $$0.455897\pi$$
$$72$$ −32.1364 + 18.5540i −0.0526016 + 0.0303695i
$$73$$ 389.711i 0.624826i −0.949946 0.312413i $$-0.898863\pi$$
0.949946 0.312413i $$-0.101137\pi$$
$$74$$ 89.7014 + 155.367i 0.140913 + 0.244069i
$$75$$ −83.5457 + 144.705i −0.128627 + 0.222789i
$$76$$ 210.272 + 121.401i 0.317367 + 0.183232i
$$77$$ 1272.47 1.88326
$$78$$ −324.394 + 480.530i −0.470903 + 0.697556i
$$79$$ −897.820 −1.27864 −0.639321 0.768940i $$-0.720784\pi$$
−0.639321 + 0.768940i $$0.720784\pi$$
$$80$$ −640.279 369.665i −0.894816 0.516623i
$$81$$ −40.5000 + 70.1481i −0.0555556 + 0.0962250i
$$82$$ −98.6214 170.817i −0.132816 0.230044i
$$83$$ 1300.24i 1.71952i 0.510700 + 0.859759i $$0.329386\pi$$
−0.510700 + 0.859759i $$0.670614\pi$$
$$84$$ −734.728 + 424.195i −0.954350 + 0.550994i
$$85$$ −502.228 + 289.961i −0.640874 + 0.370009i
$$86$$ 1410.60i 1.76871i
$$87$$ −231.167 400.393i −0.284870 0.493410i
$$88$$ −83.4850 + 144.600i −0.101131 + 0.175164i
$$89$$ 801.113 + 462.523i 0.954132 + 0.550869i 0.894362 0.447344i $$-0.147630\pi$$
0.0597703 + 0.998212i $$0.480963\pi$$
$$90$$ 498.819 0.584223
$$91$$ −824.061 + 1220.69i −0.949287 + 1.40619i
$$92$$ −171.090 −0.193884
$$93$$ −800.910 462.406i −0.893016 0.515583i
$$94$$ 275.151 476.575i 0.301911 0.522925i
$$95$$ −181.324 314.062i −0.195825 0.339179i
$$96$$ 779.267i 0.828475i
$$97$$ 1351.43 780.247i 1.41460 0.816722i 0.418787 0.908085i $$-0.362455\pi$$
0.995818 + 0.0913623i $$0.0291221\pi$$
$$98$$ −2300.73 + 1328.33i −2.37152 + 1.36920i
$$99$$ 364.466i 0.370002i
$$100$$ −250.637 434.116i −0.250637 0.434116i
$$101$$ 479.420 830.380i 0.472318 0.818078i −0.527181 0.849753i $$-0.676751\pi$$
0.999498 + 0.0316752i $$0.0100842\pi$$
$$102$$ 462.137 + 266.815i 0.448612 + 0.259006i
$$103$$ −635.153 −0.607606 −0.303803 0.952735i $$-0.598257\pi$$
−0.303803 + 0.952735i $$0.598257\pi$$
$$104$$ −84.6514 173.733i −0.0798150 0.163807i
$$105$$ 1267.15 1.17773
$$106$$ 1565.59 + 903.897i 1.43457 + 0.828247i
$$107$$ 724.162 1254.29i 0.654275 1.13324i −0.327800 0.944747i $$-0.606307\pi$$
0.982075 0.188490i $$-0.0603593\pi$$
$$108$$ −121.500 210.444i −0.108253 0.187500i
$$109$$ 331.084i 0.290937i 0.989363 + 0.145468i $$0.0464689\pi$$
−0.989363 + 0.145468i $$0.953531\pi$$
$$110$$ 1943.77 1122.24i 1.68483 0.972736i
$$111$$ −113.046 + 65.2674i −0.0966657 + 0.0558100i
$$112$$ 1728.20i 1.45803i
$$113$$ −347.602 602.065i −0.289378 0.501217i 0.684284 0.729216i $$-0.260115\pi$$
−0.973661 + 0.227999i $$0.926782\pi$$
$$114$$ −166.849 + 288.991i −0.137078 + 0.237426i
$$115$$ 221.304 + 127.770i 0.179449 + 0.103605i
$$116$$ 1387.00 1.11017
$$117$$ −349.637 236.032i −0.276273 0.186505i
$$118$$ −2434.91 −1.89959
$$119$$ 1173.97 + 677.792i 0.904351 + 0.522127i
$$120$$ −83.1364 + 143.997i −0.0632440 + 0.109542i
$$121$$ 154.470 + 267.550i 0.116056 + 0.201014i
$$122$$ 2231.85i 1.65625i
$$123$$ 124.288 71.7576i 0.0911110 0.0526030i
$$124$$ 2402.73 1387.22i 1.74009 1.00464i
$$125$$ 931.594i 0.666595i
$$126$$ −583.001 1009.79i −0.412205 0.713960i
$$127$$ 123.577 214.042i 0.0863441 0.149552i −0.819619 0.572909i $$-0.805815\pi$$
0.905963 + 0.423357i $$0.139148\pi$$
$$128$$ −453.481 261.817i −0.313144 0.180794i
$$129$$ 1026.36 0.700514
$$130$$ −182.227 + 2591.46i −0.122941 + 1.74835i
$$131$$ 472.243 0.314962 0.157481 0.987522i $$-0.449663\pi$$
0.157481 + 0.987522i $$0.449663\pi$$
$$132$$ −946.909 546.698i −0.624378 0.360485i
$$133$$ −423.849 + 734.127i −0.276333 + 0.478623i
$$134$$ 474.869 + 822.498i 0.306138 + 0.530246i
$$135$$ 362.944i 0.231387i
$$136$$ −154.046 + 88.9383i −0.0971273 + 0.0560765i
$$137$$ −1585.43 + 915.349i −0.988704 + 0.570829i −0.904887 0.425652i $$-0.860045\pi$$
−0.0838175 + 0.996481i $$0.526711\pi$$
$$138$$ 235.141i 0.145047i
$$139$$ 50.0000 + 86.6025i 0.0305104 + 0.0528456i 0.880877 0.473344i $$-0.156953\pi$$
−0.850367 + 0.526190i $$0.823620\pi$$
$$140$$ −1900.73 + 3292.16i −1.14744 + 1.98742i
$$141$$ 346.759 + 200.202i 0.207109 + 0.119575i
$$142$$ 1852.97 1.09506
$$143$$ −1893.47 133.146i −1.10727 0.0778615i
$$144$$ −495.000 −0.286458
$$145$$ −1794.08 1035.81i −1.02752 0.593237i
$$146$$ −803.411 + 1391.55i −0.455416 + 0.788804i
$$147$$ −966.501 1674.03i −0.542284 0.939263i
$$148$$ 391.604i 0.217498i
$$149$$ −129.520 + 74.7784i −0.0712127 + 0.0411147i −0.535184 0.844736i $$-0.679758\pi$$
0.463971 + 0.885850i $$0.346424\pi$$
$$150$$ 596.636 344.468i 0.324767 0.187505i
$$151$$ 800.032i 0.431163i −0.976486 0.215582i $$-0.930835\pi$$
0.976486 0.215582i $$-0.0691647\pi$$
$$152$$ −55.6164 96.3305i −0.0296782 0.0514042i
$$153$$ −194.136 + 336.254i −0.102582 + 0.177677i
$$154$$ −4543.61 2623.26i −2.37750 1.37265i
$$155$$ −4143.88 −2.14739
$$156$$ 1137.68 554.337i 0.583895 0.284503i
$$157$$ −2706.16 −1.37564 −0.687818 0.725884i $$-0.741431\pi$$
−0.687818 + 0.725884i $$0.741431\pi$$
$$158$$ 3205.86 + 1850.90i 1.61421 + 0.931962i
$$159$$ −657.681 + 1139.14i −0.328035 + 0.568173i
$$160$$ 1745.86 + 3023.93i 0.862642 + 1.49414i
$$161$$ 597.330i 0.292399i
$$162$$ 289.228 166.986i 0.140271 0.0809854i
$$163$$ 3185.46 1839.12i 1.53070 0.883750i 0.531371 0.847139i $$-0.321677\pi$$
0.999330 0.0366108i $$-0.0116562\pi$$
$$164$$ 430.546i 0.205000i
$$165$$ 816.546 + 1414.30i 0.385261 + 0.667291i
$$166$$ 2680.52 4642.79i 1.25330 2.17079i
$$167$$ 2791.30 + 1611.56i 1.29339 + 0.746742i 0.979254 0.202635i $$-0.0649504\pi$$
0.314140 + 0.949377i $$0.398284\pi$$
$$168$$ 388.667 0.178490
$$169$$ 1353.96 1730.20i 0.616275 0.787531i
$$170$$ 2391.08 1.07875
$$171$$ −210.272 121.401i −0.0940346 0.0542909i
$$172$$ −1539.55 + 2666.57i −0.682496 + 1.18212i
$$173$$ −1344.77 2329.21i −0.590988 1.02362i −0.994100 0.108471i $$-0.965405\pi$$
0.403111 0.915151i $$-0.367929\pi$$
$$174$$ 1906.25i 0.830533i
$$175$$ 1515.64 875.054i 0.654694 0.377988i
$$176$$ −1928.89 + 1113.64i −0.826111 + 0.476955i
$$177$$ 1771.66i 0.752351i
$$178$$ −1907.03 3303.07i −0.803022 1.39088i
$$179$$ −762.021 + 1319.86i −0.318191 + 0.551122i −0.980111 0.198452i $$-0.936409\pi$$
0.661920 + 0.749574i $$0.269742\pi$$
$$180$$ −942.956 544.416i −0.390465 0.225435i
$$181$$ −476.881 −0.195836 −0.0979180 0.995194i $$-0.531218\pi$$
−0.0979180 + 0.995194i $$0.531218\pi$$
$$182$$ 5459.01 2659.91i 2.22335 1.08333i
$$183$$ 1623.91 0.655973
$$184$$ 67.8793 + 39.1901i 0.0271963 + 0.0157018i
$$185$$ −292.449 + 506.537i −0.116223 + 0.201305i
$$186$$ 1906.55 + 3302.24i 0.751585 + 1.30178i
$$187$$ 1747.06i 0.683197i
$$188$$ −1040.28 + 600.605i −0.403564 + 0.232998i
$$189$$ 734.728 424.195i 0.282770 0.163258i
$$190$$ 1495.23i 0.570924i
$$191$$ 684.871 + 1186.23i 0.259453 + 0.449386i 0.966096 0.258185i $$-0.0831243\pi$$
−0.706642 + 0.707571i $$0.749791\pi$$
$$192$$ 946.500 1639.39i 0.355770 0.616211i
$$193$$ 1857.38 + 1072.36i 0.692732 + 0.399949i 0.804635 0.593770i $$-0.202361\pi$$
−0.111903 + 0.993719i $$0.535695\pi$$
$$194$$ −6434.08 −2.38113
$$195$$ −1885.56 132.590i −0.692451 0.0486920i
$$196$$ 5799.01 2.11334
$$197$$ −207.620 119.869i −0.0750879 0.0433520i 0.461986 0.886887i $$-0.347137\pi$$
−0.537074 + 0.843535i $$0.680470\pi$$
$$198$$ 751.365 1301.40i 0.269683 0.467104i
$$199$$ −794.969 1376.93i −0.283185 0.490491i 0.688982 0.724778i $$-0.258058\pi$$
−0.972167 + 0.234287i $$0.924724\pi$$
$$200$$ 229.645i 0.0811918i
$$201$$ −598.455 + 345.518i −0.210009 + 0.121249i
$$202$$ −3423.74 + 1976.70i −1.19254 + 0.688515i
$$203$$ 4842.47i 1.67426i
$$204$$ −582.409 1008.76i −0.199886 0.346213i
$$205$$ 321.531 556.908i 0.109545 0.189737i
$$206$$ 2267.95 + 1309.40i 0.767066 + 0.442866i
$$207$$ 171.090 0.0574472
$$208$$ 180.832 2571.62i 0.0602810 0.857258i
$$209$$ −1092.50 −0.361579
$$210$$ −4524.64 2612.30i −1.48681 0.858410i
$$211$$ 936.427 1621.94i 0.305527 0.529189i −0.671851 0.740686i $$-0.734501\pi$$
0.977379 + 0.211497i $$0.0678339\pi$$
$$212$$ −1973.04 3417.41i −0.639195 1.10712i
$$213$$ 1348.24i 0.433707i
$$214$$ −5171.55 + 2985.80i −1.65196 + 0.953761i
$$215$$ 3982.78 2299.46i 1.26337 0.729404i
$$216$$ 111.324i 0.0350677i
$$217$$ 4843.22 + 8388.70i 1.51511 + 2.62425i
$$218$$ 682.547 1182.21i 0.212055 0.367290i
$$219$$ −1012.50 584.567i −0.312413 0.180372i
$$220$$ −4899.28 −1.50141
$$221$$ −1675.98 1131.42i −0.510130 0.344377i
$$222$$ 538.209 0.162713
$$223$$ −48.6085 28.0642i −0.0145967 0.00842742i 0.492684 0.870208i $$-0.336016\pi$$
−0.507281 + 0.861781i $$0.669349\pi$$
$$224$$ 4081.00 7068.51i 1.21729 2.10841i
$$225$$ 250.637 + 434.116i 0.0742629 + 0.128627i
$$226$$ 2866.40i 0.843673i
$$227$$ 577.976 333.695i 0.168994 0.0975687i −0.413117 0.910678i $$-0.635560\pi$$
0.582111 + 0.813109i $$0.302227\pi$$
$$228$$ 630.816 364.202i 0.183232 0.105789i
$$229$$ 723.299i 0.208720i 0.994540 + 0.104360i $$0.0332795\pi$$
−0.994540 + 0.104360i $$0.966721\pi$$
$$230$$ −526.808 912.458i −0.151029 0.261590i
$$231$$ 1908.70 3305.96i 0.543650 0.941629i
$$232$$ −550.288 317.709i −0.155725 0.0899078i
$$233$$ 275.451 0.0774482 0.0387241 0.999250i $$-0.487671\pi$$
0.0387241 + 0.999250i $$0.487671\pi$$
$$234$$ 761.863 + 1563.60i 0.212840 + 0.436818i
$$235$$ 1794.12 0.498024
$$236$$ 4602.91 + 2657.49i 1.26959 + 0.733000i
$$237$$ −1346.73 + 2332.60i −0.369112 + 0.639321i
$$238$$ −2794.61 4840.41i −0.761124 1.31831i
$$239$$ 1529.39i 0.413925i 0.978349 + 0.206963i $$0.0663579\pi$$
−0.978349 + 0.206963i $$0.933642\pi$$
$$240$$ −1920.84 + 1109.00i −0.516623 + 0.298272i
$$241$$ 844.830 487.763i 0.225810 0.130372i −0.382827 0.923820i $$-0.625050\pi$$
0.608638 + 0.793448i $$0.291716\pi$$
$$242$$ 1273.79i 0.338357i
$$243$$ 121.500 + 210.444i 0.0320750 + 0.0555556i
$$244$$ −2435.87 + 4219.05i −0.639101 + 1.10695i
$$245$$ −7500.97 4330.69i −1.95600 1.12930i
$$246$$ −591.729 −0.153363
$$247$$ 707.516 1048.05i 0.182260 0.269984i
$$248$$ −1271.03 −0.325446
$$249$$ 3378.13 + 1950.36i 0.859759 + 0.496382i
$$250$$ −1920.53 + 3326.46i −0.485860 + 0.841534i
$$251$$ −937.070 1623.05i −0.235647 0.408152i 0.723814 0.689995i $$-0.242387\pi$$
−0.959460 + 0.281843i $$0.909054\pi$$
$$252$$ 2545.17i 0.636233i
$$253$$ 666.694 384.916i 0.165671 0.0956501i
$$254$$ −882.517 + 509.522i −0.218008 + 0.125867i
$$255$$ 1739.77i 0.427249i
$$256$$ −1444.50 2501.95i −0.352661 0.610827i
$$257$$ −909.094 + 1574.60i −0.220653 + 0.382181i −0.955006 0.296586i $$-0.904152\pi$$
0.734354 + 0.678767i $$0.237485\pi$$
$$258$$ −3664.85 2115.90i −0.884356 0.510583i
$$259$$ 1367.22 0.328010
$$260$$ 3172.82 4699.95i 0.756808 1.12107i
$$261$$ −1387.00 −0.328940
$$262$$ −1686.24 973.554i −0.397620 0.229566i
$$263$$ −336.899 + 583.527i −0.0789890 + 0.136813i −0.902814 0.430031i $$-0.858503\pi$$
0.823825 + 0.566844i $$0.191836\pi$$
$$264$$ 250.455 + 433.801i 0.0583880 + 0.101131i
$$265$$ 5893.86i 1.36625i
$$266$$ 3026.88 1747.57i 0.697707 0.402822i
$$267$$ 2403.34 1387.57i 0.550869 0.318044i
$$268$$ 2073.11i 0.472520i
$$269$$ 1678.20 + 2906.73i 0.380378 + 0.658834i 0.991116 0.132998i $$-0.0424605\pi$$
−0.610738 + 0.791833i $$0.709127\pi$$
$$270$$ 748.228 1295.97i 0.168651 0.292112i
$$271$$ −7721.09 4457.77i −1.73071 0.999227i −0.885013 0.465567i $$-0.845850\pi$$
−0.845699 0.533660i $$-0.820816\pi$$
$$272$$ −2372.78 −0.528937
$$273$$ 1935.37 + 3972.02i 0.429061 + 0.880577i
$$274$$ 7548.16 1.66424
$$275$$ 1953.34 + 1127.76i 0.428330 + 0.247296i
$$276$$ −256.635 + 444.505i −0.0559696 + 0.0969422i
$$277$$ 2008.65 + 3479.09i 0.435698 + 0.754651i 0.997352 0.0727208i $$-0.0231682\pi$$
−0.561654 + 0.827372i $$0.689835\pi$$
$$278$$ 412.311i 0.0889523i
$$279$$ −2402.73 + 1387.22i −0.515583 + 0.297672i
$$280$$ 1508.21 870.768i 0.321904 0.185851i
$$281$$ 1841.12i 0.390860i 0.980718 + 0.195430i $$0.0626103\pi$$
−0.980718 + 0.195430i $$0.937390\pi$$
$$282$$ −825.452 1429.73i −0.174308 0.301911i
$$283$$ 2424.70 4199.70i 0.509305 0.882143i −0.490637 0.871364i $$-0.663236\pi$$
0.999942 0.0107784i $$-0.00343094\pi$$
$$284$$ −3502.82 2022.35i −0.731881 0.422551i
$$285$$ −1087.94 −0.226120
$$286$$ 6486.55 + 4378.91i 1.34111 + 0.905351i
$$287$$ −1503.17 −0.309162
$$288$$ 2024.59 + 1168.90i 0.414238 + 0.239160i
$$289$$ 1525.91 2642.95i 0.310586 0.537951i
$$290$$ 4270.76 + 7397.17i 0.864785 + 1.49785i
$$291$$ 4681.48i 0.943070i
$$292$$ 3037.50 1753.70i 0.608754 0.351464i
$$293$$ −1224.43 + 706.927i −0.244137 + 0.140953i −0.617077 0.786903i $$-0.711683\pi$$
0.372940 + 0.927856i $$0.378350\pi$$
$$294$$ 7969.97i 1.58101i
$$295$$ −3969.22 6874.89i −0.783379 1.35685i
$$296$$ −89.7014 + 155.367i −0.0176142 + 0.0305086i
$$297$$ 946.909 + 546.698i 0.185001 + 0.106810i
$$298$$ 616.639 0.119869
$$299$$ −62.5022 + 888.845i −0.0120889 + 0.171917i
$$300$$ −1503.82 −0.289411
$$301$$ −9309.86 5375.05i −1.78276 1.02928i
$$302$$ −1649.31 + 2856.68i −0.314262 + 0.544317i
$$303$$ −1438.26 2491.14i −0.272693 0.472318i
$$304$$ 1483.79i 0.279937i
$$305$$ 6301.55 3638.20i 1.18304 0.683026i
$$306$$ 1386.41 800.445i 0.259006 0.149537i
$$307$$ 4625.64i 0.859932i −0.902845 0.429966i $$-0.858526\pi$$
0.902845 0.429966i $$-0.141474\pi$$
$$308$$ 5726.10 + 9917.89i 1.05933 + 1.83482i
$$309$$ −952.729 + 1650.18i −0.175401 + 0.303803i
$$310$$ 14796.6 + 8542.83i 2.71094 + 1.56516i
$$311$$ 6060.79 1.10507 0.552534 0.833490i $$-0.313661\pi$$
0.552534 + 0.833490i $$0.313661\pi$$
$$312$$ −578.349 40.6685i −0.104944 0.00737950i
$$313$$ 969.946 0.175158 0.0875792 0.996158i $$-0.472087\pi$$
0.0875792 + 0.996158i $$0.472087\pi$$
$$314$$ 9662.91 + 5578.88i 1.73665 + 1.00266i
$$315$$ 1900.73 3292.16i 0.339981 0.588864i
$$316$$ −4040.19 6997.81i −0.719236 1.24575i
$$317$$ 8741.63i 1.54883i −0.632679 0.774414i $$-0.718045\pi$$
0.632679 0.774414i $$-0.281955\pi$$
$$318$$ 4696.78 2711.69i 0.828247 0.478189i
$$319$$ −5404.80 + 3120.46i −0.948623 + 0.547687i
$$320$$ 8482.13i 1.48177i
$$321$$ −2172.49 3762.86i −0.377746 0.654275i
$$322$$ −1231.43 + 2132.89i −0.213120 + 0.369135i
$$323$$ −1007.94 581.933i −0.173632 0.100247i
$$324$$ −729.000 −0.125000
$$325$$ −2346.88 + 1143.52i −0.400558 + 0.195172i
$$326$$ −15165.8 −2.57655
$$327$$ 860.181 + 496.626i 0.145468 + 0.0839862i
$$328$$ 98.6214 170.817i 0.0166020 0.0287555i
$$329$$ −2096.90 3631.94i −0.351386 0.608618i
$$330$$ 6733.41i 1.12322i
$$331$$ −6051.57 + 3493.88i −1.00491 + 0.580184i −0.909697 0.415273i $$-0.863686\pi$$
−0.0952114 + 0.995457i $$0.530353\pi$$
$$332$$ −10134.4 + 5851.09i −1.67529 + 0.967229i
$$333$$ 391.604i 0.0644438i
$$334$$ −6644.61 11508.8i −1.08855 1.88543i
$$335$$ −1548.19 + 2681.55i −0.252498 + 0.437339i
$$336$$ 4490.00 + 2592.30i 0.729017 + 0.420898i
$$337$$ 4156.59 0.671881 0.335940 0.941883i $$-0.390946\pi$$
0.335940 + 0.941883i $$0.390946\pi$$
$$338$$ −8401.50 + 3386.81i −1.35202 + 0.545025i
$$339$$ −2085.61 −0.334144
$$340$$ −4520.05 2609.65i −0.720983 0.416260i
$$341$$ −6241.89 + 10811.3i −0.991252 + 1.71690i
$$342$$ 500.548 + 866.974i 0.0791419 + 0.137078i
$$343$$ 9468.49i 1.49053i
$$344$$ 1221.62 705.301i 0.191469 0.110544i
$$345$$ 663.911 383.309i 0.103605 0.0598164i
$$346$$ 11089.3i 1.72301i
$$347$$ 156.256 + 270.644i 0.0241737 + 0.0418701i 0.877859 0.478919i $$-0.158971\pi$$
−0.853685 + 0.520789i $$0.825638\pi$$
$$348$$ 2080.50 3603.54i 0.320479 0.555086i
$$349$$ 3861.39 + 2229.37i 0.592251 + 0.341936i 0.765987 0.642856i $$-0.222251\pi$$
−0.173736 + 0.984792i $$0.555584\pi$$
$$350$$ −7215.88 −1.10201
$$351$$ −1137.68 + 554.337i −0.173006 + 0.0842972i
$$352$$ 10519.1 1.59281
$$353$$ −1947.84 1124.59i −0.293692 0.169563i 0.345914 0.938266i $$-0.387569\pi$$
−0.639605 + 0.768703i $$0.720902\pi$$
$$354$$ −3652.37 + 6326.09i −0.548365 + 0.949797i
$$355$$ 3020.58 + 5231.80i 0.451594 + 0.782183i
$$356$$ 8325.41i 1.23945i
$$357$$ 3521.91 2033.38i 0.522127 0.301450i
$$358$$ 5441.92 3141.89i 0.803392 0.463838i
$$359$$ 7842.79i 1.15300i −0.817098 0.576499i $$-0.804418\pi$$
0.817098 0.576499i $$-0.195582\pi$$
$$360$$ 249.409 + 431.990i 0.0365140 + 0.0632440i
$$361$$ −3065.60 + 5309.77i −0.446945 + 0.774131i
$$362$$ 1702.81 + 983.116i 0.247231 + 0.142739i
$$363$$ 926.820 0.134009
$$364$$ −13222.7 929.796i −1.90400 0.133886i
$$365$$ −5238.64 −0.751241
$$366$$ −5798.53 3347.78i −0.828126 0.478118i
$$367$$ −3330.12 + 5767.94i −0.473653 + 0.820392i −0.999545 0.0301597i $$-0.990398\pi$$
0.525892 + 0.850552i $$0.323732\pi$$
$$368$$ 522.775 + 905.473i 0.0740531 + 0.128264i
$$369$$ 430.546i 0.0607407i
$$370$$ 2088.51 1205.80i 0.293449 0.169423i
$$371$$ 11931.3 6888.53i 1.66965 0.963975i
$$372$$ 8323.30i 1.16006i
$$373$$ 18.4936 + 32.0319i 0.00256720 + 0.00444651i 0.867306 0.497775i $$-0.165850\pi$$
−0.864739 + 0.502222i $$0.832516\pi$$
$$374$$ 3601.66 6238.26i 0.497961 0.862494i
$$375$$ −2420.35 1397.39i −0.333297 0.192429i
$$376$$ 550.301 0.0754777
$$377$$ 506.696 7205.74i 0.0692207 0.984389i
$$378$$ −3498.00 −0.475973
$$379$$ 10461.5 + 6039.93i 1.41786 + 0.818603i 0.996111 0.0881092i $$-0.0280825\pi$$
0.421751 + 0.906712i $$0.361416\pi$$
$$380$$ 1631.91 2826.55i 0.220303 0.381577i
$$381$$ −370.731 642.126i −0.0498508 0.0863441i
$$382$$ 5647.59i 0.756429i
$$383$$ 9151.63 5283.69i 1.22096 0.704919i 0.255835 0.966721i $$-0.417650\pi$$
0.965122 + 0.261801i $$0.0843164\pi$$
$$384$$ −1360.44 + 785.452i −0.180794 + 0.104381i
$$385$$ 17104.9i 2.26428i
$$386$$ −4421.45 7658.18i −0.583021 1.00982i
$$387$$ 1539.55 2666.57i 0.202221 0.350257i
$$388$$ 12162.8 + 7022.22i 1.59143 + 0.918813i
$$389$$ 9757.49 1.27179 0.635893 0.771778i $$-0.280632\pi$$
0.635893 + 0.771778i $$0.280632\pi$$
$$390$$ 6459.46 + 4360.63i 0.838686 + 0.566177i
$$391$$ 820.119 0.106075
$$392$$ −2300.73 1328.33i −0.296440 0.171150i
$$393$$ 708.364 1226.92i 0.0909218 0.157481i
$$394$$ 494.234 + 856.039i 0.0631959 + 0.109458i
$$395$$ 12068.8i 1.53734i
$$396$$ −2840.73 + 1640.09i −0.360485 + 0.208126i
$$397$$ −12298.0 + 7100.26i −1.55471 + 0.897612i −0.556962 + 0.830538i $$0.688033\pi$$
−0.997748 + 0.0670737i $$0.978634\pi$$
$$398$$ 6555.48i 0.825620i
$$399$$ 1271.55 + 2202.38i 0.159541 + 0.276333i
$$400$$ −1531.67 + 2652.93i −0.191459 + 0.331617i
$$401$$ 10978.1 + 6338.19i 1.36713 + 0.789313i 0.990561 0.137076i $$-0.0437705\pi$$
0.376569 + 0.926389i $$0.377104\pi$$
$$402$$ 2849.22 0.353497
$$403$$ −6329.10 12989.4i −0.782319 1.60558i
$$404$$ 8629.56 1.06271
$$405$$ 942.956 + 544.416i 0.115693 + 0.0667956i
$$406$$ 9983.01 17291.1i 1.22032 2.11365i
$$407$$ 881.026 + 1525.98i 0.107299 + 0.185848i
$$408$$ 533.630i 0.0647515i
$$409$$ −1328.20 + 766.838i −0.160576 + 0.0927083i −0.578134 0.815942i $$-0.696219\pi$$
0.417559 + 0.908650i $$0.362886\pi$$
$$410$$ −2296.19 + 1325.71i −0.276587 + 0.159688i
$$411$$ 5492.09i 0.659136i
$$412$$ −2858.19 4950.53i −0.341779 0.591978i
$$413$$ −9278.15 + 16070.2i −1.10544 + 1.91468i
$$414$$ −610.914 352.711i −0.0725236 0.0418715i
$$415$$ 17478.3 2.06741
$$416$$ −6812.28 + 10091.1i −0.802883 + 1.18932i
$$417$$ 300.000 0.0352304
$$418$$ 3901.02 + 2252.25i 0.456471 + 0.263544i
$$419$$ 1082.95 1875.72i 0.126266 0.218699i −0.795961 0.605348i $$-0.793034\pi$$
0.922227 + 0.386649i $$0.126367\pi$$
$$420$$ 5702.19 + 9876.48i 0.662472 + 1.14744i
$$421$$ 734.575i 0.0850380i −0.999096 0.0425190i $$-0.986462\pi$$
0.999096 0.0425190i $$-0.0135383\pi$$
$$422$$ −6687.43 + 3860.99i −0.771419 + 0.445379i
$$423$$ 1040.28 600.605i 0.119575 0.0690364i
$$424$$ 1807.79i 0.207062i
$$425$$ 1201.43 + 2080.93i 0.137124 + 0.237506i
$$426$$ 2779.46 4814.16i 0.316116 0.547528i
$$427$$ −14730.0 8504.40i −1.66941 0.963833i
$$428$$ 13034.9 1.47212
$$429$$ −3186.12 + 4719.66i −0.358572 + 0.531159i
$$430$$ −18961.8 −2.12656
$$431$$ −11872.6 6854.66i −1.32688 0.766073i −0.342061 0.939678i $$-0.611125\pi$$
−0.984815 + 0.173605i $$0.944458\pi$$
$$432$$ −742.500 + 1286.05i −0.0826934 + 0.143229i
$$433$$ 5024.97 + 8703.50i 0.557701 + 0.965967i 0.997688 + 0.0679624i $$0.0216498\pi$$
−0.439987 + 0.898004i $$0.645017\pi$$
$$434$$ 39938.2i 4.41727i
$$435$$ −5382.23 + 3107.43i −0.593237 + 0.342506i
$$436$$ −2580.54 + 1489.88i −0.283453 + 0.163652i
$$437$$ 512.850i 0.0561395i
$$438$$ 2410.23 + 4174.64i 0.262935 + 0.455416i
$$439$$ −4066.73 + 7043.79i −0.442129 + 0.765790i −0.997847 0.0655807i $$-0.979110\pi$$
0.555718 + 0.831371i $$0.312443\pi$$
$$440$$ 1943.77 + 1122.24i 0.210604 + 0.121592i
$$441$$ −5799.01 −0.626175
$$442$$ 3651.98 + 7495.09i 0.393003 + 0.806572i
$$443$$ −2370.78 −0.254264 −0.127132 0.991886i $$-0.540577\pi$$
−0.127132 + 0.991886i $$0.540577\pi$$
$$444$$ −1017.42 587.406i −0.108749 0.0627862i
$$445$$ 6217.40 10768.9i 0.662321 1.14717i
$$446$$ 115.711 + 200.418i 0.0122850 + 0.0212782i
$$447$$ 448.670i 0.0474751i
$$448$$ −17170.9 + 9913.60i −1.81082 + 1.04548i
$$449$$ 11191.8 6461.60i 1.17634 0.679158i 0.221172 0.975235i $$-0.429012\pi$$
0.955164 + 0.296077i $$0.0956785\pi$$
$$450$$ 2066.81i 0.216512i
$$451$$ −968.636 1677.73i −0.101134 0.175169i
$$452$$ 3128.42 5418.58i 0.325550 0.563869i
$$453$$ −2078.54 1200.05i −0.215582 0.124466i
$$454$$ −2751.72 −0.284459
$$455$$ 16409.0 + 11077.3i 1.69070 + 1.14135i
$$456$$ −333.699 −0.0342694
$$457$$ 7275.71 + 4200.63i 0.744734 + 0.429972i 0.823788 0.566898i $$-0.191857\pi$$
−0.0790543 + 0.996870i $$0.525190\pi$$
$$458$$ 1491.12 2582.70i 0.152130 0.263497i
$$459$$ 582.409 + 1008.76i 0.0592256 + 0.102582i
$$460$$ 2299.85i 0.233111i
$$461$$ −15265.7 + 8813.67i −1.54229 + 0.890441i −0.543596 + 0.839347i $$0.682937\pi$$
−0.998694 + 0.0510940i $$0.983729\pi$$
$$462$$ −13630.8 + 7869.77i −1.37265 + 0.792499i
$$463$$ 5461.81i 0.548233i −0.961697 0.274116i $$-0.911615\pi$$
0.961697 0.274116i $$-0.0883853\pi$$
$$464$$ −4238.06 7340.54i −0.424024 0.734431i
$$465$$ −6215.82 + 10766.1i −0.619897 + 1.07369i
$$466$$ −983.558 567.858i −0.0977735 0.0564496i
$$467$$ −8262.19 −0.818691 −0.409345 0.912379i $$-0.634243\pi$$
−0.409345 + 0.912379i $$0.634243\pi$$
$$468$$ 266.316 3787.29i 0.0263044 0.374076i
$$469$$ 7237.89 0.712611
$$470$$ −6406.29 3698.68i −0.628724 0.362994i
$$471$$ −4059.23 + 7030.80i −0.397112 + 0.687818i
$$472$$ −1217.46 2108.70i −0.118725 0.205637i
$$473$$ 13854.6i 1.34680i
$$474$$ 9617.58 5552.71i 0.931962 0.538068i
$$475$$ −1301.28 + 751.297i −0.125699 + 0.0725723i
$$476$$ 12200.3i 1.17479i
$$477$$ 1973.04 + 3417.41i 0.189391 + 0.328035i
$$478$$ 3152.92 5461.02i 0.301697 0.522555i
$$479$$ 1364.74 + 787.935i 0.130181 + 0.0751601i 0.563676 0.825996i $$-0.309387\pi$$
−0.433495 + 0.901156i $$0.642720\pi$$
$$480$$ 10475.2 0.996093
$$481$$ −2034.46 143.060i −0.192855 0.0135613i
$$482$$ −4022.20 −0.380095
$$483$$ −1551.91 895.995i −0.146199 0.0844082i
$$484$$ −1390.23 + 2407.95i −0.130563 + 0.226141i
$$485$$ −10488.4 18166.4i −0.981963 1.70081i
$$486$$ 1001.91i 0.0935139i
$$487$$ 10908.2 6297.84i 1.01498 0.586001i 0.102337 0.994750i $$-0.467368\pi$$
0.912647 + 0.408749i $$0.134035\pi$$
$$488$$ 1932.84 1115.93i 0.179294 0.103516i
$$489$$ 11034.7i 1.02047i
$$490$$ 17855.9 + 30927.3i 1.64622 + 2.85133i
$$491$$ −535.606 + 927.697i −0.0492293 + 0.0852676i −0.889590 0.456760i $$-0.849010\pi$$
0.840361 + 0.542028i $$0.182343\pi$$
$$492$$ 1118.59 + 645.819i 0.102500 + 0.0591784i
$$493$$ −6648.59 −0.607378
$$494$$ −4686.96 + 2283.72i −0.426875 + 0.207995i
$$495$$ 4899.28 0.444861
$$496$$ −14683.3 8477.44i −1.32924 0.767436i
$$497$$ 7060.68 12229.5i 0.637253 1.10376i
$$498$$ −8041.55 13928.4i −0.723595 1.25330i
$$499$$ 1422.30i 0.127597i 0.997963 + 0.0637985i $$0.0203215\pi$$
−0.997963 + 0.0637985i $$0.979678\pi$$
$$500$$ 7261.06 4192.17i 0.649449 0.374959i
$$501$$ 8373.89 4834.67i 0.746742 0.431132i
$$502$$ 7727.28i 0.687022i
$$503$$ 4674.67 + 8096.76i 0.414380 + 0.717727i 0.995363 0.0961884i $$-0.0306651\pi$$
−0.580983 + 0.813916i $$0.697332\pi$$
$$504$$ 583.001 1009.79i 0.0515256 0.0892450i
$$505$$ −11162.3 6444.54i −0.983593 0.567878i
$$506$$ −3174.10 −0.278866
$$507$$ −2464.27 6112.99i −0.215862 0.535478i
$$508$$ 2224.39 0.194274
$$509$$ 11896.0 + 6868.15i 1.03591 + 0.598086i 0.918673 0.395018i $$-0.129262\pi$$
0.117241 + 0.993103i $$0.462595\pi$$
$$510$$ 3586.62 6212.22i 0.311409 0.539376i
$$511$$ 6122.73 + 10604.9i 0.530046 + 0.918067i
$$512$$ 16100.7i 1.38976i
$$513$$ −630.816 + 364.202i −0.0542909 + 0.0313449i
$$514$$ 6492.23 3748.29i 0.557120 0.321654i
$$515$$ 8537.96i 0.730538i
$$516$$ 4618.64 + 7999.72i 0.394039 + 0.682496i
$$517$$ 2702.47 4680.81i 0.229892 0.398185i
$$518$$ −4881.94 2818.59i −0.414093 0.239076i
$$519$$ −8068.62 −0.682414
$$520$$ −2335.38 + 1137.92i −0.196949 + 0.0959632i
$$521$$ 11052.3 0.929386 0.464693 0.885472i $$-0.346165\pi$$
0.464693 + 0.885472i $$0.346165\pi$$
$$522$$ 4952.59 + 2859.38i 0.415266 + 0.239754i
$$523$$ −3238.52 + 5609.28i −0.270766 + 0.468980i −0.969058 0.246832i $$-0.920610\pi$$
0.698292 + 0.715813i $$0.253944\pi$$
$$524$$ 2125.09 + 3680.77i 0.177166 + 0.306861i
$$525$$ 5250.33i 0.436463i
$$526$$ 2405.94 1389.07i 0.199437 0.115145i
$$527$$ −11517.5 + 6649.61i −0.952009 + 0.549643i
$$528$$ 6681.87i 0.550741i
$$529$$ 5902.81 + 10224.0i 0.485149 + 0.840303i
$$530$$ 12150.5 21045.3i 0.995819 1.72481i
$$531$$ −4602.91 2657.49i −0.376176 0.217185i
$$532$$ −7629.27 −0.621750
$$533$$ 2236.77 + 157.286i 0.181773 + 0.0127820i
$$534$$ −11442.2 −0.927250
$$535$$ −16860.6 9734.45i −1.36252 0.786649i
$$536$$ −474.869 + 822.498i −0.0382672 + 0.0662808i
$$537$$ 2286.06 + 3959.58i 0.183707 + 0.318191i
$$538$$ 13838.8i 1.10898i
$$539$$ −22597.3 + 13046.5i −1.80581 + 1.04259i
$$540$$ −2828.87 + 1633.25i −0.225435 + 0.130155i
$$541$$ 18341.5i 1.45761i 0.684723 + 0.728803i $$0.259923\pi$$
−0.684723 + 0.728803i $$0.740077\pi$$
$$542$$ 18379.9 + 31834.9i 1.45661 + 2.52292i
$$543$$ −715.322 + 1238.97i −0.0565330 + 0.0979180i
$$544$$ 9704.88 + 5603.11i 0.764877 + 0.441602i
$$545$$ 4450.55 0.349799
$$546$$ 1277.88 18172.8i 0.100162 1.42440i
$$547$$ −18943.1 −1.48071 −0.740356 0.672215i $$-0.765343\pi$$
−0.740356 + 0.672215i $$0.765343\pi$$
$$548$$ −14268.9 8238.14i −1.11229 0.642182i
$$549$$ 2435.87 4219.05i 0.189363 0.327987i
$$550$$ −4649.88 8053.82i −0.360493 0.624393i
$$551$$ 4157.61i 0.321452i
$$552$$ 203.638 117.570i 0.0157018 0.00906545i
$$553$$ 24431.6 14105.6i 1.87873 1.08469i
$$554$$ 16563.8i 1.27027i
$$555$$ 877.348 + 1519.61i 0.0671015 + 0.116223i
$$556$$ −450.000 + 779.423i −0.0343242 + 0.0594512i
$$557$$ −359.861 207.766i −0.0273749 0.0158049i 0.486250 0.873820i $$-0.338364\pi$$
−0.513625 + 0.858015i $$0.671698\pi$$
$$558$$ 11439.3 0.867856
$$559$$ 13290.9 + 8972.38i 1.00563 + 0.678875i
$$560$$ 23231.1 1.75303
$$561$$ 4539.00 + 2620.59i 0.341599 + 0.197222i
$$562$$ 3795.56 6574.10i 0.284886 0.493437i
$$563$$ 9145.90 + 15841.2i 0.684643 + 1.18584i 0.973549 + 0.228478i $$0.0733750\pi$$
−0.288907 + 0.957357i $$0.593292\pi$$
$$564$$ 3603.63i 0.269043i
$$565$$ −8093.17 + 4672.59i −0.602623 + 0.347925i
$$566$$ −17315.8 + 9997.29i −1.28593 + 0.742434i
$$567$$ 2545.17i 0.188514i
$$568$$ 926.486 + 1604.72i 0.0684410 + 0.118543i
$$569$$ 2173.73 3765.02i 0.160154 0.277395i −0.774770 0.632244i $$-0.782134\pi$$
0.934924 + 0.354848i $$0.115468\pi$$
$$570$$ 3884.73 + 2242.85i 0.285462 + 0.164812i
$$571$$ 16756.0 1.22805 0.614024 0.789288i $$-0.289550\pi$$
0.614024 + 0.789288i $$0.289550\pi$$
$$572$$ −7482.84 15357.3i −0.546981 1.12259i
$$573$$ 4109.23 0.299591
$$574$$ 5367.40 + 3098.87i 0.390298 + 0.225339i
$$575$$ 529.401 916.950i 0.0383958 0.0665034i
$$576$$ −2839.50 4918.16i −0.205404 0.355770i
$$577$$ 19974.7i 1.44117i −0.693364 0.720587i $$-0.743872\pi$$
0.693364 0.720587i $$-0.256128\pi$$
$$578$$ −10897.2 + 6291.48i −0.784191 + 0.452753i
$$579$$ 5572.14 3217.08i 0.399949 0.230911i
$$580$$ 18644.6i 1.33478i
$$581$$ −20428.0 35382.4i −1.45869 2.52652i
$$582$$ −9651.12 + 16716.2i −0.687374 + 1.19057i
$$583$$ 15376.9 + 8877.86i 1.09236 + 0.630675i
$$584$$ −1606.82 −0.113854
$$585$$ −3172.82 + 4699.95i −0.224239 + 0.332169i
$$586$$ 5829.47 0.410944
$$587$$ −13638.7 7874.33i −0.958996 0.553677i −0.0631321 0.998005i $$-0.520109\pi$$
−0.895864 + 0.444329i $$0.853442\pi$$
$$588$$ 8698.51 15066.3i 0.610069 1.05667i
$$589$$ −4158.25 7202.30i −0.290896 0.503846i
$$590$$ 32731.0i 2.28392i
$$591$$ −622.860 + 359.608i −0.0433520 + 0.0250293i
$$592$$ −2072.52 + 1196.57i −0.143885 + 0.0830721i
$$593$$ 13318.4i 0.922297i 0.887323 + 0.461148i $$0.152562\pi$$
−0.887323 + 0.461148i $$0.847438\pi$$
$$594$$ −2254.09 3904.21i −0.155701 0.269683i
$$595$$ 9111.13 15780.9i 0.627765 1.08732i
$$596$$ −1165.68 673.006i −0.0801143 0.0462540i
$$597$$ −4769.82 −0.326994
$$598$$ 2055.58 3044.96i 0.140567 0.208224i
$$599$$ 2970.80 0.202644 0.101322 0.994854i $$-0.467693\pi$$
0.101322 + 0.994854i $$0.467693\pi$$
$$600$$ 596.636 + 344.468i 0.0405959 + 0.0234381i
$$601$$ −5316.31 + 9208.13i −0.360827 + 0.624971i −0.988097 0.153831i $$-0.950839\pi$$
0.627270 + 0.778802i $$0.284172\pi$$
$$602$$ 22161.9 + 38385.5i 1.50042 + 2.59880i
$$603$$ 2073.11i 0.140006i
$$604$$ 6235.63 3600.14i 0.420073 0.242529i
$$605$$ 3596.50 2076.44i 0.241684 0.139536i
$$606$$ 11860.2i 0.795029i
$$607$$ −5793.94 10035.4i −0.387428 0.671045i 0.604675 0.796472i $$-0.293303\pi$$
−0.992103 + 0.125428i $$0.959970\pi$$
$$608$$ −3503.83 + 6068.82i −0.233716 + 0.404808i
$$609$$ 12581.1 + 7263.71i 0.837130 + 0.483317i
$$610$$ −30001.4 −1.99135
$$611$$ 2740.22 + 5623.85i 0.181436 + 0.372368i
$$612$$ −3494.46 −0.230809
$$613$$ 18006.7 + 10396.2i 1.18643 + 0.684988i 0.957494 0.288453i $$-0.0931409\pi$$
0.228939 + 0.973441i $$0.426474\pi$$
$$614$$ −9536.00 + 16516.8i −0.626778 + 1.08561i
$$615$$ −964.592 1670.72i −0.0632457 0.109545i
$$616$$ 5246.51i 0.343162i
$$617$$ 1353.40 781.388i 0.0883079 0.0509846i −0.455196 0.890391i $$-0.650431\pi$$
0.543504 + 0.839407i $$0.317097\pi$$
$$618$$ 6803.85 3928.20i 0.442866 0.255689i
$$619$$ 758.406i 0.0492454i 0.999697 + 0.0246227i $$0.00783844\pi$$
−0.999697 + 0.0246227i $$0.992162\pi$$
$$620$$ −18647.5 32298.4i −1.20790 2.09215i
$$621$$ 256.635 444.505i 0.0165836 0.0287236i
$$622$$ −21641.4 12494.6i −1.39508 0.805450i
$$623$$ −29066.7 −1.86923
$$624$$ −6410.01 4327.24i −0.411227 0.277610i
$$625$$ −19485.0 −1.24704
$$626$$ −3463.40 1999.59i −0.221127 0.127668i
$$627$$ −1638.75 + 2838.41i −0.104379 + 0.180789i
$$628$$ −12177.7 21092.4i −0.773795 1.34025i
$$629$$ 1877.15i 0.118994i
$$630$$ −13573.9 + 7836.91i −0.858410 + 0.495603i
$$631$$ −12354.0 + 7132.59i −0.779406 + 0.449990i −0.836220 0.548394i $$-0.815239\pi$$
0.0568136 + 0.998385i $$0.481906\pi$$
$$632$$ 3701.81i 0.232990i
$$633$$ −2809.28 4865.82i −0.176396 0.305527i
$$634$$ −18021.3 + 31213.9i −1.12889 + 1.95530i
$$635$$ −2877.23 1661.17i −0.179810 0.103813i
$$636$$ −11838.3 −0.738078
$$637$$ 2118.48 30127.0i 0.131770 1.87390i
$$638$$ 25732.0 1.59677
$$639$$ 3502.82 + 2022.35i 0.216854 + 0.125200i
$$640$$ −3519.44 + 6095.85i −0.217372 + 0.376500i
$$641$$ 1992.82 + 3451.67i 0.122795 + 0.212688i 0.920869 0.389872i $$-0.127481\pi$$
−0.798074 + 0.602560i $$0.794147\pi$$
$$642$$ 17914.8i 1.10131i
$$643$$ 7063.78 4078.28i 0.433232 0.250127i −0.267490 0.963561i $$-0.586194\pi$$
0.700723 + 0.713434i $$0.252861\pi$$
$$644$$ 4655.73 2687.98i 0.284878 0.164474i
$$645$$ 13796.8i 0.842243i
$$646$$ 2399.37 + 4155.83i 0.146133 + 0.253110i
$$647$$ 5639.62 9768.11i 0.342684 0.593546i −0.642246 0.766498i $$-0.721997\pi$$
0.984930 + 0.172953i $$0.0553307\pi$$
$$648$$ 289.228 + 166.986i 0.0175339 + 0.0101232i
$$649$$ −23915.2 −1.44646
$$650$$ 10737.5 + 755.041i 0.647935 + 0.0455617i
$$651$$ 29059.3 1.74950
$$652$$ 28669.1 + 16552.1i 1.72204 + 0.994219i
$$653$$ −3282.88 + 5686.11i −0.196736 + 0.340757i −0.947468 0.319850i $$-0.896368\pi$$
0.750732 + 0.660607i $$0.229701\pi$$
$$654$$ −2047.64 3546.62i −0.122430 0.212055i
$$655$$ 6348.06i 0.378686i
$$656$$ 2278.61 1315.56i 0.135617 0.0782986i
$$657$$ −3037.50 + 1753.70i −0.180372 + 0.104138i
$$658$$ 17291.5i 1.02446i
$$659$$ −2399.67 4156.36i −0.141848 0.245688i 0.786344 0.617788i $$-0.211971\pi$$
−0.928193 + 0.372100i $$0.878638\pi$$
$$660$$ −7348.92 + 12728.7i −0.433419 + 0.750703i
$$661$$ −13504.5 7796.80i −0.794648 0.458790i 0.0469482 0.998897i $$-0.485050\pi$$
−0.841596 + 0.540107i $$0.818384\pi$$
$$662$$ 28811.3 1.69151
$$663$$ −5453.48 + 2657.21i −0.319450 + 0.155652i
$$664$$ 5361.03 0.313326
$$665$$ 9868.41 + 5697.53i 0.575459 + 0.332242i
$$666$$ 807.313 1398.31i 0.0469711 0.0813563i
$$667$$ 1464.83 + 2537.16i 0.0850351 + 0.147285i
$$668$$ 29008.0i 1.68017i
$$669$$ −145.826 + 84.1925i −0.00842742 + 0.00486557i
$$670$$ 11056.3 6383.37i 0.637526 0.368076i
$$671$$ 21920.8i 1.26116i
$$672$$ −12243.0 21205.5i −0.702804 1.21729i
$$673$$ −1102.77 + 1910.06i −0.0631630 + 0.109402i −0.895878 0.444301i $$-0.853452\pi$$
0.832715 + 0.553702i $$0.186785\pi$$
$$674$$ −14842.0 8569.03i −0.848208 0.489713i
$$675$$ 1503.82 0.0857514
$$676$$ 19578.4 + 2767.13i 1.11393 + 0.157438i
$$677$$ −15046.4 −0.854182 −0.427091 0.904209i $$-0.640462\pi$$
−0.427091 + 0.904209i $$0.640462\pi$$
$$678$$ 7447.13 + 4299.60i 0.421837 + 0.243547i
$$679$$ −24516.8 + 42464.4i −1.38567 + 2.40005i
$$680$$ 1195.54 + 2070.74i 0.0674219 + 0.116778i
$$681$$ 2002.17i 0.112663i
$$682$$ 44576.0 25736.0i 2.50279 1.44499i
$$683$$ 26528.5 15316.3i 1.48622 0.858068i 0.486340 0.873770i $$-0.338332\pi$$
0.999877 + 0.0157020i $$0.00499830\pi$$
$$684$$ 2185.21i 0.122155i
$$685$$ 12304.5 + 21311.9i 0.686320 + 1.18874i
$$686$$ 19519.8 33809.3i 1.08640 1.88170i
$$687$$ 1879.19 + 1084.95i 0.104360 + 0.0602524i
$$688$$ 18816.7 1.04270
$$689$$ −18474.9 + 9001.90i −1.02153 + 0.497743i
$$690$$ −3160.85 −0.174393
$$691$$ 1884.22 + 1087.86i 0.103733 + 0.0598901i 0.550969 0.834526i $$-0.314258\pi$$
−0.447236 + 0.894416i $$0.647592\pi$$
$$692$$ 12102.9 20962.9i 0.664862 1.15157i
$$693$$ −5726.10 9917.89i −0.313876 0.543650i
$$694$$ 1288.52i 0.0704780i
$$695$$ 1164.14 672.118i 0.0635373 0.0366833i
$$696$$ −1650.86 + 953.127i −0.0899078 + 0.0519083i
$$697$$ 2063.82i 0.112156i
$$698$$ −9191.95 15920.9i −0.498453 0.863346i
$$699$$ 413.177 715.644i 0.0223574 0.0387241i
$$700$$ 13640.7 + 7875.49i 0.736531 + 0.425236i
$$701$$ 32718.2 1.76284 0.881419 0.472335i $$-0.156589\pi$$
0.881419 + 0.472335i $$0.156589\pi$$
$$702$$ 5205.14 + 366.017i 0.279851 + 0.0196787i
$$703$$ −1173.85 −0.0629768
$$704$$ −22129.6 12776.5i −1.18472 0.683997i
$$705$$ 2691.18 4661.26i 0.143767 0.249012i
$$706$$ 4636.79 + 8031.15i 0.247178 + 0.428125i
$$707$$ 30128.6i 1.60269i
$$708$$ 13808.7 7972.47i 0.733000 0.423197i
$$709$$ −21840.9 + 12609.8i −1.15691 + 0.667945i −0.950563 0.310533i $$-0.899492\pi$$
−0.206352 + 0.978478i $$0.566159\pi$$
$$710$$ 24908.3i 1.31661i
$$711$$ 4040.19 + 6997.81i 0.213107 + 0.369112i
$$712$$ 1907.03 3303.07i 0.100378 0.173859i
$$713$$ 5075.10 + 2930.11i 0.266569 + 0.153904i
$$714$$ −16767.7 −0.878871
$$715$$ −1789.79 + 25452.7i −0.0936146 + 1.33130i
$$716$$ −13716.4 −0.715929
$$717$$ 3973.48 + 2294.09i 0.206963 + 0.119490i
$$718$$ −16168.3 + 28004.4i −0.840385 + 1.45559i
$$719$$ −17733.1 30714.6i −0.919796 1.59313i −0.799724 0.600368i $$-0.795021\pi$$
−0.120071 0.992765i $$-0.538312\pi$$
$$720$$ 6653.97i 0.344415i
$$721$$ 17283.9 9978.85i 0.892767 0.515439i
$$722$$ 21892.7 12639.8i 1.12848 0.651529i
$$723$$ 2926.58i 0.150540i
$$724$$ −2145.97 3716.92i −0.110158 0.190799i
$$725$$ −4291.78 + 7433.59i −0.219852 + 0.380795i
$$726$$ −3309.41 1910.69i −0.169179 0.0976753i
$$727$$ 14262.2 0.727588 0.363794 0.931479i $$-0.381481\pi$$
0.363794 + 0.931479i $$0.381481\pi$$
$$728$$ 5033.05 + 3397.69i 0.256233 + 0.172976i
$$729$$ 729.000 0.0370370
$$730$$ 18705.7 + 10799.7i 0.948396 + 0.547557i
$$731$$ 7379.80 12782.2i 0.373395 0.646739i
$$732$$ 7307.61 + 12657.1i 0.368985 + 0.639101i
$$733$$ 16022.5i 0.807371i −0.914898 0.403685i $$-0.867729\pi$$
0.914898 0.403685i $$-0.132271\pi$$
$$734$$ 23781.8 13730.4i 1.19592 0.690463i
$$735$$ −22502.9 + 12992.1i −1.12930 + 0.651999i
$$736$$ 4937.96i 0.247304i
$$737$$ 4664.05 + 8078.38i 0.233111 + 0.403760i
$$738$$ −887.593 + 1537.36i −0.0442720 + 0.0766814i
$$739$$ −3287.61 1898.11i −0.163649 0.0944830i 0.415939 0.909393i $$-0.363453\pi$$
−0.579588 + 0.814910i $$0.696786\pi$$
$$740$$ −5264.09 −0.261502
$$741$$ −1661.65 3410.26i −0.0823782 0.169068i
$$742$$ −56804.3 −2.81044
$$743$$ −26266.0 15164.7i −1.29691 0.748772i −0.317042 0.948412i $$-0.602690\pi$$
−0.979869 + 0.199639i $$0.936023\pi$$
$$744$$ −1906.55 + 3302.24i −0.0939481 + 0.162723i
$$745$$ 1005.20 + 1741.05i 0.0494331 + 0.0856206i
$$746$$ 152.502i 0.00748460i
$$747$$ 10134.4 5851.09i 0.496382 0.286586i
$$748$$ −13617.0 + 7861.78i −0.665624 + 0.384298i
$$749$$ 45509.1i 2.22011i
$$750$$ 5761.59 + 9979.37i 0.280511 + 0.485860i
$$751$$ 10775.9 18664.5i 0.523595 0.906893i −0.476028 0.879430i $$-0.657924\pi$$
0.999623 0.0274629i $$-0.00874280\pi$$
$$752$$ 6357.25 + 3670.36i 0.308278 + 0.177984i
$$753$$ −5622.42 −0.272101
$$754$$ −16664.3 + 24685.1i −0.804877 + 1.19228i
$$755$$ −10754.3 −0.518397
$$756$$ 6612.55 + 3817.76i 0.318117 + 0.183665i
$$757$$ 10208.8 17682.2i 0.490153 0.848970i −0.509783 0.860303i $$-0.670274\pi$$
0.999936 + 0.0113335i $$0.00360764\pi$$
$$758$$ −24903.3 43133.7i −1.19331 2.06687i
$$759$$ 2309.50i 0.110447i
$$760$$ −1294.91 + 747.616i −0.0618043 + 0.0356828i
$$761$$ −27171.9 + 15687.7i −1.29432 + 0.747278i −0.979417 0.201845i $$-0.935306\pi$$
−0.314906 + 0.949123i $$0.601973\pi$$
$$762$$ 3057.13i 0.145339i
$$763$$ −5201.64 9009.50i −0.246805 0.427478i
$$764$$ −6163.84 + 10676.1i −0.291885 + 0.505559i
$$765$$ 4520.05 + 2609.65i 0.213625 + 0.123336i
$$766$$ −43570.5 −2.05518
$$767$$ 15487.7 22942.2i 0.729111 1.08004i
$$768$$ −8667.00 −0.407218
$$769$$ 10784.3 + 6226.33i 0.505712 + 0.291973i 0.731069 0.682303i $$-0.239022\pi$$
−0.225357 <