Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [39,4,Mod(5,39)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(39, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("39.5");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 39 = 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 39.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.30107449022\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(i)\) |
Coefficient field: | \(\Q(\zeta_{12})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{2}\cdot 3^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{4}]$ |
Embedding invariants
Embedding label | 8.2 | ||
Root | \(-0.866025 + 0.500000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 39.8 |
Dual form | 39.4.f.a.5.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/39\mathbb{Z}\right)^\times\).
\(n\) | \(14\) | \(28\) |
\(\chi(n)\) | \(-1\) | \(e\left(\frac{1}{4}\right)\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(3\) | 5.19615 | 1.00000 | ||||||||
\(4\) | 8.00000i | 1.00000i | ||||||||
\(5\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 5.58846 | − | 5.58846i | 0.301748 | − | 0.301748i | −0.539949 | − | 0.841698i | \(-0.681557\pi\) |
0.841698 | + | 0.539949i | \(0.181557\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 27.0000 | 1.00000 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(12\) | 41.5692i | 1.00000i | ||||||||
\(13\) | −31.1769 | − | 35.0000i | −0.665148 | − | 0.746712i | ||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | −64.0000 | −1.00000 | ||||||||
\(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −105.942 | − | 105.942i | −1.27920 | − | 1.27920i | −0.941115 | − | 0.338086i | \(-0.890220\pi\) |
−0.338086 | − | 0.941115i | \(-0.609780\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 29.0385 | − | 29.0385i | 0.301748 | − | 0.301748i | ||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 125.000i | 1.00000i | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 140.296 | 1.00000 | ||||||||
\(28\) | 44.7077 | + | 44.7077i | 0.301748 | + | 0.301748i | ||||
\(29\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 76.0577 | + | 76.0577i | 0.440657 | + | 0.440657i | 0.892233 | − | 0.451576i | \(-0.149138\pi\) |
−0.451576 | + | 0.892233i | \(0.649138\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 216.000i | 1.00000i | ||||||||
\(37\) | 273.238 | − | 273.238i | 1.21406 | − | 1.21406i | 0.244377 | − | 0.969680i | \(-0.421417\pi\) |
0.969680 | − | 0.244377i | \(-0.0785834\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | −162.000 | − | 181.865i | −0.665148 | − | 0.746712i | ||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 218.238i | 0.773978i | 0.922084 | + | 0.386989i | \(0.126485\pi\) | ||||
−0.922084 | + | 0.386989i | \(0.873515\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(48\) | −332.554 | −1.00000 | ||||||||
\(49\) | 280.538i | 0.817896i | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 280.000 | − | 249.415i | 0.746712 | − | 0.665148i | ||||
\(53\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | −550.492 | − | 550.492i | −1.27920 | − | 1.27920i | ||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −935.307 | −1.96318 | −0.981589 | − | 0.191006i | \(-0.938825\pi\) | ||||
−0.981589 | + | 0.191006i | \(0.938825\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 150.888 | − | 150.888i | 0.301748 | − | 0.301748i | ||||
\(64\) | − | 512.000i | − | 1.00000i | ||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 767.358 | + | 767.358i | 1.39922 | + | 1.39922i | 0.802307 | + | 0.596912i | \(0.203606\pi\) |
0.596912 | + | 0.802307i | \(0.296394\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −782.061 | + | 782.061i | −1.25388 | + | 1.25388i | −0.299916 | + | 0.953966i | \(0.596959\pi\) |
−0.953966 | + | 0.299916i | \(0.903041\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 649.519i | 1.00000i | ||||||||
\(76\) | 847.538 | − | 847.538i | 1.27920 | − | 1.27920i | ||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 1091.19 | 1.55403 | 0.777017 | − | 0.629480i | \(-0.216732\pi\) | ||||
0.777017 | + | 0.629480i | \(0.216732\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 729.000 | 1.00000 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(84\) | 232.308 | + | 232.308i | 0.301748 | + | 0.301748i | ||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −369.827 | − | 21.3651i | −0.426026 | − | 0.0246118i | ||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 395.207 | + | 395.207i | 0.440657 | + | 0.440657i | ||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −1350.89 | − | 1350.89i | −1.41404 | − | 1.41404i | −0.717957 | − | 0.696088i | \(-0.754922\pi\) |
−0.696088 | − | 0.717957i | \(-0.745078\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | −1000.00 | −1.00000 | ||||||||
\(101\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 1028.84i | 0.984218i | 0.870534 | + | 0.492109i | \(0.163774\pi\) | ||||
−0.870534 | + | 0.492109i | \(0.836226\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(108\) | 1122.37i | 1.00000i | ||||||||
\(109\) | −768.192 | − | 768.192i | −0.675041 | − | 0.675041i | 0.283833 | − | 0.958874i | \(-0.408394\pi\) |
−0.958874 | + | 0.283833i | \(0.908394\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 1419.79 | − | 1419.79i | 1.21406 | − | 1.21406i | ||||
\(112\) | −357.661 | + | 357.661i | −0.301748 | + | 0.301748i | ||||
\(113\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | −841.777 | − | 945.000i | −0.665148 | − | 0.746712i | ||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | − | 1331.00i | − | 1.00000i | ||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | −608.462 | + | 608.462i | −0.440657 | + | 0.440657i | ||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 380.000i | 0.265508i | 0.991149 | + | 0.132754i | \(0.0423821\pi\) | ||||
−0.991149 | + | 0.132754i | \(0.957618\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 1134.00i | 0.773978i | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −1184.11 | −0.771994 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 2576.00 | 1.57190 | 0.785948 | − | 0.618293i | \(-0.212175\pi\) | ||||
0.785948 | + | 0.618293i | \(0.212175\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | −1728.00 | −1.00000 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 1457.72i | 0.817896i | ||||||||
\(148\) | 2185.91 | + | 2185.91i | 1.21406 | + | 1.21406i | ||||
\(149\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 2510.79 | − | 2510.79i | 1.35315 | − | 1.35315i | 0.471027 | − | 0.882119i | \(-0.343883\pi\) |
0.882119 | − | 0.471027i | \(-0.156117\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 1454.92 | − | 1296.00i | 0.746712 | − | 0.665148i | ||||
\(157\) | 3850.00 | 1.95709 | 0.978546 | − | 0.206028i | \(-0.0660539\pi\) | ||||
0.978546 | + | 0.206028i | \(0.0660539\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −2900.31 | + | 2900.31i | −1.39368 | + | 1.39368i | −0.576783 | + | 0.816897i | \(0.695692\pi\) |
−0.816897 | + | 0.576783i | \(0.804308\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −253.000 | + | 2182.38i | −0.115157 | + | 0.993347i | ||||
\(170\) | 0 | 0 | ||||||||
\(171\) | −2860.44 | − | 2860.44i | −1.27920 | − | 1.27920i | ||||
\(172\) | −1745.91 | −0.773978 | ||||||||
\(173\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 698.557 | + | 698.557i | 0.301748 | + | 0.301748i | ||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | − | 3429.46i | − | 1.40834i | −0.710031 | − | 0.704171i | \(-0.751319\pi\) | ||
0.710031 | − | 0.704171i | \(-0.248681\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | −4860.00 | −1.96318 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 784.039 | − | 784.039i | 0.301748 | − | 0.301748i | ||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(192\) | − | 2660.43i | − | 1.00000i | ||||||
\(193\) | −2043.86 | + | 2043.86i | −0.762281 | + | 0.762281i | −0.976734 | − | 0.214453i | \(-0.931203\pi\) |
0.214453 | + | 0.976734i | \(0.431203\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | −2244.31 | −0.817896 | ||||||||
\(197\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | − | 5236.00i | − | 1.86518i | −0.360942 | − | 0.932588i | \(-0.617545\pi\) | ||
0.360942 | − | 0.932588i | \(-0.382455\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 3987.31 | + | 3987.31i | 1.39922 | + | 1.39922i | ||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 1995.32 | + | 2240.00i | 0.665148 | + | 0.746712i | ||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 1091.19 | 0.356023 | 0.178011 | − | 0.984028i | \(-0.443034\pi\) | ||||
0.178011 | + | 0.984028i | \(0.443034\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 850.091 | 0.265935 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | −4063.71 | + | 4063.71i | −1.25388 | + | 1.25388i | ||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −1305.04 | − | 1305.04i | −0.391893 | − | 0.391893i | 0.483469 | − | 0.875362i | \(-0.339377\pi\) |
−0.875362 | + | 0.483469i | \(0.839377\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 3375.00i | 1.00000i | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(228\) | 4403.94 | − | 4403.94i | 1.27920 | − | 1.27920i | ||||
\(229\) | 417.038 | − | 417.038i | 0.120343 | − | 0.120343i | −0.644370 | − | 0.764714i | \(-0.722880\pi\) |
0.764714 | + | 0.644370i | \(0.222880\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 5670.00 | 1.55403 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −3065.46 | + | 3065.46i | −0.819352 | + | 0.819352i | −0.986014 | − | 0.166662i | \(-0.946701\pi\) |
0.166662 | + | 0.986014i | \(0.446701\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 3788.00 | 1.00000 | ||||||||
\(244\) | − | 7482.46i | − | 1.96318i | ||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −405.026 | + | 7010.93i | −0.104337 | + | 1.80605i | ||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 1207.11 | + | 1207.11i | 0.301748 | + | 0.301748i | ||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 4096.00 | 1.00000 | ||||||||
\(257\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | − | 3053.96i | − | 0.732679i | ||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | −6138.86 | + | 6138.86i | −1.39922 | + | 1.39922i | ||||
\(269\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −4036.71 | + | 4036.71i | −0.904844 | + | 0.904844i | −0.995850 | − | 0.0910064i | \(-0.970992\pi\) |
0.0910064 | + | 0.995850i | \(0.470992\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | −1921.68 | − | 111.017i | −0.426026 | − | 0.0246118i | ||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − | 8293.06i | − | 1.79885i | −0.437074 | − | 0.899425i | \(-0.643985\pi\) | ||
0.437074 | − | 0.899425i | \(-0.356015\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 2053.56 | + | 2053.56i | 0.440657 | + | 0.440657i | ||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − | 5600.00i | − | 1.17627i | −0.808761 | − | 0.588137i | \(-0.799862\pi\) | ||
0.808761 | − | 0.588137i | \(-0.200138\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −4913.00 | −1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | −7019.44 | − | 7019.44i | −1.41404 | − | 1.41404i | ||||
\(292\) | −6256.49 | − | 6256.49i | −1.25388 | − | 1.25388i | ||||
\(293\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | −5196.15 | −1.00000 | ||||||||
\(301\) | 1219.62 | + | 1219.62i | 0.233547 | + | 0.233547i | ||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 6780.31 | + | 6780.31i | 1.27920 | + | 1.27920i | ||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 4524.99 | − | 4524.99i | 0.841221 | − | 0.841221i | −0.147797 | − | 0.989018i | \(-0.547218\pi\) |
0.989018 | + | 0.147797i | \(0.0472182\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 5346.00i | 0.984218i | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 4738.89 | 0.855776 | 0.427888 | − | 0.903832i | \(-0.359258\pi\) | ||||
0.427888 | + | 0.903832i | \(0.359258\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 8729.54i | 1.55403i | ||||||||
\(317\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 5832.00i | 1.00000i | ||||||||
\(325\) | 4375.00 | − | 3897.11i | 0.746712 | − | 0.665148i | ||||
\(326\) | 0 | 0 | ||||||||
\(327\) | −3991.64 | − | 3991.64i | −0.675041 | − | 0.675041i | ||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 5505.56 | + | 5505.56i | 0.914238 | + | 0.914238i | 0.996602 | − | 0.0823644i | \(-0.0262471\pi\) |
−0.0823644 | + | 0.996602i | \(0.526247\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 7377.44 | − | 7377.44i | 1.21406 | − | 1.21406i | ||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | −1858.46 | + | 1858.46i | −0.301748 | + | 0.301748i | ||||
\(337\) | 4930.00i | 0.796897i | 0.917191 | + | 0.398448i | \(0.130451\pi\) | ||||
−0.917191 | + | 0.398448i | \(0.869549\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 3484.62 | + | 3484.62i | 0.548547 | + | 0.548547i | ||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 8607.04 | − | 8607.04i | 1.32013 | − | 1.32013i | 0.406456 | − | 0.913670i | \(-0.366764\pi\) |
0.913670 | − | 0.406456i | \(-0.133236\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | −4374.00 | − | 4910.36i | −0.665148 | − | 0.746712i | ||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 15588.5i | 2.27271i | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | − | 6916.08i | − | 1.00000i | ||||||
\(364\) | 170.921 | − | 2958.61i | 0.0246118 | − | 0.426026i | ||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −4340.00 | −0.617292 | −0.308646 | − | 0.951177i | \(-0.599876\pi\) | ||||
−0.308646 | + | 0.951177i | \(0.599876\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | −3161.66 | + | 3161.66i | −0.440657 | + | 0.440657i | ||||
\(373\) | −7420.11 | −1.03002 | −0.515011 | − | 0.857183i | \(-0.672212\pi\) | ||||
−0.515011 | + | 0.857183i | \(0.672212\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 1709.56 | + | 1709.56i | 0.231699 | + | 0.231699i | 0.813402 | − | 0.581702i | \(-0.197613\pi\) |
−0.581702 | + | 0.813402i | \(0.697613\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 1974.54i | 0.265508i | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 5892.44i | 0.773978i | ||||||||
\(388\) | 10807.1 | − | 10807.1i | 1.41404 | − | 1.41404i | ||||
\(389\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −8482.76 | + | 8482.76i | −1.07239 | + | 1.07239i | −0.0752196 | + | 0.997167i | \(0.523966\pi\) |
−0.997167 | + | 0.0752196i | \(0.976034\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | −6152.81 | −0.771994 | ||||||||
\(400\) | − | 8000.00i | − | 1.00000i | ||||||
\(401\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 290.775 | − | 5033.26i | 0.0359418 | − | 0.622146i | ||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −11293.7 | − | 11293.7i | −1.36537 | − | 1.36537i | −0.866914 | − | 0.498458i | \(-0.833900\pi\) |
−0.498458 | − | 0.866914i | \(-0.666100\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | −8230.71 | −0.984218 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 13385.3 | 1.57190 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −9660.19 | − | 9660.19i | −1.11831 | − | 1.11831i | −0.991989 | − | 0.126322i | \(-0.959683\pi\) |
−0.126322 | − | 0.991989i | \(-0.540317\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −5226.93 | + | 5226.93i | −0.592386 | + | 0.592386i | ||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(432\) | −8978.95 | −1.00000 | ||||||||
\(433\) | 2590.00i | 0.287454i | 0.989617 | + | 0.143727i | \(0.0459087\pi\) | ||||
−0.989617 | + | 0.143727i | \(0.954091\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 6145.54 | − | 6145.54i | 0.675041 | − | 0.675041i | ||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 10756.0i | 1.16938i | 0.811257 | + | 0.584690i | \(0.198784\pi\) | ||||
−0.811257 | + | 0.584690i | \(0.801216\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 7574.53i | 0.817896i | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(444\) | 11358.3 | + | 11358.3i | 1.21406 | + | 1.21406i | ||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | −2861.29 | − | 2861.29i | −0.301748 | − | 0.301748i | ||||
\(449\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 13046.4 | − | 13046.4i | 1.35315 | − | 1.35315i | ||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 13775.1 | + | 13775.1i | 1.41000 | + | 1.41000i | 0.759514 | + | 0.650491i | \(0.225437\pi\) |
0.650491 | + | 0.759514i | \(0.274563\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −11090.3 | + | 11090.3i | −1.11320 | + | 1.11320i | −0.120482 | + | 0.992716i | \(0.538444\pi\) |
−0.992716 | + | 0.120482i | \(0.961556\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(468\) | 7560.00 | − | 6734.21i | 0.746712 | − | 0.665148i | ||||
\(469\) | 8576.69 | 0.844424 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 20005.2 | 1.95709 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 13242.8 | − | 13242.8i | 1.27920 | − | 1.27920i | ||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −18082.1 | − | 1044.61i | −1.71408 | − | 0.0990235i | ||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 10648.0 | 1.00000 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 7940.26 | + | 7940.26i | 0.738824 | + | 0.738824i | 0.972351 | − | 0.233526i | \(-0.0750265\pi\) |
−0.233526 | + | 0.972351i | \(0.575026\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | −15070.5 | + | 15070.5i | −1.39368 | + | 1.39368i | ||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | −4867.69 | − | 4867.69i | −0.440657 | − | 0.440657i | ||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −15751.9 | − | 15751.9i | −1.41313 | − | 1.41313i | −0.734195 | − | 0.678938i | \(-0.762440\pi\) |
−0.678938 | − | 0.734195i | \(-0.737560\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | −1314.63 | + | 11340.0i | −0.115157 | + | 0.993347i | ||||
\(508\) | −3040.00 | −0.265508 | ||||||||
\(509\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 8741.03i | 0.756713i | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | −14863.3 | − | 14863.3i | −1.27920 | − | 1.27920i | ||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | −9072.00 | −0.773978 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 12040.0 | 1.00664 | 0.503320 | − | 0.864100i | \(-0.332112\pi\) | ||||
0.503320 | + | 0.864100i | \(0.332112\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 3629.81 | + | 3629.81i | 0.301748 | + | 0.301748i | ||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −12167.0 | −1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | − | 9472.86i | − | 0.771994i | ||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 5883.04 | − | 5883.04i | 0.467526 | − | 0.467526i | −0.433586 | − | 0.901112i | \(-0.642752\pi\) |
0.901112 | + | 0.433586i | \(0.142752\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | − | 17820.0i | − | 1.40834i | ||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 1640.00 | 0.128193 | 0.0640963 | − | 0.997944i | \(-0.479584\pi\) | ||||
0.0640963 | + | 0.997944i | \(0.479584\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | −25253.3 | −1.96318 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 6098.08 | − | 6098.08i | 0.468927 | − | 0.468927i | ||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 20608.0i | 1.57190i | ||||||||
\(557\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 7638.34 | − | 6804.00i | 0.577938 | − | 0.514810i | ||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 4073.99 | − | 4073.99i | 0.301748 | − | 0.301748i | ||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 23312.0i | 1.70854i | 0.519829 | + | 0.854270i | \(0.325996\pi\) | ||||
−0.519829 | + | 0.854270i | \(0.674004\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | − | 13824.0i | − | 1.00000i | ||||||
\(577\) | 1807.50 | + | 1807.50i | 0.130411 | + | 0.130411i | 0.769300 | − | 0.638888i | \(-0.220605\pi\) |
−0.638888 | + | 0.769300i | \(0.720605\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | −10620.2 | + | 10620.2i | −0.762281 | + | 0.762281i | ||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(588\) | −11661.8 | −0.817896 | ||||||||
\(589\) | − | 16115.5i | − | 1.12738i | ||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | −17487.3 | + | 17487.3i | −1.21406 | + | 1.21406i | ||||
\(593\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | − | 27207.1i | − | 1.86518i | ||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 3117.69 | 0.211603 | 0.105801 | − | 0.994387i | \(-0.466259\pi\) | ||||
0.105801 | + | 0.994387i | \(0.466259\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 20718.7 | + | 20718.7i | 1.39922 | + | 1.39922i | ||||
\(604\) | 20086.3 | + | 20086.3i | 1.35315 | + | 1.35315i | ||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 28420.0 | 1.90038 | 0.950191 | − | 0.311667i | \(-0.100887\pi\) | ||||
0.950191 | + | 0.311667i | \(0.100887\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −3744.59 | − | 3744.59i | −0.246725 | − | 0.246725i | 0.572900 | − | 0.819625i | \(-0.305818\pi\) |
−0.819625 | + | 0.572900i | \(0.805818\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 21044.3 | − | 21044.3i | 1.36646 | − | 1.36646i | 0.501040 | − | 0.865424i | \(-0.332951\pi\) |
0.865424 | − | 0.501040i | \(-0.167049\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 10368.0 | + | 11639.4i | 0.665148 | + | 0.746712i | ||||
\(625\) | −15625.0 | −1.00000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 30800.0i | 1.95709i | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 14876.3 | − | 14876.3i | 0.938535 | − | 0.938535i | −0.0596825 | − | 0.998217i | \(-0.519009\pi\) |
0.998217 | + | 0.0596825i | \(0.0190088\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 5670.00 | 0.356023 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 9818.84 | − | 8746.32i | 0.610733 | − | 0.544022i | ||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 8338.15 | + | 8338.15i | 0.511391 | + | 0.511391i | 0.914953 | − | 0.403561i | \(-0.132228\pi\) |
−0.403561 | + | 0.914953i | \(0.632228\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 4417.20 | 0.265935 | ||||||||
\(652\) | −23202.5 | − | 23202.5i | −1.39368 | − | 1.39368i | ||||
\(653\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | −21115.7 | + | 21115.7i | −1.25388 | + | 1.25388i | ||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −23803.0 | + | 23803.0i | −1.40065 | + | 1.40065i | −0.602615 | + | 0.798032i | \(0.705875\pi\) |
−0.798032 | + | 0.602615i | \(0.794125\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | −6781.19 | − | 6781.19i | −0.391893 | − | 0.391893i | ||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − | 25315.7i | − | 1.45000i | −0.688751 | − | 0.724998i | \(-0.741841\pi\) | ||
0.688751 | − | 0.724998i | \(-0.258159\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 17537.0i | 1.00000i | ||||||||
\(676\) | −17459.1 | − | 2024.00i | −0.993347 | − | 0.115157i | ||||
\(677\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −15098.8 | −0.853371 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(684\) | 22883.5 | − | 22883.5i | 1.27920 | − | 1.27920i | ||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 2166.99 | − | 2166.99i | 0.120343 | − | 0.120343i | ||||
\(688\) | − | 13967.3i | − | 0.773978i | ||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −24325.9 | − | 24325.9i | −1.33922 | − | 1.33922i | −0.896814 | − | 0.442408i | \(-0.854124\pi\) |
−0.442408 | − | 0.896814i | \(-0.645876\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | −5588.46 | + | 5588.46i | −0.301748 | + | 0.301748i | ||||
\(701\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −57895.0 | −3.10605 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 12617.0 | − | 12617.0i | 0.668326 | − | 0.668326i | −0.289003 | − | 0.957328i | \(-0.593324\pi\) |
0.957328 | + | 0.289003i | \(0.0933236\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 29462.2 | 1.55403 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 5749.62 | + | 5749.62i | 0.296986 | + | 0.296986i | ||||
\(722\) | 0 | 0 | ||||||||
\(723\) | −15928.6 | + | 15928.6i | −0.819352 | + | 0.819352i | ||||
\(724\) | 27435.7 | 1.40834 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 10780.0i | 0.549942i | 0.961452 | + | 0.274971i | \(0.0886683\pi\) | ||||
−0.961452 | + | 0.274971i | \(0.911332\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 19683.0 | 1.00000 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | − | 38880.0i | − | 1.96318i | ||||||
\(733\) | 25888.2 | + | 25888.2i | 1.30451 | + | 1.30451i | 0.925321 | + | 0.379184i | \(0.123795\pi\) |
0.379184 | + | 0.925321i | \(0.376205\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −28236.7 | + | 28236.7i | −1.40555 | + | 1.40555i | −0.624644 | + | 0.780910i | \(0.714756\pi\) |
−0.780910 | + | 0.624644i | \(0.785244\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | −2104.58 | + | 36429.9i | −0.104337 | + | 1.80605i | ||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | − | 33827.0i | − | 1.64363i | −0.569757 | − | 0.821813i | \(-0.692963\pi\) | ||
0.569757 | − | 0.821813i | \(-0.307037\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 6272.31 | + | 6272.31i | 0.301748 | + | 0.301748i | ||||
\(757\) | 3928.29 | 0.188608 | 0.0943039 | − | 0.995543i | \(-0.469937\pi\) | ||||
0.0943039 | + | 0.995543i | \(0.469937\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −8586.02 | −0.407385 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 21283.4 | 1.00000 | ||||||||
\(769\) | 18897.3 | + | 18897.3i | 0.886156 | + | 0.886156i | 0.994151 | − | 0.107995i | \(-0.0344431\pi\) |
−0.107995 | + | 0.994151i | \(0.534443\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | −16350.9 | − | 16350.9i | −0.762281 | − | 0.762281i | ||||
\(773\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −9507.21 | + | 9507.21i | −0.440657 | + | 0.440657i | ||||
\(776\) | 0 | 0 | ||||||||
\(777\) | − | 15868.9i | − | 0.732679i | ||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | − | 17954.5i | − | 0.817896i | ||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 25768.6 | − | 25768.6i | 1.16715 | − | 1.16715i | 0.184281 | − | 0.982874i | \(-0.441004\pi\) |
0.982874 | − | 0.184281i | \(-0.0589958\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 29160.0 | + | 32735.8i | 1.30580 | + | 1.46593i | ||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 41888.0 | 1.86518 | ||||||||
\(797\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(798\) | 0 |