Newspace parameters
Level: | \( N \) | \(=\) | \( 39 = 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 39.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.30107449022\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-3}) \) |
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/39\mathbb{Z}\right)^\times\).
\(n\) | \(14\) | \(28\) |
\(\chi(n)\) | \(1\) | \(-\zeta_{6}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 |
|
0.500000 | + | 0.866025i | −1.50000 | − | 2.59808i | 3.50000 | − | 6.06218i | 7.00000 | 1.50000 | − | 2.59808i | 5.00000 | − | 8.66025i | 15.0000 | −4.50000 | + | 7.79423i | 3.50000 | + | 6.06218i | ||||||||||
22.1 | 0.500000 | − | 0.866025i | −1.50000 | + | 2.59808i | 3.50000 | + | 6.06218i | 7.00000 | 1.50000 | + | 2.59808i | 5.00000 | + | 8.66025i | 15.0000 | −4.50000 | − | 7.79423i | 3.50000 | − | 6.06218i | |||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 39.4.e.b | ✓ | 2 |
3.b | odd | 2 | 1 | 117.4.g.a | 2 | ||
4.b | odd | 2 | 1 | 624.4.q.c | 2 | ||
13.c | even | 3 | 1 | inner | 39.4.e.b | ✓ | 2 |
13.c | even | 3 | 1 | 507.4.a.b | 1 | ||
13.e | even | 6 | 1 | 507.4.a.d | 1 | ||
13.f | odd | 12 | 2 | 507.4.b.d | 2 | ||
39.h | odd | 6 | 1 | 1521.4.a.e | 1 | ||
39.i | odd | 6 | 1 | 117.4.g.a | 2 | ||
39.i | odd | 6 | 1 | 1521.4.a.h | 1 | ||
52.j | odd | 6 | 1 | 624.4.q.c | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
39.4.e.b | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
39.4.e.b | ✓ | 2 | 13.c | even | 3 | 1 | inner |
117.4.g.a | 2 | 3.b | odd | 2 | 1 | ||
117.4.g.a | 2 | 39.i | odd | 6 | 1 | ||
507.4.a.b | 1 | 13.c | even | 3 | 1 | ||
507.4.a.d | 1 | 13.e | even | 6 | 1 | ||
507.4.b.d | 2 | 13.f | odd | 12 | 2 | ||
624.4.q.c | 2 | 4.b | odd | 2 | 1 | ||
624.4.q.c | 2 | 52.j | odd | 6 | 1 | ||
1521.4.a.e | 1 | 39.h | odd | 6 | 1 | ||
1521.4.a.h | 1 | 39.i | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} - T_{2} + 1 \)
acting on \(S_{4}^{\mathrm{new}}(39, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} - T + 1 \)
$3$
\( T^{2} + 3T + 9 \)
$5$
\( (T - 7)^{2} \)
$7$
\( T^{2} - 10T + 100 \)
$11$
\( T^{2} - 22T + 484 \)
$13$
\( T^{2} + 91T + 2197 \)
$17$
\( T^{2} + 37T + 1369 \)
$19$
\( T^{2} + 30T + 900 \)
$23$
\( T^{2} - 162T + 26244 \)
$29$
\( T^{2} - 113T + 12769 \)
$31$
\( (T - 196)^{2} \)
$37$
\( T^{2} + 13T + 169 \)
$41$
\( T^{2} + 285T + 81225 \)
$43$
\( T^{2} - 246T + 60516 \)
$47$
\( (T + 462)^{2} \)
$53$
\( (T + 537)^{2} \)
$59$
\( T^{2} + 576T + 331776 \)
$61$
\( T^{2} - 635T + 403225 \)
$67$
\( T^{2} + 202T + 40804 \)
$71$
\( T^{2} - 1086 T + 1179396 \)
$73$
\( (T + 805)^{2} \)
$79$
\( (T - 884)^{2} \)
$83$
\( (T - 518)^{2} \)
$89$
\( T^{2} + 194T + 37636 \)
$97$
\( T^{2} - 1202 T + 1444804 \)
show more
show less