Defining parameters
Level: | \( N \) | \(=\) | \( 39 = 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 39.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(39, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 12 | 20 |
Cusp forms | 24 | 12 | 12 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(39, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
39.4.e.a | $2$ | $2.301$ | \(\Q(\sqrt{-3}) \) | None | \(-3\) | \(-3\) | \(-18\) | \(-2\) | \(q+(-3+3\zeta_{6})q^{2}+(-3+3\zeta_{6})q^{3}+\cdots\) |
39.4.e.b | $2$ | $2.301$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(-3\) | \(14\) | \(10\) | \(q+(1-\zeta_{6})q^{2}+(-3+3\zeta_{6})q^{3}+7\zeta_{6}q^{4}+\cdots\) |
39.4.e.c | $8$ | $2.301$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-2\) | \(12\) | \(-12\) | \(14\) | \(q-\beta _{1}q^{2}+(3+3\beta _{2})q^{3}+(-1+\beta _{1}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(39, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(39, [\chi]) \cong \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)