Properties

Label 39.4.a.c
Level $39$
Weight $4$
Character orbit 39.a
Self dual yes
Analytic conductor $2.301$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [39,4,Mod(1,39)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(39, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("39.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 39.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.30107449022\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.3144.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 16x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + 3 q^{3} + (\beta_{2} + 3) q^{4} + ( - 2 \beta_{2} + 2) q^{5} + ( - 3 \beta_1 + 3) q^{6} + (6 \beta_1 + 8) q^{7} + (2 \beta_{2} + \beta_1 - 3) q^{8} + 9 q^{9} + ( - 4 \beta_{2} + 6 \beta_1 - 2) q^{10}+ \cdots + (54 \beta_{2} + 18 \beta_1 - 72) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} + 9 q^{3} + 10 q^{4} + 4 q^{5} + 6 q^{6} + 30 q^{7} - 6 q^{8} + 27 q^{9} - 4 q^{10} - 16 q^{11} + 30 q^{12} + 39 q^{13} - 176 q^{14} + 12 q^{15} - 110 q^{16} - 146 q^{17} + 18 q^{18} + 94 q^{19}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 16x - 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 10 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.73549
−0.526440
−3.20905
−3.73549 3.00000 5.95388 −3.90776 −11.2065 36.4129 7.64325 9.00000 14.5974
1.2 1.52644 3.00000 −5.66998 19.3400 4.57932 4.84136 −20.8664 9.00000 29.5213
1.3 4.20905 3.00000 9.71610 −11.4322 12.6271 −11.2543 7.22315 9.00000 −48.1187
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 39.4.a.c 3
3.b odd 2 1 117.4.a.f 3
4.b odd 2 1 624.4.a.t 3
5.b even 2 1 975.4.a.l 3
7.b odd 2 1 1911.4.a.k 3
8.b even 2 1 2496.4.a.bl 3
8.d odd 2 1 2496.4.a.bp 3
12.b even 2 1 1872.4.a.bk 3
13.b even 2 1 507.4.a.h 3
13.d odd 4 2 507.4.b.g 6
39.d odd 2 1 1521.4.a.u 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.4.a.c 3 1.a even 1 1 trivial
117.4.a.f 3 3.b odd 2 1
507.4.a.h 3 13.b even 2 1
507.4.b.g 6 13.d odd 4 2
624.4.a.t 3 4.b odd 2 1
975.4.a.l 3 5.b even 2 1
1521.4.a.u 3 39.d odd 2 1
1872.4.a.bk 3 12.b even 2 1
1911.4.a.k 3 7.b odd 2 1
2496.4.a.bl 3 8.b even 2 1
2496.4.a.bp 3 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 2T_{2}^{2} - 15T_{2} + 24 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(39))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 2 T^{2} + \cdots + 24 \) Copy content Toggle raw display
$3$ \( (T - 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 4 T^{2} + \cdots - 864 \) Copy content Toggle raw display
$7$ \( T^{3} - 30 T^{2} + \cdots + 1984 \) Copy content Toggle raw display
$11$ \( T^{3} + 16 T^{2} + \cdots + 30336 \) Copy content Toggle raw display
$13$ \( (T - 13)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 146 T^{2} + \cdots + 71256 \) Copy content Toggle raw display
$19$ \( T^{3} - 94 T^{2} + \cdots + 779616 \) Copy content Toggle raw display
$23$ \( T^{3} + 48 T^{2} + \cdots + 534528 \) Copy content Toggle raw display
$29$ \( T^{3} + 2 T^{2} + \cdots - 199176 \) Copy content Toggle raw display
$31$ \( T^{3} - 302 T^{2} + \cdots + 7197248 \) Copy content Toggle raw display
$37$ \( T^{3} - 374 T^{2} + \cdots + 7758104 \) Copy content Toggle raw display
$41$ \( T^{3} - 480 T^{2} + \cdots + 12919824 \) Copy content Toggle raw display
$43$ \( T^{3} + 260 T^{2} + \cdots - 3663168 \) Copy content Toggle raw display
$47$ \( T^{3} + 24 T^{2} + \cdots + 18102528 \) Copy content Toggle raw display
$53$ \( T^{3} + 678 T^{2} + \cdots - 1471608 \) Copy content Toggle raw display
$59$ \( T^{3} + 1788 T^{2} + \cdots + 137423808 \) Copy content Toggle raw display
$61$ \( T^{3} - 230 T^{2} + \cdots + 6279512 \) Copy content Toggle raw display
$67$ \( T^{3} - 74 T^{2} + \cdots + 4260896 \) Copy content Toggle raw display
$71$ \( T^{3} + 948 T^{2} + \cdots - 70464384 \) Copy content Toggle raw display
$73$ \( T^{3} + 222 T^{2} + \cdots + 22780552 \) Copy content Toggle raw display
$79$ \( T^{3} + 24 T^{2} + \cdots + 7757824 \) Copy content Toggle raw display
$83$ \( T^{3} + 796 T^{2} + \cdots + 13963968 \) Copy content Toggle raw display
$89$ \( T^{3} - 1436 T^{2} + \cdots - 30129888 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 1218481048 \) Copy content Toggle raw display
show more
show less