# Properties

 Label 39.4.j.b.10.1 Level $39$ Weight $4$ Character 39.10 Analytic conductor $2.301$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$39 = 3 \cdot 13$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 39.j (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.30107449022$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{-17})$$ Defining polynomial: $$x^{4} - 17x^{2} + 289$$ x^4 - 17*x^2 + 289 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 10.1 Root $$-3.57071 + 2.06155i$$ of defining polynomial Character $$\chi$$ $$=$$ 39.10 Dual form 39.4.j.b.4.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-3.57071 + 2.06155i) q^{2} +(1.50000 + 2.59808i) q^{3} +(4.50000 - 7.79423i) q^{4} +13.4424i q^{5} +(-10.7121 - 6.18466i) q^{6} +(-27.2121 - 15.7109i) q^{7} +4.12311i q^{8} +(-4.50000 + 7.79423i) q^{9} +O(q^{10})$$ $$q+(-3.57071 + 2.06155i) q^{2} +(1.50000 + 2.59808i) q^{3} +(4.50000 - 7.79423i) q^{4} +13.4424i q^{5} +(-10.7121 - 6.18466i) q^{6} +(-27.2121 - 15.7109i) q^{7} +4.12311i q^{8} +(-4.50000 + 7.79423i) q^{9} +(-27.7121 - 47.9988i) q^{10} +(-35.0707 + 20.2481i) q^{11} +27.0000 q^{12} +(42.1364 + 20.5310i) q^{13} +129.556 q^{14} +(-34.9243 + 20.1635i) q^{15} +(27.5000 + 47.6314i) q^{16} +(-21.5707 + 37.3616i) q^{17} -37.1080i q^{18} +(23.3636 + 13.4890i) q^{19} +(104.773 + 60.4906i) q^{20} -94.2656i q^{21} +(83.4850 - 144.600i) q^{22} +(-9.50500 - 16.4631i) q^{23} +(-10.7121 + 6.18466i) q^{24} -55.6971 q^{25} +(-192.783 + 13.5562i) q^{26} -27.0000 q^{27} +(-244.909 + 141.398i) q^{28} +(77.0557 + 133.464i) q^{29} +(83.1364 - 143.997i) q^{30} +308.270i q^{31} +(-224.955 - 129.878i) q^{32} +(-105.212 - 60.7443i) q^{33} -177.877i q^{34} +(211.192 - 365.796i) q^{35} +(40.5000 + 70.1481i) q^{36} +(-37.6821 + 21.7558i) q^{37} -111.233 q^{38} +(9.86357 + 140.270i) q^{39} -55.4243 q^{40} +(41.4293 - 23.9192i) q^{41} +(194.334 + 336.596i) q^{42} +(171.061 - 296.286i) q^{43} +364.466i q^{44} +(-104.773 - 60.4906i) q^{45} +(67.8793 + 39.1901i) q^{46} -133.468i q^{47} +(-82.5000 + 142.894i) q^{48} +(322.167 + 558.010i) q^{49} +(198.879 - 114.823i) q^{50} -129.424 q^{51} +(349.637 - 236.032i) q^{52} -438.454 q^{53} +(96.4093 - 55.6619i) q^{54} +(-272.182 - 471.433i) q^{55} +(64.7779 - 112.199i) q^{56} +80.9338i q^{57} +(-550.288 - 317.709i) q^{58} +(511.434 + 295.277i) q^{59} +362.944i q^{60} +(270.652 - 468.783i) q^{61} +(-635.516 - 1100.75i) q^{62} +(244.909 - 141.398i) q^{63} +631.000 q^{64} +(-275.985 + 566.413i) q^{65} +500.910 q^{66} +(-199.485 + 115.173i) q^{67} +(194.136 + 336.254i) q^{68} +(28.5150 - 49.3894i) q^{69} +1741.54i q^{70} +(-389.202 - 224.706i) q^{71} +(-32.1364 - 18.5540i) q^{72} +389.711i q^{73} +(89.7014 - 155.367i) q^{74} +(-83.5457 - 144.705i) q^{75} +(210.272 - 121.401i) q^{76} +1272.47 q^{77} +(-324.394 - 480.530i) q^{78} -897.820 q^{79} +(-640.279 + 369.665i) q^{80} +(-40.5000 - 70.1481i) q^{81} +(-98.6214 + 170.817i) q^{82} -1300.24i q^{83} +(-734.728 - 424.195i) q^{84} +(-502.228 - 289.961i) q^{85} +1410.60i q^{86} +(-231.167 + 400.393i) q^{87} +(-83.4850 - 144.600i) q^{88} +(801.113 - 462.523i) q^{89} +498.819 q^{90} +(-824.061 - 1220.69i) q^{91} -171.090 q^{92} +(-800.910 + 462.406i) q^{93} +(275.151 + 476.575i) q^{94} +(-181.324 + 314.062i) q^{95} -779.267i q^{96} +(1351.43 + 780.247i) q^{97} +(-2300.73 - 1328.33i) q^{98} -364.466i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 6 q^{3} + 18 q^{4} - 66 q^{7} - 18 q^{9}+O(q^{10})$$ 4 * q + 6 * q^3 + 18 * q^4 - 66 * q^7 - 18 * q^9 $$4 q + 6 q^{3} + 18 q^{4} - 66 q^{7} - 18 q^{9} - 68 q^{10} - 126 q^{11} + 108 q^{12} + 40 q^{13} + 204 q^{14} - 54 q^{15} + 110 q^{16} - 72 q^{17} + 222 q^{19} + 162 q^{20} + 34 q^{22} - 138 q^{23} + 120 q^{25} - 714 q^{26} - 108 q^{27} - 594 q^{28} - 6 q^{29} + 204 q^{30} - 378 q^{33} + 402 q^{35} + 162 q^{36} + 492 q^{37} + 612 q^{38} + 168 q^{39} - 136 q^{40} + 180 q^{41} + 306 q^{42} + 470 q^{43} - 162 q^{45} - 714 q^{46} - 330 q^{48} + 346 q^{49} + 1224 q^{50} - 432 q^{51} - 144 q^{52} - 2268 q^{53} - 446 q^{55} + 102 q^{56} - 2244 q^{58} + 2160 q^{59} - 160 q^{61} - 1428 q^{62} + 594 q^{63} + 2524 q^{64} - 804 q^{65} + 204 q^{66} - 498 q^{67} + 648 q^{68} + 414 q^{69} - 1314 q^{71} + 1530 q^{74} + 180 q^{75} + 1998 q^{76} + 2976 q^{77} - 612 q^{78} + 8 q^{79} - 990 q^{80} - 162 q^{81} + 34 q^{82} - 1782 q^{84} - 852 q^{85} + 18 q^{87} - 34 q^{88} - 252 q^{89} + 1224 q^{90} - 1668 q^{91} - 2484 q^{92} - 1404 q^{93} + 2686 q^{94} - 54 q^{95} - 336 q^{97} - 6732 q^{98}+O(q^{100})$$ 4 * q + 6 * q^3 + 18 * q^4 - 66 * q^7 - 18 * q^9 - 68 * q^10 - 126 * q^11 + 108 * q^12 + 40 * q^13 + 204 * q^14 - 54 * q^15 + 110 * q^16 - 72 * q^17 + 222 * q^19 + 162 * q^20 + 34 * q^22 - 138 * q^23 + 120 * q^25 - 714 * q^26 - 108 * q^27 - 594 * q^28 - 6 * q^29 + 204 * q^30 - 378 * q^33 + 402 * q^35 + 162 * q^36 + 492 * q^37 + 612 * q^38 + 168 * q^39 - 136 * q^40 + 180 * q^41 + 306 * q^42 + 470 * q^43 - 162 * q^45 - 714 * q^46 - 330 * q^48 + 346 * q^49 + 1224 * q^50 - 432 * q^51 - 144 * q^52 - 2268 * q^53 - 446 * q^55 + 102 * q^56 - 2244 * q^58 + 2160 * q^59 - 160 * q^61 - 1428 * q^62 + 594 * q^63 + 2524 * q^64 - 804 * q^65 + 204 * q^66 - 498 * q^67 + 648 * q^68 + 414 * q^69 - 1314 * q^71 + 1530 * q^74 + 180 * q^75 + 1998 * q^76 + 2976 * q^77 - 612 * q^78 + 8 * q^79 - 990 * q^80 - 162 * q^81 + 34 * q^82 - 1782 * q^84 - 852 * q^85 + 18 * q^87 - 34 * q^88 - 252 * q^89 + 1224 * q^90 - 1668 * q^91 - 2484 * q^92 - 1404 * q^93 + 2686 * q^94 - 54 * q^95 - 336 * q^97 - 6732 * q^98

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/39\mathbb{Z}\right)^\times$$.

 $$n$$ $$14$$ $$28$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −3.57071 + 2.06155i −1.26244 + 0.728869i −0.973546 0.228493i $$-0.926620\pi$$
−0.288892 + 0.957362i $$0.593287\pi$$
$$3$$ 1.50000 + 2.59808i 0.288675 + 0.500000i
$$4$$ 4.50000 7.79423i 0.562500 0.974279i
$$5$$ 13.4424i 1.20232i 0.799128 + 0.601161i $$0.205295\pi$$
−0.799128 + 0.601161i $$0.794705\pi$$
$$6$$ −10.7121 6.18466i −0.728869 0.420813i
$$7$$ −27.2121 15.7109i −1.46932 0.848311i −0.469910 0.882715i $$-0.655713\pi$$
−0.999408 + 0.0344037i $$0.989047\pi$$
$$8$$ 4.12311i 0.182217i
$$9$$ −4.50000 + 7.79423i −0.166667 + 0.288675i
$$10$$ −27.7121 47.9988i −0.876335 1.51786i
$$11$$ −35.0707 + 20.2481i −0.961293 + 0.555003i −0.896571 0.442901i $$-0.853949\pi$$
−0.0647219 + 0.997903i $$0.520616\pi$$
$$12$$ 27.0000 0.649519
$$13$$ 42.1364 + 20.5310i 0.898965 + 0.438021i
$$14$$ 129.556 2.47323
$$15$$ −34.9243 + 20.1635i −0.601161 + 0.347080i
$$16$$ 27.5000 + 47.6314i 0.429688 + 0.744241i
$$17$$ −21.5707 + 37.3616i −0.307745 + 0.533030i −0.977869 0.209219i $$-0.932908\pi$$
0.670124 + 0.742249i $$0.266241\pi$$
$$18$$ 37.1080i 0.485913i
$$19$$ 23.3636 + 13.4890i 0.282104 + 0.162873i 0.634375 0.773025i $$-0.281257\pi$$
−0.352272 + 0.935898i $$0.614591\pi$$
$$20$$ 104.773 + 60.4906i 1.17140 + 0.676306i
$$21$$ 94.2656i 0.979545i
$$22$$ 83.4850 144.600i 0.809048 1.40131i
$$23$$ −9.50500 16.4631i −0.0861709 0.149252i 0.819719 0.572766i $$-0.194130\pi$$
−0.905890 + 0.423514i $$0.860796\pi$$
$$24$$ −10.7121 + 6.18466i −0.0911086 + 0.0526016i
$$25$$ −55.6971 −0.445577
$$26$$ −192.783 + 13.5562i −1.45415 + 0.102253i
$$27$$ −27.0000 −0.192450
$$28$$ −244.909 + 141.398i −1.65298 + 0.954350i
$$29$$ 77.0557 + 133.464i 0.493410 + 0.854611i 0.999971 0.00759297i $$-0.00241694\pi$$
−0.506561 + 0.862204i $$0.669084\pi$$
$$30$$ 83.1364 143.997i 0.505952 0.876335i
$$31$$ 308.270i 1.78603i 0.450025 + 0.893016i $$0.351415\pi$$
−0.450025 + 0.893016i $$0.648585\pi$$
$$32$$ −224.955 129.878i −1.24271 0.717480i
$$33$$ −105.212 60.7443i −0.555003 0.320431i
$$34$$ 177.877i 0.897223i
$$35$$ 211.192 365.796i 1.01994 1.76659i
$$36$$ 40.5000 + 70.1481i 0.187500 + 0.324760i
$$37$$ −37.6821 + 21.7558i −0.167430 + 0.0966657i −0.581373 0.813637i $$-0.697484\pi$$
0.413944 + 0.910303i $$0.364151\pi$$
$$38$$ −111.233 −0.474851
$$39$$ 9.86357 + 140.270i 0.0404983 + 0.575928i
$$40$$ −55.4243 −0.219084
$$41$$ 41.4293 23.9192i 0.157809 0.0911110i −0.419016 0.907979i $$-0.637625\pi$$
0.576825 + 0.816868i $$0.304292\pi$$
$$42$$ 194.334 + 336.596i 0.713960 + 1.23662i
$$43$$ 171.061 296.286i 0.606663 1.05077i −0.385123 0.922865i $$-0.625841\pi$$
0.991786 0.127906i $$-0.0408256\pi$$
$$44$$ 364.466i 1.24876i
$$45$$ −104.773 60.4906i −0.347080 0.200387i
$$46$$ 67.8793 + 39.1901i 0.217571 + 0.125615i
$$47$$ 133.468i 0.414218i −0.978318 0.207109i $$-0.933594\pi$$
0.978318 0.207109i $$-0.0664055\pi$$
$$48$$ −82.5000 + 142.894i −0.248080 + 0.429688i
$$49$$ 322.167 + 558.010i 0.939263 + 1.62685i
$$50$$ 198.879 114.823i 0.562514 0.324767i
$$51$$ −129.424 −0.355353
$$52$$ 349.637 236.032i 0.932422 0.629455i
$$53$$ −438.454 −1.13635 −0.568173 0.822909i $$-0.692350\pi$$
−0.568173 + 0.822909i $$0.692350\pi$$
$$54$$ 96.4093 55.6619i 0.242956 0.140271i
$$55$$ −272.182 471.433i −0.667291 1.15578i
$$56$$ 64.7779 112.199i 0.154577 0.267735i
$$57$$ 80.9338i 0.188069i
$$58$$ −550.288 317.709i −1.24580 0.719262i
$$59$$ 511.434 + 295.277i 1.12853 + 0.651555i 0.943564 0.331190i $$-0.107450\pi$$
0.184963 + 0.982746i $$0.440784\pi$$
$$60$$ 362.944i 0.780931i
$$61$$ 270.652 468.783i 0.568089 0.983960i −0.428665 0.903463i $$-0.641016\pi$$
0.996755 0.0804965i $$-0.0256506\pi$$
$$62$$ −635.516 1100.75i −1.30178 2.25476i
$$63$$ 244.909 141.398i 0.489773 0.282770i
$$64$$ 631.000 1.23242
$$65$$ −275.985 + 566.413i −0.526642 + 1.08084i
$$66$$ 500.910 0.934208
$$67$$ −199.485 + 115.173i −0.363746 + 0.210009i −0.670723 0.741708i $$-0.734016\pi$$
0.306977 + 0.951717i $$0.400683\pi$$
$$68$$ 194.136 + 336.254i 0.346213 + 0.599659i
$$69$$ 28.5150 49.3894i 0.0497508 0.0861709i
$$70$$ 1741.54i 2.97362i
$$71$$ −389.202 224.706i −0.650561 0.375601i 0.138110 0.990417i $$-0.455897\pi$$
−0.788671 + 0.614816i $$0.789230\pi$$
$$72$$ −32.1364 18.5540i −0.0526016 0.0303695i
$$73$$ 389.711i 0.624826i 0.949946 + 0.312413i $$0.101137\pi$$
−0.949946 + 0.312413i $$0.898863\pi$$
$$74$$ 89.7014 155.367i 0.140913 0.244069i
$$75$$ −83.5457 144.705i −0.128627 0.222789i
$$76$$ 210.272 121.401i 0.317367 0.183232i
$$77$$ 1272.47 1.88326
$$78$$ −324.394 480.530i −0.470903 0.697556i
$$79$$ −897.820 −1.27864 −0.639321 0.768940i $$-0.720784\pi$$
−0.639321 + 0.768940i $$0.720784\pi$$
$$80$$ −640.279 + 369.665i −0.894816 + 0.516623i
$$81$$ −40.5000 70.1481i −0.0555556 0.0962250i
$$82$$ −98.6214 + 170.817i −0.132816 + 0.230044i
$$83$$ 1300.24i 1.71952i −0.510700 0.859759i $$-0.670614\pi$$
0.510700 0.859759i $$-0.329386\pi$$
$$84$$ −734.728 424.195i −0.954350 0.550994i
$$85$$ −502.228 289.961i −0.640874 0.370009i
$$86$$ 1410.60i 1.76871i
$$87$$ −231.167 + 400.393i −0.284870 + 0.493410i
$$88$$ −83.4850 144.600i −0.101131 0.175164i
$$89$$ 801.113 462.523i 0.954132 0.550869i 0.0597703 0.998212i $$-0.480963\pi$$
0.894362 + 0.447344i $$0.147630\pi$$
$$90$$ 498.819 0.584223
$$91$$ −824.061 1220.69i −0.949287 1.40619i
$$92$$ −171.090 −0.193884
$$93$$ −800.910 + 462.406i −0.893016 + 0.515583i
$$94$$ 275.151 + 476.575i 0.301911 + 0.522925i
$$95$$ −181.324 + 314.062i −0.195825 + 0.339179i
$$96$$ 779.267i 0.828475i
$$97$$ 1351.43 + 780.247i 1.41460 + 0.816722i 0.995818 0.0913623i $$-0.0291221\pi$$
0.418787 + 0.908085i $$0.362455\pi$$
$$98$$ −2300.73 1328.33i −2.37152 1.36920i
$$99$$ 364.466i 0.370002i
$$100$$ −250.637 + 434.116i −0.250637 + 0.434116i
$$101$$ 479.420 + 830.380i 0.472318 + 0.818078i 0.999498 0.0316752i $$-0.0100842\pi$$
−0.527181 + 0.849753i $$0.676751\pi$$
$$102$$ 462.137 266.815i 0.448612 0.259006i
$$103$$ −635.153 −0.607606 −0.303803 0.952735i $$-0.598257\pi$$
−0.303803 + 0.952735i $$0.598257\pi$$
$$104$$ −84.6514 + 173.733i −0.0798150 + 0.163807i
$$105$$ 1267.15 1.17773
$$106$$ 1565.59 903.897i 1.43457 0.828247i
$$107$$ 724.162 + 1254.29i 0.654275 + 1.13324i 0.982075 + 0.188490i $$0.0603593\pi$$
−0.327800 + 0.944747i $$0.606307\pi$$
$$108$$ −121.500 + 210.444i −0.108253 + 0.187500i
$$109$$ 331.084i 0.290937i −0.989363 0.145468i $$-0.953531\pi$$
0.989363 0.145468i $$-0.0464689\pi$$
$$110$$ 1943.77 + 1122.24i 1.68483 + 0.972736i
$$111$$ −113.046 65.2674i −0.0966657 0.0558100i
$$112$$ 1728.20i 1.45803i
$$113$$ −347.602 + 602.065i −0.289378 + 0.501217i −0.973661 0.227999i $$-0.926782\pi$$
0.684284 + 0.729216i $$0.260115\pi$$
$$114$$ −166.849 288.991i −0.137078 0.237426i
$$115$$ 221.304 127.770i 0.179449 0.103605i
$$116$$ 1387.00 1.11017
$$117$$ −349.637 + 236.032i −0.276273 + 0.186505i
$$118$$ −2434.91 −1.89959
$$119$$ 1173.97 677.792i 0.904351 0.522127i
$$120$$ −83.1364 143.997i −0.0632440 0.109542i
$$121$$ 154.470 267.550i 0.116056 0.201014i
$$122$$ 2231.85i 1.65625i
$$123$$ 124.288 + 71.7576i 0.0911110 + 0.0526030i
$$124$$ 2402.73 + 1387.22i 1.74009 + 1.00464i
$$125$$ 931.594i 0.666595i
$$126$$ −583.001 + 1009.79i −0.412205 + 0.713960i
$$127$$ 123.577 + 214.042i 0.0863441 + 0.149552i 0.905963 0.423357i $$-0.139148\pi$$
−0.819619 + 0.572909i $$0.805815\pi$$
$$128$$ −453.481 + 261.817i −0.313144 + 0.180794i
$$129$$ 1026.36 0.700514
$$130$$ −182.227 2591.46i −0.122941 1.74835i
$$131$$ 472.243 0.314962 0.157481 0.987522i $$-0.449663\pi$$
0.157481 + 0.987522i $$0.449663\pi$$
$$132$$ −946.909 + 546.698i −0.624378 + 0.360485i
$$133$$ −423.849 734.127i −0.276333 0.478623i
$$134$$ 474.869 822.498i 0.306138 0.530246i
$$135$$ 362.944i 0.231387i
$$136$$ −154.046 88.9383i −0.0971273 0.0560765i
$$137$$ −1585.43 915.349i −0.988704 0.570829i −0.0838175 0.996481i $$-0.526711\pi$$
−0.904887 + 0.425652i $$0.860045\pi$$
$$138$$ 235.141i 0.145047i
$$139$$ 50.0000 86.6025i 0.0305104 0.0528456i −0.850367 0.526190i $$-0.823620\pi$$
0.880877 + 0.473344i $$0.156953\pi$$
$$140$$ −1900.73 3292.16i −1.14744 1.98742i
$$141$$ 346.759 200.202i 0.207109 0.119575i
$$142$$ 1852.97 1.09506
$$143$$ −1893.47 + 133.146i −1.10727 + 0.0778615i
$$144$$ −495.000 −0.286458
$$145$$ −1794.08 + 1035.81i −1.02752 + 0.593237i
$$146$$ −803.411 1391.55i −0.455416 0.788804i
$$147$$ −966.501 + 1674.03i −0.542284 + 0.939263i
$$148$$ 391.604i 0.217498i
$$149$$ −129.520 74.7784i −0.0712127 0.0411147i 0.463971 0.885850i $$-0.346424\pi$$
−0.535184 + 0.844736i $$0.679758\pi$$
$$150$$ 596.636 + 344.468i 0.324767 + 0.187505i
$$151$$ 800.032i 0.431163i 0.976486 + 0.215582i $$0.0691647\pi$$
−0.976486 + 0.215582i $$0.930835\pi$$
$$152$$ −55.6164 + 96.3305i −0.0296782 + 0.0514042i
$$153$$ −194.136 336.254i −0.102582 0.177677i
$$154$$ −4543.61 + 2623.26i −2.37750 + 1.37265i
$$155$$ −4143.88 −2.14739
$$156$$ 1137.68 + 554.337i 0.583895 + 0.284503i
$$157$$ −2706.16 −1.37564 −0.687818 0.725884i $$-0.741431\pi$$
−0.687818 + 0.725884i $$0.741431\pi$$
$$158$$ 3205.86 1850.90i 1.61421 0.931962i
$$159$$ −657.681 1139.14i −0.328035 0.568173i
$$160$$ 1745.86 3023.93i 0.862642 1.49414i
$$161$$ 597.330i 0.292399i
$$162$$ 289.228 + 166.986i 0.140271 + 0.0809854i
$$163$$ 3185.46 + 1839.12i 1.53070 + 0.883750i 0.999330 + 0.0366108i $$0.0116562\pi$$
0.531371 + 0.847139i $$0.321677\pi$$
$$164$$ 430.546i 0.205000i
$$165$$ 816.546 1414.30i 0.385261 0.667291i
$$166$$ 2680.52 + 4642.79i 1.25330 + 2.17079i
$$167$$ 2791.30 1611.56i 1.29339 0.746742i 0.314140 0.949377i $$-0.398284\pi$$
0.979254 + 0.202635i $$0.0649504\pi$$
$$168$$ 388.667 0.178490
$$169$$ 1353.96 + 1730.20i 0.616275 + 0.787531i
$$170$$ 2391.08 1.07875
$$171$$ −210.272 + 121.401i −0.0940346 + 0.0542909i
$$172$$ −1539.55 2666.57i −0.682496 1.18212i
$$173$$ −1344.77 + 2329.21i −0.590988 + 1.02362i 0.403111 + 0.915151i $$0.367929\pi$$
−0.994100 + 0.108471i $$0.965405\pi$$
$$174$$ 1906.25i 0.830533i
$$175$$ 1515.64 + 875.054i 0.654694 + 0.377988i
$$176$$ −1928.89 1113.64i −0.826111 0.476955i
$$177$$ 1771.66i 0.752351i
$$178$$ −1907.03 + 3303.07i −0.803022 + 1.39088i
$$179$$ −762.021 1319.86i −0.318191 0.551122i 0.661920 0.749574i $$-0.269742\pi$$
−0.980111 + 0.198452i $$0.936409\pi$$
$$180$$ −942.956 + 544.416i −0.390465 + 0.225435i
$$181$$ −476.881 −0.195836 −0.0979180 0.995194i $$-0.531218\pi$$
−0.0979180 + 0.995194i $$0.531218\pi$$
$$182$$ 5459.01 + 2659.91i 2.22335 + 1.08333i
$$183$$ 1623.91 0.655973
$$184$$ 67.8793 39.1901i 0.0271963 0.0157018i
$$185$$ −292.449 506.537i −0.116223 0.201305i
$$186$$ 1906.55 3302.24i 0.751585 1.30178i
$$187$$ 1747.06i 0.683197i
$$188$$ −1040.28 600.605i −0.403564 0.232998i
$$189$$ 734.728 + 424.195i 0.282770 + 0.163258i
$$190$$ 1495.23i 0.570924i
$$191$$ 684.871 1186.23i 0.259453 0.449386i −0.706642 0.707571i $$-0.749791\pi$$
0.966096 + 0.258185i $$0.0831243\pi$$
$$192$$ 946.500 + 1639.39i 0.355770 + 0.616211i
$$193$$ 1857.38 1072.36i 0.692732 0.399949i −0.111903 0.993719i $$-0.535695\pi$$
0.804635 + 0.593770i $$0.202361\pi$$
$$194$$ −6434.08 −2.38113
$$195$$ −1885.56 + 132.590i −0.692451 + 0.0486920i
$$196$$ 5799.01 2.11334
$$197$$ −207.620 + 119.869i −0.0750879 + 0.0433520i −0.537074 0.843535i $$-0.680470\pi$$
0.461986 + 0.886887i $$0.347137\pi$$
$$198$$ 751.365 + 1301.40i 0.269683 + 0.467104i
$$199$$ −794.969 + 1376.93i −0.283185 + 0.490491i −0.972167 0.234287i $$-0.924724\pi$$
0.688982 + 0.724778i $$0.258058\pi$$
$$200$$ 229.645i 0.0811918i
$$201$$ −598.455 345.518i −0.210009 0.121249i
$$202$$ −3423.74 1976.70i −1.19254 0.688515i
$$203$$ 4842.47i 1.67426i
$$204$$ −582.409 + 1008.76i −0.199886 + 0.346213i
$$205$$ 321.531 + 556.908i 0.109545 + 0.189737i
$$206$$ 2267.95 1309.40i 0.767066 0.442866i
$$207$$ 171.090 0.0574472
$$208$$ 180.832 + 2571.62i 0.0602810 + 0.857258i
$$209$$ −1092.50 −0.361579
$$210$$ −4524.64 + 2612.30i −1.48681 + 0.858410i
$$211$$ 936.427 + 1621.94i 0.305527 + 0.529189i 0.977379 0.211497i $$-0.0678339\pi$$
−0.671851 + 0.740686i $$0.734501\pi$$
$$212$$ −1973.04 + 3417.41i −0.639195 + 1.10712i
$$213$$ 1348.24i 0.433707i
$$214$$ −5171.55 2985.80i −1.65196 0.953761i
$$215$$ 3982.78 + 2299.46i 1.26337 + 0.729404i
$$216$$ 111.324i 0.0350677i
$$217$$ 4843.22 8388.70i 1.51511 2.62425i
$$218$$ 682.547 + 1182.21i 0.212055 + 0.367290i
$$219$$ −1012.50 + 584.567i −0.312413 + 0.180372i
$$220$$ −4899.28 −1.50141
$$221$$ −1675.98 + 1131.42i −0.510130 + 0.344377i
$$222$$ 538.209 0.162713
$$223$$ −48.6085 + 28.0642i −0.0145967 + 0.00842742i −0.507281 0.861781i $$-0.669349\pi$$
0.492684 + 0.870208i $$0.336016\pi$$
$$224$$ 4081.00 + 7068.51i 1.21729 + 2.10841i
$$225$$ 250.637 434.116i 0.0742629 0.128627i
$$226$$ 2866.40i 0.843673i
$$227$$ 577.976 + 333.695i 0.168994 + 0.0975687i 0.582111 0.813109i $$-0.302227\pi$$
−0.413117 + 0.910678i $$0.635560\pi$$
$$228$$ 630.816 + 364.202i 0.183232 + 0.105789i
$$229$$ 723.299i 0.208720i −0.994540 0.104360i $$-0.966721\pi$$
0.994540 0.104360i $$-0.0332795\pi$$
$$230$$ −526.808 + 912.458i −0.151029 + 0.261590i
$$231$$ 1908.70 + 3305.96i 0.543650 + 0.941629i
$$232$$ −550.288 + 317.709i −0.155725 + 0.0899078i
$$233$$ 275.451 0.0774482 0.0387241 0.999250i $$-0.487671\pi$$
0.0387241 + 0.999250i $$0.487671\pi$$
$$234$$ 761.863 1563.60i 0.212840 0.436818i
$$235$$ 1794.12 0.498024
$$236$$ 4602.91 2657.49i 1.26959 0.733000i
$$237$$ −1346.73 2332.60i −0.369112 0.639321i
$$238$$ −2794.61 + 4840.41i −0.761124 + 1.31831i
$$239$$ 1529.39i 0.413925i −0.978349 0.206963i $$-0.933642\pi$$
0.978349 0.206963i $$-0.0663579\pi$$
$$240$$ −1920.84 1109.00i −0.516623 0.298272i
$$241$$ 844.830 + 487.763i 0.225810 + 0.130372i 0.608638 0.793448i $$-0.291716\pi$$
−0.382827 + 0.923820i $$0.625050\pi$$
$$242$$ 1273.79i 0.338357i
$$243$$ 121.500 210.444i 0.0320750 0.0555556i
$$244$$ −2435.87 4219.05i −0.639101 1.10695i
$$245$$ −7500.97 + 4330.69i −1.95600 + 1.12930i
$$246$$ −591.729 −0.153363
$$247$$ 707.516 + 1048.05i 0.182260 + 0.269984i
$$248$$ −1271.03 −0.325446
$$249$$ 3378.13 1950.36i 0.859759 0.496382i
$$250$$ −1920.53 3326.46i −0.485860 0.841534i
$$251$$ −937.070 + 1623.05i −0.235647 + 0.408152i −0.959460 0.281843i $$-0.909054\pi$$
0.723814 + 0.689995i $$0.242387\pi$$
$$252$$ 2545.17i 0.636233i
$$253$$ 666.694 + 384.916i 0.165671 + 0.0956501i
$$254$$ −882.517 509.522i −0.218008 0.125867i
$$255$$ 1739.77i 0.427249i
$$256$$ −1444.50 + 2501.95i −0.352661 + 0.610827i
$$257$$ −909.094 1574.60i −0.220653 0.382181i 0.734354 0.678767i $$-0.237485\pi$$
−0.955006 + 0.296586i $$0.904152\pi$$
$$258$$ −3664.85 + 2115.90i −0.884356 + 0.510583i
$$259$$ 1367.22 0.328010
$$260$$ 3172.82 + 4699.95i 0.756808 + 1.12107i
$$261$$ −1387.00 −0.328940
$$262$$ −1686.24 + 973.554i −0.397620 + 0.229566i
$$263$$ −336.899 583.527i −0.0789890 0.136813i 0.823825 0.566844i $$-0.191836\pi$$
−0.902814 + 0.430031i $$0.858503\pi$$
$$264$$ 250.455 433.801i 0.0583880 0.101131i
$$265$$ 5893.86i 1.36625i
$$266$$ 3026.88 + 1747.57i 0.697707 + 0.402822i
$$267$$ 2403.34 + 1387.57i 0.550869 + 0.318044i
$$268$$ 2073.11i 0.472520i
$$269$$ 1678.20 2906.73i 0.380378 0.658834i −0.610738 0.791833i $$-0.709127\pi$$
0.991116 + 0.132998i $$0.0424605\pi$$
$$270$$ 748.228 + 1295.97i 0.168651 + 0.292112i
$$271$$ −7721.09 + 4457.77i −1.73071 + 0.999227i −0.845699 + 0.533660i $$0.820816\pi$$
−0.885013 + 0.465567i $$0.845850\pi$$
$$272$$ −2372.78 −0.528937
$$273$$ 1935.37 3972.02i 0.429061 0.880577i
$$274$$ 7548.16 1.66424
$$275$$ 1953.34 1127.76i 0.428330 0.247296i
$$276$$ −256.635 444.505i −0.0559696 0.0969422i
$$277$$ 2008.65 3479.09i 0.435698 0.754651i −0.561654 0.827372i $$-0.689835\pi$$
0.997352 + 0.0727208i $$0.0231682\pi$$
$$278$$ 412.311i 0.0889523i
$$279$$ −2402.73 1387.22i −0.515583 0.297672i
$$280$$ 1508.21 + 870.768i 0.321904 + 0.185851i
$$281$$ 1841.12i 0.390860i −0.980718 0.195430i $$-0.937390\pi$$
0.980718 0.195430i $$-0.0626103\pi$$
$$282$$ −825.452 + 1429.73i −0.174308 + 0.301911i
$$283$$ 2424.70 + 4199.70i 0.509305 + 0.882143i 0.999942 + 0.0107784i $$0.00343094\pi$$
−0.490637 + 0.871364i $$0.663236\pi$$
$$284$$ −3502.82 + 2022.35i −0.731881 + 0.422551i
$$285$$ −1087.94 −0.226120
$$286$$ 6486.55 4378.91i 1.34111 0.905351i
$$287$$ −1503.17 −0.309162
$$288$$ 2024.59 1168.90i 0.414238 0.239160i
$$289$$ 1525.91 + 2642.95i 0.310586 + 0.537951i
$$290$$ 4270.76 7397.17i 0.864785 1.49785i
$$291$$ 4681.48i 0.943070i
$$292$$ 3037.50 + 1753.70i 0.608754 + 0.351464i
$$293$$ −1224.43 706.927i −0.244137 0.140953i 0.372940 0.927856i $$-0.378350\pi$$
−0.617077 + 0.786903i $$0.711683\pi$$
$$294$$ 7969.97i 1.58101i
$$295$$ −3969.22 + 6874.89i −0.783379 + 1.35685i
$$296$$ −89.7014 155.367i −0.0176142 0.0305086i
$$297$$ 946.909 546.698i 0.185001 0.106810i
$$298$$ 616.639 0.119869
$$299$$ −62.5022 888.845i −0.0120889 0.171917i
$$300$$ −1503.82 −0.289411
$$301$$ −9309.86 + 5375.05i −1.78276 + 1.02928i
$$302$$ −1649.31 2856.68i −0.314262 0.544317i
$$303$$ −1438.26 + 2491.14i −0.272693 + 0.472318i
$$304$$ 1483.79i 0.279937i
$$305$$ 6301.55 + 3638.20i 1.18304 + 0.683026i
$$306$$ 1386.41 + 800.445i 0.259006 + 0.149537i
$$307$$ 4625.64i 0.859932i 0.902845 + 0.429966i $$0.141474\pi$$
−0.902845 + 0.429966i $$0.858526\pi$$
$$308$$ 5726.10 9917.89i 1.05933 1.83482i
$$309$$ −952.729 1650.18i −0.175401 0.303803i
$$310$$ 14796.6 8542.83i 2.71094 1.56516i
$$311$$ 6060.79 1.10507 0.552534 0.833490i $$-0.313661\pi$$
0.552534 + 0.833490i $$0.313661\pi$$
$$312$$ −578.349 + 40.6685i −0.104944 + 0.00737950i
$$313$$ 969.946 0.175158 0.0875792 0.996158i $$-0.472087\pi$$
0.0875792 + 0.996158i $$0.472087\pi$$
$$314$$ 9662.91 5578.88i 1.73665 1.00266i
$$315$$ 1900.73 + 3292.16i 0.339981 + 0.588864i
$$316$$ −4040.19 + 6997.81i −0.719236 + 1.24575i
$$317$$ 8741.63i 1.54883i 0.632679 + 0.774414i $$0.281955\pi$$
−0.632679 + 0.774414i $$0.718045\pi$$
$$318$$ 4696.78 + 2711.69i 0.828247 + 0.478189i
$$319$$ −5404.80 3120.46i −0.948623 0.547687i
$$320$$ 8482.13i 1.48177i
$$321$$ −2172.49 + 3762.86i −0.377746 + 0.654275i
$$322$$ −1231.43 2132.89i −0.213120 0.369135i
$$323$$ −1007.94 + 581.933i −0.173632 + 0.100247i
$$324$$ −729.000 −0.125000
$$325$$ −2346.88 1143.52i −0.400558 0.195172i
$$326$$ −15165.8 −2.57655
$$327$$ 860.181 496.626i 0.145468 0.0839862i
$$328$$ 98.6214 + 170.817i 0.0166020 + 0.0287555i
$$329$$ −2096.90 + 3631.94i −0.351386 + 0.608618i
$$330$$ 6733.41i 1.12322i
$$331$$ −6051.57 3493.88i −1.00491 0.580184i −0.0952114 0.995457i $$-0.530353\pi$$
−0.909697 + 0.415273i $$0.863686\pi$$
$$332$$ −10134.4 5851.09i −1.67529 0.967229i
$$333$$ 391.604i 0.0644438i
$$334$$ −6644.61 + 11508.8i −1.08855 + 1.88543i
$$335$$ −1548.19 2681.55i −0.252498 0.437339i
$$336$$ 4490.00 2592.30i 0.729017 0.420898i
$$337$$ 4156.59 0.671881 0.335940 0.941883i $$-0.390946\pi$$
0.335940 + 0.941883i $$0.390946\pi$$
$$338$$ −8401.50 3386.81i −1.35202 0.545025i
$$339$$ −2085.61 −0.334144
$$340$$ −4520.05 + 2609.65i −0.720983 + 0.416260i
$$341$$ −6241.89 10811.3i −0.991252 1.71690i
$$342$$ 500.548 866.974i 0.0791419 0.137078i
$$343$$ 9468.49i 1.49053i
$$344$$ 1221.62 + 705.301i 0.191469 + 0.110544i
$$345$$ 663.911 + 383.309i 0.103605 + 0.0598164i
$$346$$ 11089.3i 1.72301i
$$347$$ 156.256 270.644i 0.0241737 0.0418701i −0.853685 0.520789i $$-0.825638\pi$$
0.877859 + 0.478919i $$0.158971\pi$$
$$348$$ 2080.50 + 3603.54i 0.320479 + 0.555086i
$$349$$ 3861.39 2229.37i 0.592251 0.341936i −0.173736 0.984792i $$-0.555584\pi$$
0.765987 + 0.642856i $$0.222251\pi$$
$$350$$ −7215.88 −1.10201
$$351$$ −1137.68 554.337i −0.173006 0.0842972i
$$352$$ 10519.1 1.59281
$$353$$ −1947.84 + 1124.59i −0.293692 + 0.169563i −0.639605 0.768703i $$-0.720902\pi$$
0.345914 + 0.938266i $$0.387569\pi$$
$$354$$ −3652.37 6326.09i −0.548365 0.949797i
$$355$$ 3020.58 5231.80i 0.451594 0.782183i
$$356$$ 8325.41i 1.23945i
$$357$$ 3521.91 + 2033.38i 0.522127 + 0.301450i
$$358$$ 5441.92 + 3141.89i 0.803392 + 0.463838i
$$359$$ 7842.79i 1.15300i 0.817098 + 0.576499i $$0.195582\pi$$
−0.817098 + 0.576499i $$0.804418\pi$$
$$360$$ 249.409 431.990i 0.0365140 0.0632440i
$$361$$ −3065.60 5309.77i −0.446945 0.774131i
$$362$$ 1702.81 983.116i 0.247231 0.142739i
$$363$$ 926.820 0.134009
$$364$$ −13222.7 + 929.796i −1.90400 + 0.133886i
$$365$$ −5238.64 −0.751241
$$366$$ −5798.53 + 3347.78i −0.828126 + 0.478118i
$$367$$ −3330.12 5767.94i −0.473653 0.820392i 0.525892 0.850552i $$-0.323732\pi$$
−0.999545 + 0.0301597i $$0.990398\pi$$
$$368$$ 522.775 905.473i 0.0740531 0.128264i
$$369$$ 430.546i 0.0607407i
$$370$$ 2088.51 + 1205.80i 0.293449 + 0.169423i
$$371$$ 11931.3 + 6888.53i 1.66965 + 0.963975i
$$372$$ 8323.30i 1.16006i
$$373$$ 18.4936 32.0319i 0.00256720 0.00444651i −0.864739 0.502222i $$-0.832516\pi$$
0.867306 + 0.497775i $$0.165850\pi$$
$$374$$ 3601.66 + 6238.26i 0.497961 + 0.862494i
$$375$$ −2420.35 + 1397.39i −0.333297 + 0.192429i
$$376$$ 550.301 0.0754777
$$377$$ 506.696 + 7205.74i 0.0692207 + 0.984389i
$$378$$ −3498.00 −0.475973
$$379$$ 10461.5 6039.93i 1.41786 0.818603i 0.421751 0.906712i $$-0.361416\pi$$
0.996111 + 0.0881092i $$0.0280825\pi$$
$$380$$ 1631.91 + 2826.55i 0.220303 + 0.381577i
$$381$$ −370.731 + 642.126i −0.0498508 + 0.0863441i
$$382$$ 5647.59i 0.756429i
$$383$$ 9151.63 + 5283.69i 1.22096 + 0.704919i 0.965122 0.261801i $$-0.0843164\pi$$
0.255835 + 0.966721i $$0.417650\pi$$
$$384$$ −1360.44 785.452i −0.180794 0.104381i
$$385$$ 17104.9i 2.26428i
$$386$$ −4421.45 + 7658.18i −0.583021 + 1.00982i
$$387$$ 1539.55 + 2666.57i 0.202221 + 0.350257i
$$388$$ 12162.8 7022.22i 1.59143 0.918813i
$$389$$ 9757.49 1.27179 0.635893 0.771778i $$-0.280632\pi$$
0.635893 + 0.771778i $$0.280632\pi$$
$$390$$ 6459.46 4360.63i 0.838686 0.566177i
$$391$$ 820.119 0.106075
$$392$$ −2300.73 + 1328.33i −0.296440 + 0.171150i
$$393$$ 708.364 + 1226.92i 0.0909218 + 0.157481i
$$394$$ 494.234 856.039i 0.0631959 0.109458i
$$395$$ 12068.8i 1.53734i
$$396$$ −2840.73 1640.09i −0.360485 0.208126i
$$397$$ −12298.0 7100.26i −1.55471 0.897612i −0.997748 0.0670737i $$-0.978634\pi$$
−0.556962 0.830538i $$-0.688033\pi$$
$$398$$ 6555.48i 0.825620i
$$399$$ 1271.55 2202.38i 0.159541 0.276333i
$$400$$ −1531.67 2652.93i −0.191459 0.331617i
$$401$$ 10978.1 6338.19i 1.36713 0.789313i 0.376569 0.926389i $$-0.377104\pi$$
0.990561 + 0.137076i $$0.0437705\pi$$
$$402$$ 2849.22 0.353497
$$403$$ −6329.10 + 12989.4i −0.782319 + 1.60558i
$$404$$ 8629.56 1.06271
$$405$$ 942.956 544.416i 0.115693 0.0667956i
$$406$$ 9983.01 + 17291.1i 1.22032 + 2.11365i
$$407$$ 881.026 1525.98i 0.107299 0.185848i
$$408$$ 533.630i 0.0647515i
$$409$$ −1328.20 766.838i −0.160576 0.0927083i 0.417559 0.908650i $$-0.362886\pi$$
−0.578134 + 0.815942i $$0.696219\pi$$
$$410$$ −2296.19 1325.71i −0.276587 0.159688i
$$411$$ 5492.09i 0.659136i
$$412$$ −2858.19 + 4950.53i −0.341779 + 0.591978i
$$413$$ −9278.15 16070.2i −1.10544 1.91468i
$$414$$ −610.914 + 352.711i −0.0725236 + 0.0418715i
$$415$$ 17478.3 2.06741
$$416$$ −6812.28 10091.1i −0.802883 1.18932i
$$417$$ 300.000 0.0352304
$$418$$ 3901.02 2252.25i 0.456471 0.263544i
$$419$$ 1082.95 + 1875.72i 0.126266 + 0.218699i 0.922227 0.386649i $$-0.126367\pi$$
−0.795961 + 0.605348i $$0.793034\pi$$
$$420$$ 5702.19 9876.48i 0.662472 1.14744i
$$421$$ 734.575i 0.0850380i 0.999096 + 0.0425190i $$0.0135383\pi$$
−0.999096 + 0.0425190i $$0.986462\pi$$
$$422$$ −6687.43 3860.99i −0.771419 0.445379i
$$423$$ 1040.28 + 600.605i 0.119575 + 0.0690364i
$$424$$ 1807.79i 0.207062i
$$425$$ 1201.43 2080.93i 0.137124 0.237506i
$$426$$ 2779.46 + 4814.16i 0.316116 + 0.547528i
$$427$$ −14730.0 + 8504.40i −1.66941 + 0.963833i
$$428$$ 13034.9 1.47212
$$429$$ −3186.12 4719.66i −0.358572 0.531159i
$$430$$ −18961.8 −2.12656
$$431$$ −11872.6 + 6854.66i −1.32688 + 0.766073i −0.984815 0.173605i $$-0.944458\pi$$
−0.342061 + 0.939678i $$0.611125\pi$$
$$432$$ −742.500 1286.05i −0.0826934 0.143229i
$$433$$ 5024.97 8703.50i 0.557701 0.965967i −0.439987 0.898004i $$-0.645017\pi$$
0.997688 0.0679624i $$-0.0216498\pi$$
$$434$$ 39938.2i 4.41727i
$$435$$ −5382.23 3107.43i −0.593237 0.342506i
$$436$$ −2580.54 1489.88i −0.283453 0.163652i
$$437$$ 512.850i 0.0561395i
$$438$$ 2410.23 4174.64i 0.262935 0.455416i
$$439$$ −4066.73 7043.79i −0.442129 0.765790i 0.555718 0.831371i $$-0.312443\pi$$
−0.997847 + 0.0655807i $$0.979110\pi$$
$$440$$ 1943.77 1122.24i 0.210604 0.121592i
$$441$$ −5799.01 −0.626175
$$442$$ 3651.98 7495.09i 0.393003 0.806572i
$$443$$ −2370.78 −0.254264 −0.127132 0.991886i $$-0.540577\pi$$
−0.127132 + 0.991886i $$0.540577\pi$$
$$444$$ −1017.42 + 587.406i −0.108749 + 0.0627862i
$$445$$ 6217.40 + 10768.9i 0.662321 + 1.14717i
$$446$$ 115.711 200.418i 0.0122850 0.0212782i
$$447$$ 448.670i 0.0474751i
$$448$$ −17170.9 9913.60i −1.81082 1.04548i
$$449$$ 11191.8 + 6461.60i 1.17634 + 0.679158i 0.955164 0.296077i $$-0.0956785\pi$$
0.221172 + 0.975235i $$0.429012\pi$$
$$450$$ 2066.81i 0.216512i
$$451$$ −968.636 + 1677.73i −0.101134 + 0.175169i
$$452$$ 3128.42 + 5418.58i 0.325550 + 0.563869i
$$453$$ −2078.54 + 1200.05i −0.215582 + 0.124466i
$$454$$ −2751.72 −0.284459
$$455$$ 16409.0 11077.3i 1.69070 1.14135i
$$456$$ −333.699 −0.0342694
$$457$$ 7275.71 4200.63i 0.744734 0.429972i −0.0790543 0.996870i $$-0.525190\pi$$
0.823788 + 0.566898i $$0.191857\pi$$
$$458$$ 1491.12 + 2582.70i 0.152130 + 0.263497i
$$459$$ 582.409 1008.76i 0.0592256 0.102582i
$$460$$ 2299.85i 0.233111i
$$461$$ −15265.7 8813.67i −1.54229 0.890441i −0.998694 0.0510940i $$-0.983729\pi$$
−0.543596 0.839347i $$-0.682937\pi$$
$$462$$ −13630.8 7869.77i −1.37265 0.792499i
$$463$$ 5461.81i 0.548233i 0.961697 + 0.274116i $$0.0883853\pi$$
−0.961697 + 0.274116i $$0.911615\pi$$
$$464$$ −4238.06 + 7340.54i −0.424024 + 0.734431i
$$465$$ −6215.82 10766.1i −0.619897 1.07369i
$$466$$ −983.558 + 567.858i −0.0977735 + 0.0564496i
$$467$$ −8262.19 −0.818691 −0.409345 0.912379i $$-0.634243\pi$$
−0.409345 + 0.912379i $$0.634243\pi$$
$$468$$ 266.316 + 3787.29i 0.0263044 + 0.374076i
$$469$$ 7237.89 0.712611
$$470$$ −6406.29 + 3698.68i −0.628724 + 0.362994i
$$471$$ −4059.23 7030.80i −0.397112 0.687818i
$$472$$ −1217.46 + 2108.70i −0.118725 + 0.205637i
$$473$$ 13854.6i 1.34680i
$$474$$ 9617.58 + 5552.71i 0.931962 + 0.538068i
$$475$$ −1301.28 751.297i −0.125699 0.0725723i
$$476$$ 12200.3i 1.17479i
$$477$$ 1973.04 3417.41i 0.189391 0.328035i
$$478$$ 3152.92 + 5461.02i 0.301697 + 0.522555i
$$479$$ 1364.74 787.935i 0.130181 0.0751601i −0.433495 0.901156i $$-0.642720\pi$$
0.563676 + 0.825996i $$0.309387\pi$$
$$480$$ 10475.2 0.996093
$$481$$ −2034.46 + 143.060i −0.192855 + 0.0135613i
$$482$$ −4022.20 −0.380095
$$483$$ −1551.91 + 895.995i −0.146199 + 0.0844082i
$$484$$ −1390.23 2407.95i −0.130563 0.226141i
$$485$$ −10488.4 + 18166.4i −0.981963 + 1.70081i
$$486$$ 1001.91i 0.0935139i
$$487$$ 10908.2 + 6297.84i 1.01498 + 0.586001i 0.912647 0.408749i $$-0.134035\pi$$
0.102337 + 0.994750i $$0.467368\pi$$
$$488$$ 1932.84 + 1115.93i 0.179294 + 0.103516i
$$489$$ 11034.7i 1.02047i
$$490$$ 17855.9 30927.3i 1.64622 2.85133i
$$491$$ −535.606 927.697i −0.0492293 0.0852676i 0.840361 0.542028i $$-0.182343\pi$$
−0.889590 + 0.456760i $$0.849010\pi$$
$$492$$ 1118.59 645.819i 0.102500 0.0591784i
$$493$$ −6648.59 −0.607378
$$494$$ −4686.96 2283.72i −0.426875 0.207995i
$$495$$ 4899.28 0.444861
$$496$$ −14683.3 + 8477.44i −1.32924 + 0.767436i
$$497$$ 7060.68 + 12229.5i 0.637253 + 1.10376i
$$498$$ −8041.55 + 13928.4i −0.723595 + 1.25330i
$$499$$ 1422.30i 0.127597i −0.997963 0.0637985i $$-0.979678\pi$$
0.997963 0.0637985i $$-0.0203215\pi$$
$$500$$ 7261.06 + 4192.17i 0.649449 + 0.374959i
$$501$$ 8373.89 + 4834.67i 0.746742 + 0.431132i
$$502$$ 7727.28i 0.687022i
$$503$$ 4674.67 8096.76i 0.414380 0.717727i −0.580983 0.813916i $$-0.697332\pi$$
0.995363 + 0.0961884i $$0.0306651\pi$$
$$504$$ 583.001 + 1009.79i 0.0515256 + 0.0892450i
$$505$$ −11162.3 + 6444.54i −0.983593 + 0.567878i
$$506$$ −3174.10 −0.278866
$$507$$ −2464.27 + 6112.99i −0.215862 + 0.535478i
$$508$$ 2224.39 0.194274
$$509$$ 11896.0 6868.15i 1.03591 0.598086i 0.117241 0.993103i $$-0.462595\pi$$
0.918673 + 0.395018i $$0.129262\pi$$
$$510$$ 3586.62 + 6212.22i 0.311409 + 0.539376i
$$511$$ 6122.73 10604.9i 0.530046 0.918067i
$$512$$ 16100.7i 1.38976i
$$513$$ −630.816 364.202i −0.0542909 0.0313449i
$$514$$ 6492.23 + 3748.29i 0.557120 + 0.321654i
$$515$$ 8537.96i 0.730538i
$$516$$ 4618.64 7999.72i 0.394039 0.682496i
$$517$$ 2702.47 + 4680.81i 0.229892 + 0.398185i
$$518$$ −4881.94 + 2818.59i −0.414093 + 0.239076i
$$519$$ −8068.62 −0.682414
$$520$$ −2335.38 1137.92i −0.196949 0.0959632i
$$521$$ 11052.3 0.929386 0.464693 0.885472i $$-0.346165\pi$$
0.464693 + 0.885472i $$0.346165\pi$$
$$522$$ 4952.59 2859.38i 0.415266 0.239754i
$$523$$ −3238.52 5609.28i −0.270766 0.468980i 0.698292 0.715813i $$-0.253944\pi$$
−0.969058 + 0.246832i $$0.920610\pi$$
$$524$$ 2125.09 3680.77i 0.177166 0.306861i
$$525$$ 5250.33i 0.436463i
$$526$$ 2405.94 + 1389.07i 0.199437 + 0.115145i
$$527$$ −11517.5 6649.61i −0.952009 0.549643i
$$528$$ 6681.87i 0.550741i
$$529$$ 5902.81 10224.0i 0.485149 0.840303i
$$530$$ 12150.5 + 21045.3i 0.995819 + 1.72481i
$$531$$ −4602.91 + 2657.49i −0.376176 + 0.217185i
$$532$$ −7629.27 −0.621750
$$533$$ 2236.77 157.286i 0.181773 0.0127820i
$$534$$ −11442.2 −0.927250
$$535$$ −16860.6 + 9734.45i −1.36252 + 0.786649i
$$536$$ −474.869 822.498i −0.0382672 0.0662808i
$$537$$ 2286.06 3959.58i 0.183707 0.318191i
$$538$$ 13838.8i 1.10898i
$$539$$ −22597.3 13046.5i −1.80581 1.04259i
$$540$$ −2828.87 1633.25i −0.225435 0.130155i
$$541$$ 18341.5i 1.45761i −0.684723 0.728803i $$-0.740077\pi$$
0.684723 0.728803i $$-0.259923\pi$$
$$542$$ 18379.9 31834.9i 1.45661 2.52292i
$$543$$ −715.322 1238.97i −0.0565330 0.0979180i
$$544$$ 9704.88 5603.11i 0.764877 0.441602i
$$545$$ 4450.55 0.349799
$$546$$ 1277.88 + 18172.8i 0.100162 + 1.42440i
$$547$$ −18943.1 −1.48071 −0.740356 0.672215i $$-0.765343\pi$$
−0.740356 + 0.672215i $$0.765343\pi$$
$$548$$ −14268.9 + 8238.14i −1.11229 + 0.642182i
$$549$$ 2435.87 + 4219.05i 0.189363 + 0.327987i
$$550$$ −4649.88 + 8053.82i −0.360493 + 0.624393i
$$551$$ 4157.61i 0.321452i
$$552$$ 203.638 + 117.570i 0.0157018 + 0.00906545i
$$553$$ 24431.6 + 14105.6i 1.87873 + 1.08469i
$$554$$ 16563.8i 1.27027i
$$555$$ 877.348 1519.61i 0.0671015 0.116223i
$$556$$ −450.000 779.423i −0.0343242 0.0594512i
$$557$$ −359.861 + 207.766i −0.0273749 + 0.0158049i −0.513625 0.858015i $$-0.671698\pi$$
0.486250 + 0.873820i $$0.338364\pi$$
$$558$$ 11439.3 0.867856
$$559$$ 13290.9 8972.38i 1.00563 0.678875i
$$560$$ 23231.1 1.75303
$$561$$ 4539.00 2620.59i 0.341599 0.197222i
$$562$$ 3795.56 + 6574.10i 0.284886 + 0.493437i
$$563$$ 9145.90 15841.2i 0.684643 1.18584i −0.288907 0.957357i $$-0.593292\pi$$
0.973549 0.228478i $$-0.0733750\pi$$
$$564$$ 3603.63i 0.269043i
$$565$$ −8093.17 4672.59i −0.602623 0.347925i
$$566$$ −17315.8 9997.29i −1.28593 0.742434i
$$567$$ 2545.17i 0.188514i
$$568$$ 926.486 1604.72i 0.0684410 0.118543i
$$569$$ 2173.73 + 3765.02i 0.160154 + 0.277395i 0.934924 0.354848i $$-0.115468\pi$$
−0.774770 + 0.632244i $$0.782134\pi$$
$$570$$ 3884.73 2242.85i 0.285462 0.164812i
$$571$$ 16756.0 1.22805 0.614024 0.789288i $$-0.289550\pi$$
0.614024 + 0.789288i $$0.289550\pi$$
$$572$$ −7482.84 + 15357.3i −0.546981 + 1.12259i
$$573$$ 4109.23 0.299591
$$574$$ 5367.40 3098.87i 0.390298 0.225339i
$$575$$ 529.401 + 916.950i 0.0383958 + 0.0665034i
$$576$$ −2839.50 + 4918.16i −0.205404 + 0.355770i
$$577$$ 19974.7i 1.44117i 0.693364 + 0.720587i $$0.256128\pi$$
−0.693364 + 0.720587i $$0.743872\pi$$
$$578$$ −10897.2 6291.48i −0.784191 0.452753i
$$579$$ 5572.14 + 3217.08i 0.399949 + 0.230911i
$$580$$ 18644.6i 1.33478i
$$581$$ −20428.0 + 35382.4i −1.45869 + 2.52652i
$$582$$ −9651.12 16716.2i −0.687374 1.19057i
$$583$$ 15376.9 8877.86i 1.09236 0.630675i
$$584$$ −1606.82 −0.113854
$$585$$ −3172.82 4699.95i −0.224239 0.332169i
$$586$$ 5829.47 0.410944
$$587$$ −13638.7 + 7874.33i −0.958996 + 0.553677i −0.895864 0.444329i $$-0.853442\pi$$
−0.0631321 + 0.998005i $$0.520109\pi$$
$$588$$ 8698.51 + 15066.3i 0.610069 + 1.05667i
$$589$$ −4158.25 + 7202.30i −0.290896 + 0.503846i
$$590$$ 32731.0i 2.28392i
$$591$$ −622.860 359.608i −0.0433520 0.0250293i
$$592$$ −2072.52 1196.57i −0.143885 0.0830721i
$$593$$ 13318.4i 0.922297i −0.887323 0.461148i $$-0.847438\pi$$
0.887323 0.461148i $$-0.152562\pi$$
$$594$$ −2254.09 + 3904.21i −0.155701 + 0.269683i
$$595$$ 9111.13 + 15780.9i 0.627765 + 1.08732i
$$596$$ −1165.68 + 673.006i −0.0801143 + 0.0462540i
$$597$$ −4769.82 −0.326994
$$598$$ 2055.58 + 3044.96i 0.140567 + 0.208224i
$$599$$ 2970.80 0.202644 0.101322 0.994854i $$-0.467693\pi$$
0.101322 + 0.994854i $$0.467693\pi$$
$$600$$ 596.636 344.468i 0.0405959 0.0234381i
$$601$$ −5316.31 9208.13i −0.360827 0.624971i 0.627270 0.778802i $$-0.284172\pi$$
−0.988097 + 0.153831i $$0.950839\pi$$
$$602$$ 22161.9 38385.5i 1.50042 2.59880i
$$603$$ 2073.11i 0.140006i
$$604$$ 6235.63 + 3600.14i 0.420073 + 0.242529i
$$605$$ 3596.50 + 2076.44i 0.241684 + 0.139536i
$$606$$ 11860.2i 0.795029i
$$607$$ −5793.94 + 10035.4i −0.387428 + 0.671045i −0.992103 0.125428i $$-0.959970\pi$$
0.604675 + 0.796472i $$0.293303\pi$$
$$608$$ −3503.83 6068.82i −0.233716 0.404808i
$$609$$ 12581.1 7263.71i 0.837130 0.483317i
$$610$$ −30001.4 −1.99135
$$611$$ 2740.22 5623.85i 0.181436 0.372368i
$$612$$ −3494.46 −0.230809
$$613$$ 18006.7 10396.2i 1.18643 0.684988i 0.228939 0.973441i $$-0.426474\pi$$
0.957494 + 0.288453i $$0.0931409\pi$$
$$614$$ −9536.00 16516.8i −0.626778 1.08561i
$$615$$ −964.592 + 1670.72i −0.0632457 + 0.109545i
$$616$$ 5246.51i 0.343162i
$$617$$ 1353.40 + 781.388i 0.0883079 + 0.0509846i 0.543504 0.839407i $$-0.317097\pi$$
−0.455196 + 0.890391i $$0.650431\pi$$
$$618$$ 6803.85 + 3928.20i 0.442866 + 0.255689i
$$619$$ 758.406i 0.0492454i −0.999697 0.0246227i $$-0.992162\pi$$
0.999697 0.0246227i $$-0.00783844\pi$$
$$620$$ −18647.5 + 32298.4i −1.20790 + 2.09215i
$$621$$ 256.635 + 444.505i 0.0165836 + 0.0287236i
$$622$$ −21641.4 + 12494.6i −1.39508 + 0.805450i
$$623$$ −29066.7 −1.86923
$$624$$ −6410.01 + 4327.24i −0.411227 + 0.277610i
$$625$$ −19485.0 −1.24704
$$626$$ −3463.40 + 1999.59i −0.221127 + 0.127668i
$$627$$ −1638.75 2838.41i −0.104379 0.180789i
$$628$$ −12177.7 + 21092.4i −0.773795 + 1.34025i
$$629$$ 1877.15i 0.118994i
$$630$$ −13573.9 7836.91i −0.858410 0.495603i
$$631$$ −12354.0 7132.59i −0.779406 0.449990i 0.0568136 0.998385i $$-0.481906\pi$$
−0.836220 + 0.548394i $$0.815239\pi$$
$$632$$ 3701.81i 0.232990i
$$633$$ −2809.28 + 4865.82i −0.176396 + 0.305527i
$$634$$ −18021.3 31213.9i −1.12889 1.95530i
$$635$$ −2877.23 + 1661.17i −0.179810 + 0.103813i
$$636$$ −11838.3 −0.738078
$$637$$ 2118.48 + 30127.0i 0.131770 + 1.87390i
$$638$$ 25732.0 1.59677
$$639$$ 3502.82 2022.35i 0.216854 0.125200i
$$640$$ −3519.44 6095.85i −0.217372 0.376500i
$$641$$ 1992.82 3451.67i 0.122795 0.212688i −0.798074 0.602560i $$-0.794147\pi$$
0.920869 + 0.389872i $$0.127481\pi$$
$$642$$ 17914.8i 1.10131i
$$643$$ 7063.78 + 4078.28i 0.433232 + 0.250127i 0.700723 0.713434i $$-0.252861\pi$$
−0.267490 + 0.963561i $$0.586194\pi$$
$$644$$ 4655.73 + 2687.98i 0.284878 + 0.164474i
$$645$$ 13796.8i 0.842243i
$$646$$ 2399.37 4155.83i 0.146133 0.253110i
$$647$$ 5639.62 + 9768.11i 0.342684 + 0.593546i 0.984930 0.172953i $$-0.0553307\pi$$
−0.642246 + 0.766498i $$0.721997\pi$$
$$648$$ 289.228 166.986i 0.0175339 0.0101232i
$$649$$ −23915.2 −1.44646
$$650$$ 10737.5 755.041i 0.647935 0.0455617i
$$651$$ 29059.3 1.74950
$$652$$ 28669.1 16552.1i 1.72204 0.994219i
$$653$$ −3282.88 5686.11i −0.196736 0.340757i 0.750732 0.660607i $$-0.229701\pi$$
−0.947468 + 0.319850i $$0.896368\pi$$
$$654$$ −2047.64 + 3546.62i −0.122430 + 0.212055i
$$655$$ 6348.06i 0.378686i
$$656$$ 2278.61 + 1315.56i 0.135617 + 0.0782986i
$$657$$ −3037.50 1753.70i −0.180372 0.104138i
$$658$$ 17291.5i 1.02446i
$$659$$ −2399.67 + 4156.36i −0.141848 + 0.245688i −0.928193 0.372100i $$-0.878638\pi$$
0.786344 + 0.617788i $$0.211971\pi$$
$$660$$ −7348.92 12728.7i −0.433419 0.750703i
$$661$$ −13504.5 + 7796.80i −0.794648 + 0.458790i −0.841596 0.540107i $$-0.818384\pi$$
0.0469482 + 0.998897i $$0.485050\pi$$
$$662$$ 28811.3 1.69151
$$663$$ −5453.48 2657.21i −0.319450 0.155652i
$$664$$ 5361.03 0.313326
$$665$$ 9868.41 5697.53i 0.575459 0.332242i
$$666$$ 807.313 + 1398.31i 0.0469711 + 0.0813563i
$$667$$ 1464.83 2537.16i 0.0850351 0.147285i
$$668$$ 29008.0i 1.68017i
$$669$$ −145.826 84.1925i −0.00842742 0.00486557i
$$670$$ 11056.3 + 6383.37i 0.637526 + 0.368076i
$$671$$ 21920.8i 1.26116i
$$672$$ −12243.0 + 21205.5i −0.702804 + 1.21729i
$$673$$ −1102.77 1910.06i −0.0631630 0.109402i 0.832715 0.553702i $$-0.186785\pi$$
−0.895878 + 0.444301i $$0.853452\pi$$
$$674$$ −14842.0 + 8569.03i −0.848208 + 0.489713i
$$675$$ 1503.82 0.0857514
$$676$$ 19578.4 2767.13i 1.11393 0.157438i
$$677$$ −15046.4 −0.854182 −0.427091 0.904209i $$-0.640462\pi$$
−0.427091 + 0.904209i $$0.640462\pi$$
$$678$$ 7447.13 4299.60i 0.421837 0.243547i
$$679$$ −24516.8 42464.4i −1.38567 2.40005i
$$680$$ 1195.54 2070.74i 0.0674219 0.116778i
$$681$$ 2002.17i 0.112663i
$$682$$ 44576.0 + 25736.0i 2.50279 + 1.44499i
$$683$$ 26528.5 + 15316.3i 1.48622 + 0.858068i 0.999877 0.0157020i $$-0.00499830\pi$$
0.486340 + 0.873770i $$0.338332\pi$$
$$684$$ 2185.21i 0.122155i
$$685$$ 12304.5 21311.9i 0.686320 1.18874i
$$686$$ 19519.8 + 33809.3i 1.08640 + 1.88170i
$$687$$ 1879.19 1084.95i 0.104360 0.0602524i
$$688$$ 18816.7 1.04270
$$689$$ −18474.9 9001.90i −1.02153 0.497743i
$$690$$ −3160.85 −0.174393
$$691$$ 1884.22 1087.86i 0.103733 0.0598901i −0.447236 0.894416i $$-0.647592\pi$$
0.550969 + 0.834526i $$0.314258\pi$$
$$692$$ 12102.9 + 20962.9i 0.664862 + 1.15157i
$$693$$ −5726.10 + 9917.89i −0.313876 + 0.543650i
$$694$$ 1288.52i 0.0704780i
$$695$$ 1164.14 + 672.118i 0.0635373 + 0.0366833i
$$696$$ −1650.86 953.127i −0.0899078 0.0519083i
$$697$$ 2063.82i 0.112156i
$$698$$ −9191.95 + 15920.9i −0.498453 + 0.863346i
$$699$$ 413.177 + 715.644i 0.0223574 + 0.0387241i
$$700$$ 13640.7 7875.49i 0.736531 0.425236i
$$701$$ 32718.2 1.76284 0.881419 0.472335i $$-0.156589\pi$$
0.881419 + 0.472335i $$0.156589\pi$$
$$702$$ 5205.14 366.017i 0.279851 0.0196787i
$$703$$ −1173.85 −0.0629768
$$704$$ −22129.6 + 12776.5i −1.18472 + 0.683997i
$$705$$ 2691.18 + 4661.26i 0.143767 + 0.249012i
$$706$$ 4636.79 8031.15i 0.247178 0.428125i
$$707$$ 30128.6i 1.60269i
$$708$$ 13808.7 + 7972.47i 0.733000 + 0.423197i
$$709$$ −21840.9 12609.8i −1.15691 0.667945i −0.206352 0.978478i $$-0.566159\pi$$
−0.950563 + 0.310533i $$0.899492\pi$$
$$710$$ 24908.3i 1.31661i
$$711$$ 4040.19 6997.81i 0.213107 0.369112i
$$712$$ 1907.03 + 3303.07i 0.100378 + 0.173859i
$$713$$ 5075.10 2930.11i 0.266569 0.153904i
$$714$$ −16767.7 −0.878871
$$715$$ −1789.79 25452.7i −0.0936146 1.33130i
$$716$$ −13716.4 −0.715929
$$717$$ 3973.48 2294.09i 0.206963 0.119490i
$$718$$ −16168.3 28004.4i −0.840385 1.45559i
$$719$$ −17733.1 + 30714.6i −0.919796 + 1.59313i −0.120071 + 0.992765i $$0.538312\pi$$
−0.799724 + 0.600368i $$0.795021\pi$$
$$720$$ 6653.97i 0.344415i
$$721$$ 17283.9 + 9978.85i 0.892767 + 0.515439i
$$722$$ 21892.7 + 12639.8i 1.12848 + 0.651529i
$$723$$ 2926.58i 0.150540i
$$724$$ −2145.97 + 3716.92i −0.110158 + 0.190799i
$$725$$ −4291.78 7433.59i −0.219852 0.380795i
$$726$$ −3309.41 + 1910.69i −0.169179 + 0.0976753i
$$727$$ 14262.2 0.727588 0.363794 0.931479i $$-0.381481\pi$$
0.363794 + 0.931479i $$0.381481\pi$$
$$728$$ 5033.05 3397.69i 0.256233 0.172976i
$$729$$ 729.000 0.0370370
$$730$$ 18705.7 10799.7i 0.948396 0.547557i
$$731$$ 7379.80 + 12782.2i 0.373395 + 0.646739i
$$732$$ 7307.61 12657.1i 0.368985 0.639101i
$$733$$ 16022.5i 0.807371i 0.914898 + 0.403685i $$0.132271\pi$$
−0.914898 + 0.403685i $$0.867729\pi$$
$$734$$ 23781.8 + 13730.4i 1.19592 + 0.690463i
$$735$$ −22502.9 12992.1i −1.12930 0.651999i
$$736$$ 4937.96i 0.247304i
$$737$$ 4664.05 8078.38i 0.233111 0.403760i
$$738$$ −887.593 1537.36i −0.0442720 0.0766814i
$$739$$ −3287.61 + 1898.11i −0.163649 + 0.0944830i −0.579588 0.814910i $$-0.696786\pi$$
0.415939 + 0.909393i $$0.363453\pi$$
$$740$$ −5264.09 −0.261502
$$741$$ −1661.65 + 3410.26i −0.0823782 + 0.169068i
$$742$$ −56804.3 −2.81044
$$743$$ −26266.0 + 15164.7i −1.29691 + 0.748772i −0.979869 0.199639i $$-0.936023\pi$$
−0.317042 + 0.948412i $$0.602690\pi$$
$$744$$ −1906.55 3302.24i −0.0939481 0.162723i
$$745$$ 1005.20 1741.05i 0.0494331 0.0856206i
$$746$$ 152.502i 0.00748460i
$$747$$ 10134.4 + 5851.09i 0.496382 + 0.286586i
$$748$$ −13617.0 7861.78i −0.665624 0.384298i
$$749$$ 45509.1i 2.22011i
$$750$$ 5761.59 9979.37i 0.280511 0.485860i
$$751$$ 10775.9 + 18664.5i 0.523595 + 0.906893i 0.999623 + 0.0274629i $$0.00874280\pi$$
−0.476028 + 0.879430i $$0.657924\pi$$
$$752$$ 6357.25 3670.36i 0.308278 0.177984i
$$753$$ −5622.42 −0.272101
$$754$$ −16664.3 24685.1i −0.804877 1.19228i
$$755$$ −10754.3 −0.518397
$$756$$ 6612.55 3817.76i 0.318117 0.183665i
$$757$$ 10208.8 + 17682.2i 0.490153 + 0.848970i 0.999936 0.0113335i $$-0.00360764\pi$$
−0.509783 + 0.860303i $$0.670274\pi$$
$$758$$ −24903.3 + 43133.7i −1.19331 + 2.06687i
$$759$$ 2309.50i 0.110447i
$$760$$ −1294.91 747.616i −0.0618043 0.0356828i
$$761$$ −27171.9 15687.7i −1.29432 0.747278i −0.314906 0.949123i $$-0.601973\pi$$
−0.979417 + 0.201845i $$0.935306\pi$$
$$762$$ 3057.13i 0.145339i
$$763$$ −5201.64 + 9009.50i −0.246805 + 0.427478i
$$764$$ −6163.84 10676.1i −0.291885 0.505559i
$$765$$ 4520.05 2609.65i 0.213625 0.123336i
$$766$$ −43570.5 −2.05518
$$767$$ 15487.7 + 22942.2i 0.729111 + 1.08004i
$$768$$ −8667.00 −0.407218
$$769$$ 10784.3 6226.33i 0.505712 0.291973i −0.225357 0.974276i