Properties

Label 39.4.a.b.1.1
Level $39$
Weight $4$
Character 39.1
Self dual yes
Analytic conductor $2.301$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [39,4,Mod(1,39)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(39, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("39.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 39.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.30107449022\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{14}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.74166\) of defining polynomial
Character \(\chi\) \(=\) 39.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.74166 q^{2} -3.00000 q^{3} -0.483315 q^{4} +19.4833 q^{5} +8.22497 q^{6} +7.48331 q^{7} +23.2583 q^{8} +9.00000 q^{9} -53.4166 q^{10} +22.8999 q^{11} +1.44994 q^{12} -13.0000 q^{13} -20.5167 q^{14} -58.4499 q^{15} -59.8999 q^{16} +67.0334 q^{17} -24.6749 q^{18} +16.5167 q^{19} -9.41657 q^{20} -22.4499 q^{21} -62.7836 q^{22} -175.600 q^{23} -69.7750 q^{24} +254.600 q^{25} +35.6415 q^{26} -27.0000 q^{27} -3.61680 q^{28} +291.800 q^{29} +160.250 q^{30} +117.283 q^{31} -21.8418 q^{32} -68.6997 q^{33} -183.783 q^{34} +145.800 q^{35} -4.34983 q^{36} -154.766 q^{37} -45.2831 q^{38} +39.0000 q^{39} +453.150 q^{40} -251.716 q^{41} +61.5501 q^{42} -502.566 q^{43} -11.0679 q^{44} +175.350 q^{45} +481.434 q^{46} -281.733 q^{47} +179.700 q^{48} -287.000 q^{49} -698.025 q^{50} -201.100 q^{51} +6.28309 q^{52} +366.999 q^{53} +74.0247 q^{54} +446.166 q^{55} +174.049 q^{56} -49.5501 q^{57} -800.015 q^{58} -79.6663 q^{59} +28.2497 q^{60} -194.865 q^{61} -321.550 q^{62} +67.3498 q^{63} +539.082 q^{64} -253.283 q^{65} +188.351 q^{66} +400.082 q^{67} -32.3982 q^{68} +526.799 q^{69} -399.733 q^{70} +528.299 q^{71} +209.325 q^{72} -734.366 q^{73} +424.316 q^{74} -763.799 q^{75} -7.98276 q^{76} +171.367 q^{77} -106.925 q^{78} +113.266 q^{79} -1167.05 q^{80} +81.0000 q^{81} +690.118 q^{82} -933.466 q^{83} +10.8504 q^{84} +1306.03 q^{85} +1377.86 q^{86} -875.399 q^{87} +532.613 q^{88} +1190.91 q^{89} -480.749 q^{90} -97.2831 q^{91} +84.8699 q^{92} -351.849 q^{93} +772.415 q^{94} +321.800 q^{95} +65.5253 q^{96} +557.165 q^{97} +786.856 q^{98} +206.099 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 6 q^{3} + 14 q^{4} + 24 q^{5} - 6 q^{6} + 54 q^{8} + 18 q^{9} - 32 q^{10} - 44 q^{11} - 42 q^{12} - 26 q^{13} - 56 q^{14} - 72 q^{15} - 30 q^{16} + 164 q^{17} + 18 q^{18} + 48 q^{19} + 56 q^{20}+ \cdots - 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.74166 −0.969322 −0.484661 0.874702i \(-0.661057\pi\)
−0.484661 + 0.874702i \(0.661057\pi\)
\(3\) −3.00000 −0.577350
\(4\) −0.483315 −0.0604143
\(5\) 19.4833 1.74264 0.871320 0.490715i \(-0.163264\pi\)
0.871320 + 0.490715i \(0.163264\pi\)
\(6\) 8.22497 0.559638
\(7\) 7.48331 0.404061 0.202031 0.979379i \(-0.435246\pi\)
0.202031 + 0.979379i \(0.435246\pi\)
\(8\) 23.2583 1.02788
\(9\) 9.00000 0.333333
\(10\) −53.4166 −1.68918
\(11\) 22.8999 0.627689 0.313844 0.949474i \(-0.398383\pi\)
0.313844 + 0.949474i \(0.398383\pi\)
\(12\) 1.44994 0.0348802
\(13\) −13.0000 −0.277350
\(14\) −20.5167 −0.391665
\(15\) −58.4499 −1.00611
\(16\) −59.8999 −0.935936
\(17\) 67.0334 0.956352 0.478176 0.878264i \(-0.341298\pi\)
0.478176 + 0.878264i \(0.341298\pi\)
\(18\) −24.6749 −0.323107
\(19\) 16.5167 0.199431 0.0997155 0.995016i \(-0.468207\pi\)
0.0997155 + 0.995016i \(0.468207\pi\)
\(20\) −9.41657 −0.105280
\(21\) −22.4499 −0.233285
\(22\) −62.7836 −0.608433
\(23\) −175.600 −1.59196 −0.795979 0.605324i \(-0.793044\pi\)
−0.795979 + 0.605324i \(0.793044\pi\)
\(24\) −69.7750 −0.593449
\(25\) 254.600 2.03680
\(26\) 35.6415 0.268842
\(27\) −27.0000 −0.192450
\(28\) −3.61680 −0.0244111
\(29\) 291.800 1.86848 0.934239 0.356648i \(-0.116080\pi\)
0.934239 + 0.356648i \(0.116080\pi\)
\(30\) 160.250 0.975249
\(31\) 117.283 0.679505 0.339753 0.940515i \(-0.389657\pi\)
0.339753 + 0.940515i \(0.389657\pi\)
\(32\) −21.8418 −0.120660
\(33\) −68.6997 −0.362396
\(34\) −183.783 −0.927013
\(35\) 145.800 0.704133
\(36\) −4.34983 −0.0201381
\(37\) −154.766 −0.687661 −0.343830 0.939032i \(-0.611724\pi\)
−0.343830 + 0.939032i \(0.611724\pi\)
\(38\) −45.2831 −0.193313
\(39\) 39.0000 0.160128
\(40\) 453.150 1.79123
\(41\) −251.716 −0.958815 −0.479407 0.877592i \(-0.659148\pi\)
−0.479407 + 0.877592i \(0.659148\pi\)
\(42\) 61.5501 0.226128
\(43\) −502.566 −1.78234 −0.891170 0.453669i \(-0.850115\pi\)
−0.891170 + 0.453669i \(0.850115\pi\)
\(44\) −11.0679 −0.0379214
\(45\) 175.350 0.580880
\(46\) 481.434 1.54312
\(47\) −281.733 −0.874361 −0.437181 0.899374i \(-0.644023\pi\)
−0.437181 + 0.899374i \(0.644023\pi\)
\(48\) 179.700 0.540363
\(49\) −287.000 −0.836735
\(50\) −698.025 −1.97431
\(51\) −201.100 −0.552150
\(52\) 6.28309 0.0167559
\(53\) 366.999 0.951154 0.475577 0.879674i \(-0.342239\pi\)
0.475577 + 0.879674i \(0.342239\pi\)
\(54\) 74.0247 0.186546
\(55\) 446.166 1.09384
\(56\) 174.049 0.415328
\(57\) −49.5501 −0.115141
\(58\) −800.015 −1.81116
\(59\) −79.6663 −0.175791 −0.0878955 0.996130i \(-0.528014\pi\)
−0.0878955 + 0.996130i \(0.528014\pi\)
\(60\) 28.2497 0.0607837
\(61\) −194.865 −0.409016 −0.204508 0.978865i \(-0.565559\pi\)
−0.204508 + 0.978865i \(0.565559\pi\)
\(62\) −321.550 −0.658660
\(63\) 67.3498 0.134687
\(64\) 539.082 1.05289
\(65\) −253.283 −0.483322
\(66\) 188.351 0.351279
\(67\) 400.082 0.729519 0.364759 0.931102i \(-0.381151\pi\)
0.364759 + 0.931102i \(0.381151\pi\)
\(68\) −32.3982 −0.0577774
\(69\) 526.799 0.919117
\(70\) −399.733 −0.682532
\(71\) 528.299 0.883065 0.441532 0.897245i \(-0.354435\pi\)
0.441532 + 0.897245i \(0.354435\pi\)
\(72\) 209.325 0.342628
\(73\) −734.366 −1.17741 −0.588706 0.808347i \(-0.700362\pi\)
−0.588706 + 0.808347i \(0.700362\pi\)
\(74\) 424.316 0.666565
\(75\) −763.799 −1.17594
\(76\) −7.98276 −0.0120485
\(77\) 171.367 0.253625
\(78\) −106.925 −0.155216
\(79\) 113.266 0.161309 0.0806545 0.996742i \(-0.474299\pi\)
0.0806545 + 0.996742i \(0.474299\pi\)
\(80\) −1167.05 −1.63100
\(81\) 81.0000 0.111111
\(82\) 690.118 0.929400
\(83\) −933.466 −1.23447 −0.617236 0.786778i \(-0.711748\pi\)
−0.617236 + 0.786778i \(0.711748\pi\)
\(84\) 10.8504 0.0140937
\(85\) 1306.03 1.66658
\(86\) 1377.86 1.72766
\(87\) −875.399 −1.07877
\(88\) 532.613 0.645191
\(89\) 1190.91 1.41839 0.709195 0.705012i \(-0.249059\pi\)
0.709195 + 0.705012i \(0.249059\pi\)
\(90\) −480.749 −0.563060
\(91\) −97.2831 −0.112066
\(92\) 84.8699 0.0961771
\(93\) −351.849 −0.392313
\(94\) 772.415 0.847538
\(95\) 321.800 0.347536
\(96\) 65.5253 0.0696630
\(97\) 557.165 0.583211 0.291606 0.956539i \(-0.405811\pi\)
0.291606 + 0.956539i \(0.405811\pi\)
\(98\) 786.856 0.811066
\(99\) 206.099 0.209230
\(100\) −123.052 −0.123052
\(101\) −286.766 −0.282518 −0.141259 0.989973i \(-0.545115\pi\)
−0.141259 + 0.989973i \(0.545115\pi\)
\(102\) 551.348 0.535211
\(103\) −1911.36 −1.82847 −0.914234 0.405187i \(-0.867206\pi\)
−0.914234 + 0.405187i \(0.867206\pi\)
\(104\) −302.358 −0.285084
\(105\) −437.399 −0.406531
\(106\) −1006.19 −0.921975
\(107\) 834.334 0.753814 0.376907 0.926251i \(-0.376988\pi\)
0.376907 + 0.926251i \(0.376988\pi\)
\(108\) 13.0495 0.0116267
\(109\) −1077.66 −0.946986 −0.473493 0.880798i \(-0.657007\pi\)
−0.473493 + 0.880798i \(0.657007\pi\)
\(110\) −1223.23 −1.06028
\(111\) 464.299 0.397021
\(112\) −448.250 −0.378175
\(113\) −166.065 −0.138248 −0.0691241 0.997608i \(-0.522020\pi\)
−0.0691241 + 0.997608i \(0.522020\pi\)
\(114\) 135.849 0.111609
\(115\) −3421.26 −2.77421
\(116\) −141.031 −0.112883
\(117\) −117.000 −0.0924500
\(118\) 218.418 0.170398
\(119\) 501.632 0.386424
\(120\) −1359.45 −1.03417
\(121\) −806.595 −0.606007
\(122\) 534.254 0.396468
\(123\) 755.147 0.553572
\(124\) −56.6847 −0.0410519
\(125\) 2525.03 1.80676
\(126\) −184.650 −0.130555
\(127\) 1296.16 0.905637 0.452819 0.891603i \(-0.350419\pi\)
0.452819 + 0.891603i \(0.350419\pi\)
\(128\) −1303.24 −0.899934
\(129\) 1507.70 1.02903
\(130\) 694.415 0.468494
\(131\) −197.201 −0.131523 −0.0657617 0.997835i \(-0.520948\pi\)
−0.0657617 + 0.997835i \(0.520948\pi\)
\(132\) 33.2036 0.0218939
\(133\) 123.600 0.0805823
\(134\) −1096.89 −0.707139
\(135\) −526.049 −0.335371
\(136\) 1559.09 0.983018
\(137\) −546.915 −0.341066 −0.170533 0.985352i \(-0.554549\pi\)
−0.170533 + 0.985352i \(0.554549\pi\)
\(138\) −1444.30 −0.890921
\(139\) 609.666 0.372023 0.186012 0.982548i \(-0.440444\pi\)
0.186012 + 0.982548i \(0.440444\pi\)
\(140\) −70.4672 −0.0425397
\(141\) 845.199 0.504813
\(142\) −1448.42 −0.855974
\(143\) −297.699 −0.174090
\(144\) −539.099 −0.311979
\(145\) 5685.23 3.25609
\(146\) 2013.38 1.14129
\(147\) 861.000 0.483089
\(148\) 74.8009 0.0415446
\(149\) −2165.08 −1.19040 −0.595202 0.803576i \(-0.702928\pi\)
−0.595202 + 0.803576i \(0.702928\pi\)
\(150\) 2094.07 1.13987
\(151\) −846.549 −0.456233 −0.228116 0.973634i \(-0.573257\pi\)
−0.228116 + 0.973634i \(0.573257\pi\)
\(152\) 384.151 0.204992
\(153\) 603.300 0.318784
\(154\) −469.830 −0.245844
\(155\) 2285.06 1.18413
\(156\) −18.8493 −0.00967404
\(157\) 1653.60 0.840581 0.420291 0.907390i \(-0.361928\pi\)
0.420291 + 0.907390i \(0.361928\pi\)
\(158\) −310.536 −0.156360
\(159\) −1101.00 −0.549149
\(160\) −425.550 −0.210267
\(161\) −1314.07 −0.643248
\(162\) −222.074 −0.107702
\(163\) −2866.51 −1.37744 −0.688720 0.725027i \(-0.741827\pi\)
−0.688720 + 0.725027i \(0.741827\pi\)
\(164\) 121.658 0.0579262
\(165\) −1338.50 −0.631526
\(166\) 2559.24 1.19660
\(167\) 729.066 0.337825 0.168913 0.985631i \(-0.445974\pi\)
0.168913 + 0.985631i \(0.445974\pi\)
\(168\) −522.148 −0.239789
\(169\) 169.000 0.0769231
\(170\) −3580.69 −1.61545
\(171\) 148.650 0.0664770
\(172\) 242.898 0.107679
\(173\) −3834.83 −1.68530 −0.842650 0.538462i \(-0.819005\pi\)
−0.842650 + 0.538462i \(0.819005\pi\)
\(174\) 2400.05 1.04567
\(175\) 1905.25 0.822990
\(176\) −1371.70 −0.587476
\(177\) 238.999 0.101493
\(178\) −3265.08 −1.37488
\(179\) −283.862 −0.118530 −0.0592649 0.998242i \(-0.518876\pi\)
−0.0592649 + 0.998242i \(0.518876\pi\)
\(180\) −84.7492 −0.0350935
\(181\) 2363.60 0.970634 0.485317 0.874338i \(-0.338704\pi\)
0.485317 + 0.874338i \(0.338704\pi\)
\(182\) 266.717 0.108628
\(183\) 584.596 0.236145
\(184\) −4084.15 −1.63635
\(185\) −3015.36 −1.19835
\(186\) 964.650 0.380277
\(187\) 1535.06 0.600291
\(188\) 136.166 0.0528240
\(189\) −202.049 −0.0777616
\(190\) −882.265 −0.336875
\(191\) 2514.26 0.952491 0.476246 0.879312i \(-0.341997\pi\)
0.476246 + 0.879312i \(0.341997\pi\)
\(192\) −1617.25 −0.607889
\(193\) 2420.73 0.902839 0.451420 0.892312i \(-0.350918\pi\)
0.451420 + 0.892312i \(0.350918\pi\)
\(194\) −1527.55 −0.565320
\(195\) 759.849 0.279046
\(196\) 138.711 0.0505508
\(197\) −4633.65 −1.67581 −0.837903 0.545819i \(-0.816219\pi\)
−0.837903 + 0.545819i \(0.816219\pi\)
\(198\) −565.053 −0.202811
\(199\) 3054.17 1.08796 0.543980 0.839098i \(-0.316917\pi\)
0.543980 + 0.839098i \(0.316917\pi\)
\(200\) 5921.56 2.09359
\(201\) −1200.25 −0.421188
\(202\) 786.215 0.273851
\(203\) 2183.63 0.754979
\(204\) 97.1947 0.0333578
\(205\) −4904.26 −1.67087
\(206\) 5240.30 1.77237
\(207\) −1580.40 −0.530653
\(208\) 778.699 0.259582
\(209\) 378.230 0.125181
\(210\) 1199.20 0.394060
\(211\) −4031.60 −1.31539 −0.657694 0.753285i \(-0.728468\pi\)
−0.657694 + 0.753285i \(0.728468\pi\)
\(212\) −177.376 −0.0574634
\(213\) −1584.90 −0.509838
\(214\) −2287.46 −0.730689
\(215\) −9791.66 −3.10598
\(216\) −627.975 −0.197816
\(217\) 877.666 0.274562
\(218\) 2954.59 0.917935
\(219\) 2203.10 0.679779
\(220\) −215.638 −0.0660834
\(221\) −871.434 −0.265244
\(222\) −1272.95 −0.384841
\(223\) 3784.95 1.13659 0.568294 0.822826i \(-0.307604\pi\)
0.568294 + 0.822826i \(0.307604\pi\)
\(224\) −163.449 −0.0487539
\(225\) 2291.40 0.678932
\(226\) 455.292 0.134007
\(227\) 2013.83 0.588821 0.294411 0.955679i \(-0.404877\pi\)
0.294411 + 0.955679i \(0.404877\pi\)
\(228\) 23.9483 0.00695620
\(229\) −3050.73 −0.880340 −0.440170 0.897915i \(-0.645082\pi\)
−0.440170 + 0.897915i \(0.645082\pi\)
\(230\) 9379.93 2.68910
\(231\) −514.101 −0.146430
\(232\) 6786.78 1.92058
\(233\) 5587.49 1.57103 0.785513 0.618846i \(-0.212399\pi\)
0.785513 + 0.618846i \(0.212399\pi\)
\(234\) 320.774 0.0896139
\(235\) −5489.09 −1.52370
\(236\) 38.5039 0.0106203
\(237\) −339.798 −0.0931317
\(238\) −1375.30 −0.374570
\(239\) −1335.69 −0.361501 −0.180750 0.983529i \(-0.557853\pi\)
−0.180750 + 0.983529i \(0.557853\pi\)
\(240\) 3501.15 0.941658
\(241\) −571.558 −0.152769 −0.0763845 0.997078i \(-0.524338\pi\)
−0.0763845 + 0.997078i \(0.524338\pi\)
\(242\) 2211.41 0.587416
\(243\) −243.000 −0.0641500
\(244\) 94.1813 0.0247104
\(245\) −5591.71 −1.45813
\(246\) −2070.36 −0.536590
\(247\) −214.717 −0.0553122
\(248\) 2727.81 0.698452
\(249\) 2800.40 0.712723
\(250\) −6922.76 −1.75134
\(251\) 4088.60 1.02817 0.514084 0.857740i \(-0.328132\pi\)
0.514084 + 0.857740i \(0.328132\pi\)
\(252\) −32.5512 −0.00813703
\(253\) −4021.21 −0.999254
\(254\) −3553.64 −0.877854
\(255\) −3918.10 −0.962199
\(256\) −739.607 −0.180568
\(257\) 3050.23 0.740342 0.370171 0.928964i \(-0.379299\pi\)
0.370171 + 0.928964i \(0.379299\pi\)
\(258\) −4133.59 −0.997466
\(259\) −1158.17 −0.277857
\(260\) 122.415 0.0291996
\(261\) 2626.20 0.622826
\(262\) 540.659 0.127489
\(263\) 5770.99 1.35306 0.676530 0.736415i \(-0.263483\pi\)
0.676530 + 0.736415i \(0.263483\pi\)
\(264\) −1597.84 −0.372501
\(265\) 7150.35 1.65752
\(266\) −338.868 −0.0781102
\(267\) −3572.74 −0.818908
\(268\) −193.365 −0.0440734
\(269\) −2079.40 −0.471314 −0.235657 0.971836i \(-0.575724\pi\)
−0.235657 + 0.971836i \(0.575724\pi\)
\(270\) 1442.25 0.325083
\(271\) 6012.00 1.34761 0.673807 0.738908i \(-0.264658\pi\)
0.673807 + 0.738908i \(0.264658\pi\)
\(272\) −4015.29 −0.895084
\(273\) 291.849 0.0647015
\(274\) 1499.45 0.330603
\(275\) 5830.30 1.27847
\(276\) −254.610 −0.0555279
\(277\) −735.201 −0.159473 −0.0797364 0.996816i \(-0.525408\pi\)
−0.0797364 + 0.996816i \(0.525408\pi\)
\(278\) −1671.50 −0.360610
\(279\) 1055.55 0.226502
\(280\) 3391.06 0.723767
\(281\) −1902.92 −0.403981 −0.201990 0.979387i \(-0.564741\pi\)
−0.201990 + 0.979387i \(0.564741\pi\)
\(282\) −2317.25 −0.489326
\(283\) 2125.71 0.446502 0.223251 0.974761i \(-0.428333\pi\)
0.223251 + 0.974761i \(0.428333\pi\)
\(284\) −255.335 −0.0533498
\(285\) −965.399 −0.200650
\(286\) 816.187 0.168749
\(287\) −1883.67 −0.387420
\(288\) −196.576 −0.0402200
\(289\) −419.527 −0.0853913
\(290\) −15586.9 −3.15620
\(291\) −1671.49 −0.336717
\(292\) 354.930 0.0711325
\(293\) −1641.03 −0.327200 −0.163600 0.986527i \(-0.552311\pi\)
−0.163600 + 0.986527i \(0.552311\pi\)
\(294\) −2360.57 −0.468269
\(295\) −1552.16 −0.306341
\(296\) −3599.61 −0.706835
\(297\) −618.297 −0.120799
\(298\) 5935.91 1.15389
\(299\) 2282.79 0.441530
\(300\) 369.155 0.0710439
\(301\) −3760.86 −0.720174
\(302\) 2320.95 0.442237
\(303\) 860.299 0.163112
\(304\) −989.348 −0.186655
\(305\) −3796.62 −0.712767
\(306\) −1654.04 −0.309004
\(307\) −3373.27 −0.627111 −0.313555 0.949570i \(-0.601520\pi\)
−0.313555 + 0.949570i \(0.601520\pi\)
\(308\) −82.8242 −0.0153226
\(309\) 5734.09 1.05567
\(310\) −6264.86 −1.14781
\(311\) −868.525 −0.158359 −0.0791793 0.996860i \(-0.525230\pi\)
−0.0791793 + 0.996860i \(0.525230\pi\)
\(312\) 907.075 0.164593
\(313\) −4343.19 −0.784319 −0.392159 0.919897i \(-0.628272\pi\)
−0.392159 + 0.919897i \(0.628272\pi\)
\(314\) −4533.59 −0.814794
\(315\) 1312.20 0.234711
\(316\) −54.7431 −0.00974537
\(317\) −3277.65 −0.580730 −0.290365 0.956916i \(-0.593777\pi\)
−0.290365 + 0.956916i \(0.593777\pi\)
\(318\) 3018.56 0.532302
\(319\) 6682.18 1.17282
\(320\) 10503.1 1.83482
\(321\) −2503.00 −0.435215
\(322\) 3602.72 0.623515
\(323\) 1107.17 0.190726
\(324\) −39.1485 −0.00671271
\(325\) −3309.79 −0.564906
\(326\) 7859.00 1.33518
\(327\) 3232.99 0.546743
\(328\) −5854.49 −0.985550
\(329\) −2108.30 −0.353295
\(330\) 3669.70 0.612153
\(331\) 5589.62 0.928197 0.464099 0.885784i \(-0.346378\pi\)
0.464099 + 0.885784i \(0.346378\pi\)
\(332\) 451.158 0.0745798
\(333\) −1392.90 −0.229220
\(334\) −1998.85 −0.327461
\(335\) 7794.92 1.27129
\(336\) 1344.75 0.218340
\(337\) 901.544 0.145728 0.0728638 0.997342i \(-0.476786\pi\)
0.0728638 + 0.997342i \(0.476786\pi\)
\(338\) −463.340 −0.0745633
\(339\) 498.194 0.0798176
\(340\) −631.225 −0.100685
\(341\) 2685.77 0.426518
\(342\) −407.548 −0.0644376
\(343\) −4714.49 −0.742153
\(344\) −11688.9 −1.83204
\(345\) 10263.8 1.60169
\(346\) 10513.8 1.63360
\(347\) −812.318 −0.125670 −0.0628350 0.998024i \(-0.520014\pi\)
−0.0628350 + 0.998024i \(0.520014\pi\)
\(348\) 423.093 0.0651730
\(349\) 4437.96 0.680683 0.340342 0.940302i \(-0.389457\pi\)
0.340342 + 0.940302i \(0.389457\pi\)
\(350\) −5223.54 −0.797743
\(351\) 351.000 0.0533761
\(352\) −500.174 −0.0757368
\(353\) 7115.35 1.07284 0.536419 0.843952i \(-0.319777\pi\)
0.536419 + 0.843952i \(0.319777\pi\)
\(354\) −655.253 −0.0983794
\(355\) 10293.0 1.53886
\(356\) −575.587 −0.0856911
\(357\) −1504.90 −0.223102
\(358\) 778.253 0.114894
\(359\) 4693.98 0.690081 0.345040 0.938588i \(-0.387865\pi\)
0.345040 + 0.938588i \(0.387865\pi\)
\(360\) 4078.35 0.597077
\(361\) −6586.20 −0.960227
\(362\) −6480.17 −0.940857
\(363\) 2419.79 0.349878
\(364\) 47.0184 0.00677042
\(365\) −14307.9 −2.05181
\(366\) −1602.76 −0.228901
\(367\) 9243.98 1.31480 0.657400 0.753542i \(-0.271656\pi\)
0.657400 + 0.753542i \(0.271656\pi\)
\(368\) 10518.4 1.48997
\(369\) −2265.44 −0.319605
\(370\) 8267.09 1.16158
\(371\) 2746.37 0.384324
\(372\) 170.054 0.0237013
\(373\) −4311.99 −0.598569 −0.299285 0.954164i \(-0.596748\pi\)
−0.299285 + 0.954164i \(0.596748\pi\)
\(374\) −4208.60 −0.581876
\(375\) −7575.09 −1.04314
\(376\) −6552.64 −0.898741
\(377\) −3793.40 −0.518223
\(378\) 553.951 0.0753760
\(379\) −2382.73 −0.322936 −0.161468 0.986878i \(-0.551623\pi\)
−0.161468 + 0.986878i \(0.551623\pi\)
\(380\) −155.531 −0.0209962
\(381\) −3888.49 −0.522870
\(382\) −6893.25 −0.923271
\(383\) 4845.81 0.646499 0.323250 0.946314i \(-0.395225\pi\)
0.323250 + 0.946314i \(0.395225\pi\)
\(384\) 3909.73 0.519577
\(385\) 3338.80 0.441976
\(386\) −6636.81 −0.875142
\(387\) −4523.10 −0.594113
\(388\) −269.286 −0.0352343
\(389\) 9561.50 1.24624 0.623120 0.782127i \(-0.285865\pi\)
0.623120 + 0.782127i \(0.285865\pi\)
\(390\) −2083.25 −0.270485
\(391\) −11771.0 −1.52247
\(392\) −6675.14 −0.860066
\(393\) 591.604 0.0759350
\(394\) 12703.9 1.62440
\(395\) 2206.79 0.281103
\(396\) −99.6107 −0.0126405
\(397\) −7440.11 −0.940575 −0.470287 0.882513i \(-0.655850\pi\)
−0.470287 + 0.882513i \(0.655850\pi\)
\(398\) −8373.48 −1.05458
\(399\) −370.799 −0.0465242
\(400\) −15250.5 −1.90631
\(401\) −8687.80 −1.08192 −0.540958 0.841050i \(-0.681938\pi\)
−0.540958 + 0.841050i \(0.681938\pi\)
\(402\) 3290.66 0.408267
\(403\) −1524.68 −0.188461
\(404\) 138.598 0.0170681
\(405\) 1578.15 0.193627
\(406\) −5986.76 −0.731818
\(407\) −3544.13 −0.431637
\(408\) −4677.26 −0.567546
\(409\) 2556.10 0.309024 0.154512 0.987991i \(-0.450619\pi\)
0.154512 + 0.987991i \(0.450619\pi\)
\(410\) 13445.8 1.61961
\(411\) 1640.74 0.196915
\(412\) 923.790 0.110466
\(413\) −596.168 −0.0710303
\(414\) 4332.90 0.514374
\(415\) −18187.0 −2.15124
\(416\) 283.943 0.0334650
\(417\) −1829.00 −0.214788
\(418\) −1036.98 −0.121340
\(419\) −3347.46 −0.390296 −0.195148 0.980774i \(-0.562519\pi\)
−0.195148 + 0.980774i \(0.562519\pi\)
\(420\) 211.402 0.0245603
\(421\) −1854.48 −0.214684 −0.107342 0.994222i \(-0.534234\pi\)
−0.107342 + 0.994222i \(0.534234\pi\)
\(422\) 11053.3 1.27503
\(423\) −2535.60 −0.291454
\(424\) 8535.79 0.977675
\(425\) 17066.7 1.94789
\(426\) 4345.25 0.494197
\(427\) −1458.24 −0.165267
\(428\) −403.246 −0.0455412
\(429\) 893.096 0.100511
\(430\) 26845.4 3.01069
\(431\) −14043.1 −1.56945 −0.784725 0.619844i \(-0.787196\pi\)
−0.784725 + 0.619844i \(0.787196\pi\)
\(432\) 1617.30 0.180121
\(433\) 3086.47 0.342555 0.171278 0.985223i \(-0.445210\pi\)
0.171278 + 0.985223i \(0.445210\pi\)
\(434\) −2406.26 −0.266139
\(435\) −17055.7 −1.87990
\(436\) 520.851 0.0572116
\(437\) −2900.32 −0.317486
\(438\) −6040.14 −0.658925
\(439\) 2837.68 0.308508 0.154254 0.988031i \(-0.450703\pi\)
0.154254 + 0.988031i \(0.450703\pi\)
\(440\) 10377.1 1.12434
\(441\) −2583.00 −0.278912
\(442\) 2389.17 0.257107
\(443\) 18309.4 1.96367 0.981834 0.189744i \(-0.0607658\pi\)
0.981834 + 0.189744i \(0.0607658\pi\)
\(444\) −224.403 −0.0239858
\(445\) 23203.0 2.47174
\(446\) −10377.0 −1.10172
\(447\) 6495.24 0.687281
\(448\) 4034.12 0.425433
\(449\) 13861.2 1.45690 0.728451 0.685098i \(-0.240241\pi\)
0.728451 + 0.685098i \(0.240241\pi\)
\(450\) −6282.22 −0.658104
\(451\) −5764.26 −0.601837
\(452\) 80.2614 0.00835217
\(453\) 2539.65 0.263406
\(454\) −5521.23 −0.570758
\(455\) −1895.40 −0.195291
\(456\) −1152.45 −0.118352
\(457\) −8990.36 −0.920243 −0.460122 0.887856i \(-0.652194\pi\)
−0.460122 + 0.887856i \(0.652194\pi\)
\(458\) 8364.05 0.853333
\(459\) −1809.90 −0.184050
\(460\) 1653.55 0.167602
\(461\) −3406.90 −0.344198 −0.172099 0.985080i \(-0.555055\pi\)
−0.172099 + 0.985080i \(0.555055\pi\)
\(462\) 1409.49 0.141938
\(463\) −7498.45 −0.752662 −0.376331 0.926485i \(-0.622814\pi\)
−0.376331 + 0.926485i \(0.622814\pi\)
\(464\) −17478.8 −1.74878
\(465\) −6855.19 −0.683660
\(466\) −15319.0 −1.52283
\(467\) 7711.38 0.764112 0.382056 0.924139i \(-0.375216\pi\)
0.382056 + 0.924139i \(0.375216\pi\)
\(468\) 56.5478 0.00558531
\(469\) 2993.94 0.294770
\(470\) 15049.2 1.47695
\(471\) −4960.79 −0.485310
\(472\) −1852.91 −0.180693
\(473\) −11508.7 −1.11875
\(474\) 931.608 0.0902747
\(475\) 4205.14 0.406200
\(476\) −242.446 −0.0233456
\(477\) 3302.99 0.317051
\(478\) 3662.01 0.350411
\(479\) −9439.82 −0.900451 −0.450226 0.892915i \(-0.648656\pi\)
−0.450226 + 0.892915i \(0.648656\pi\)
\(480\) 1276.65 0.121398
\(481\) 2011.96 0.190723
\(482\) 1567.02 0.148082
\(483\) 3942.20 0.371380
\(484\) 389.839 0.0366115
\(485\) 10855.4 1.01633
\(486\) 666.223 0.0621821
\(487\) −6156.20 −0.572821 −0.286411 0.958107i \(-0.592462\pi\)
−0.286411 + 0.958107i \(0.592462\pi\)
\(488\) −4532.25 −0.420420
\(489\) 8599.54 0.795265
\(490\) 15330.6 1.41340
\(491\) 3842.74 0.353198 0.176599 0.984283i \(-0.443490\pi\)
0.176599 + 0.984283i \(0.443490\pi\)
\(492\) −364.974 −0.0334437
\(493\) 19560.3 1.78692
\(494\) 588.680 0.0536153
\(495\) 4015.49 0.364612
\(496\) −7025.24 −0.635973
\(497\) 3953.43 0.356812
\(498\) −7677.73 −0.690858
\(499\) −12842.4 −1.15211 −0.576056 0.817410i \(-0.695409\pi\)
−0.576056 + 0.817410i \(0.695409\pi\)
\(500\) −1220.38 −0.109154
\(501\) −2187.20 −0.195043
\(502\) −11209.5 −0.996627
\(503\) 8580.11 0.760573 0.380287 0.924869i \(-0.375825\pi\)
0.380287 + 0.924869i \(0.375825\pi\)
\(504\) 1566.45 0.138443
\(505\) −5587.16 −0.492327
\(506\) 11024.8 0.968599
\(507\) −507.000 −0.0444116
\(508\) −626.455 −0.0547135
\(509\) −43.5957 −0.00379635 −0.00189818 0.999998i \(-0.500604\pi\)
−0.00189818 + 0.999998i \(0.500604\pi\)
\(510\) 10742.1 0.932681
\(511\) −5495.49 −0.475746
\(512\) 12453.7 1.07496
\(513\) −445.951 −0.0383805
\(514\) −8362.68 −0.717630
\(515\) −37239.7 −3.18636
\(516\) −728.693 −0.0621684
\(517\) −6451.66 −0.548827
\(518\) 3175.29 0.269333
\(519\) 11504.5 0.973008
\(520\) −5890.94 −0.496798
\(521\) 11368.1 0.955939 0.477969 0.878377i \(-0.341373\pi\)
0.477969 + 0.878377i \(0.341373\pi\)
\(522\) −7200.14 −0.603719
\(523\) −5229.53 −0.437230 −0.218615 0.975811i \(-0.570154\pi\)
−0.218615 + 0.975811i \(0.570154\pi\)
\(524\) 95.3103 0.00794590
\(525\) −5715.75 −0.475154
\(526\) −15822.1 −1.31155
\(527\) 7861.88 0.649846
\(528\) 4115.10 0.339180
\(529\) 18668.2 1.53433
\(530\) −19603.8 −1.60667
\(531\) −716.997 −0.0585970
\(532\) −59.7375 −0.00486832
\(533\) 3272.31 0.265927
\(534\) 9795.24 0.793786
\(535\) 16255.6 1.31363
\(536\) 9305.24 0.749860
\(537\) 851.586 0.0684333
\(538\) 5701.01 0.456855
\(539\) −6572.27 −0.525209
\(540\) 254.247 0.0202612
\(541\) −6567.99 −0.521959 −0.260980 0.965344i \(-0.584046\pi\)
−0.260980 + 0.965344i \(0.584046\pi\)
\(542\) −16482.9 −1.30627
\(543\) −7090.79 −0.560396
\(544\) −1464.13 −0.115393
\(545\) −20996.5 −1.65026
\(546\) −800.151 −0.0627166
\(547\) −13675.7 −1.06897 −0.534487 0.845177i \(-0.679495\pi\)
−0.534487 + 0.845177i \(0.679495\pi\)
\(548\) 264.332 0.0206053
\(549\) −1753.79 −0.136339
\(550\) −15984.7 −1.23925
\(551\) 4819.57 0.372632
\(552\) 12252.5 0.944745
\(553\) 847.604 0.0651786
\(554\) 2015.67 0.154581
\(555\) 9046.09 0.691865
\(556\) −294.661 −0.0224755
\(557\) 4527.96 0.344445 0.172222 0.985058i \(-0.444905\pi\)
0.172222 + 0.985058i \(0.444905\pi\)
\(558\) −2893.95 −0.219553
\(559\) 6533.36 0.494332
\(560\) −8733.39 −0.659023
\(561\) −4605.17 −0.346578
\(562\) 5217.15 0.391588
\(563\) 18441.8 1.38051 0.690256 0.723566i \(-0.257498\pi\)
0.690256 + 0.723566i \(0.257498\pi\)
\(564\) −408.497 −0.0304979
\(565\) −3235.49 −0.240917
\(566\) −5827.96 −0.432804
\(567\) 606.148 0.0448957
\(568\) 12287.4 0.907687
\(569\) −13553.5 −0.998578 −0.499289 0.866436i \(-0.666405\pi\)
−0.499289 + 0.866436i \(0.666405\pi\)
\(570\) 2646.79 0.194495
\(571\) 14815.5 1.08583 0.542915 0.839788i \(-0.317321\pi\)
0.542915 + 0.839788i \(0.317321\pi\)
\(572\) 143.882 0.0105175
\(573\) −7542.79 −0.549921
\(574\) 5164.37 0.375534
\(575\) −44707.6 −3.24249
\(576\) 4851.74 0.350965
\(577\) 21596.2 1.55816 0.779081 0.626923i \(-0.215686\pi\)
0.779081 + 0.626923i \(0.215686\pi\)
\(578\) 1150.20 0.0827716
\(579\) −7262.19 −0.521254
\(580\) −2747.75 −0.196714
\(581\) −6985.42 −0.498802
\(582\) 4582.66 0.326387
\(583\) 8404.23 0.597029
\(584\) −17080.1 −1.21024
\(585\) −2279.55 −0.161107
\(586\) 4499.13 0.317163
\(587\) −918.801 −0.0646047 −0.0323024 0.999478i \(-0.510284\pi\)
−0.0323024 + 0.999478i \(0.510284\pi\)
\(588\) −416.134 −0.0291855
\(589\) 1937.13 0.135514
\(590\) 4255.50 0.296943
\(591\) 13900.9 0.967527
\(592\) 9270.49 0.643606
\(593\) 19816.0 1.37226 0.686128 0.727481i \(-0.259309\pi\)
0.686128 + 0.727481i \(0.259309\pi\)
\(594\) 1695.16 0.117093
\(595\) 9773.45 0.673399
\(596\) 1046.42 0.0719175
\(597\) −9162.50 −0.628134
\(598\) −6258.64 −0.427985
\(599\) −5141.86 −0.350736 −0.175368 0.984503i \(-0.556111\pi\)
−0.175368 + 0.984503i \(0.556111\pi\)
\(600\) −17764.7 −1.20873
\(601\) 12380.9 0.840312 0.420156 0.907452i \(-0.361975\pi\)
0.420156 + 0.907452i \(0.361975\pi\)
\(602\) 10311.0 0.698081
\(603\) 3600.74 0.243173
\(604\) 409.150 0.0275630
\(605\) −15715.1 −1.05605
\(606\) −2358.65 −0.158108
\(607\) −23717.0 −1.58590 −0.792951 0.609286i \(-0.791456\pi\)
−0.792951 + 0.609286i \(0.791456\pi\)
\(608\) −360.754 −0.0240633
\(609\) −6550.89 −0.435887
\(610\) 10409.0 0.690901
\(611\) 3662.53 0.242504
\(612\) −291.584 −0.0192591
\(613\) −26157.1 −1.72345 −0.861726 0.507373i \(-0.830617\pi\)
−0.861726 + 0.507373i \(0.830617\pi\)
\(614\) 9248.36 0.607872
\(615\) 14712.8 0.964677
\(616\) 3985.71 0.260696
\(617\) 23613.9 1.54077 0.770387 0.637576i \(-0.220063\pi\)
0.770387 + 0.637576i \(0.220063\pi\)
\(618\) −15720.9 −1.02328
\(619\) 23345.4 1.51588 0.757940 0.652324i \(-0.226206\pi\)
0.757940 + 0.652324i \(0.226206\pi\)
\(620\) −1104.40 −0.0715387
\(621\) 4741.19 0.306372
\(622\) 2381.20 0.153501
\(623\) 8911.99 0.573116
\(624\) −2336.10 −0.149870
\(625\) 17371.0 1.11174
\(626\) 11907.5 0.760258
\(627\) −1134.69 −0.0722730
\(628\) −799.207 −0.0507832
\(629\) −10374.5 −0.657645
\(630\) −3597.60 −0.227511
\(631\) 15245.7 0.961841 0.480921 0.876764i \(-0.340302\pi\)
0.480921 + 0.876764i \(0.340302\pi\)
\(632\) 2634.38 0.165807
\(633\) 12094.8 0.759439
\(634\) 8986.20 0.562914
\(635\) 25253.6 1.57820
\(636\) 532.128 0.0331765
\(637\) 3731.00 0.232068
\(638\) −18320.3 −1.13684
\(639\) 4754.69 0.294355
\(640\) −25391.5 −1.56826
\(641\) 10192.7 0.628063 0.314032 0.949413i \(-0.398320\pi\)
0.314032 + 0.949413i \(0.398320\pi\)
\(642\) 6862.37 0.421863
\(643\) −5506.31 −0.337710 −0.168855 0.985641i \(-0.554007\pi\)
−0.168855 + 0.985641i \(0.554007\pi\)
\(644\) 635.108 0.0388614
\(645\) 29375.0 1.79324
\(646\) −3035.48 −0.184875
\(647\) −13297.5 −0.808005 −0.404003 0.914758i \(-0.632381\pi\)
−0.404003 + 0.914758i \(0.632381\pi\)
\(648\) 1883.93 0.114209
\(649\) −1824.35 −0.110342
\(650\) 9074.32 0.547576
\(651\) −2633.00 −0.158518
\(652\) 1385.43 0.0832171
\(653\) −12440.2 −0.745519 −0.372760 0.927928i \(-0.621588\pi\)
−0.372760 + 0.927928i \(0.621588\pi\)
\(654\) −8863.76 −0.529970
\(655\) −3842.14 −0.229198
\(656\) 15077.7 0.897389
\(657\) −6609.29 −0.392470
\(658\) 5780.23 0.342457
\(659\) −9562.87 −0.565276 −0.282638 0.959227i \(-0.591209\pi\)
−0.282638 + 0.959227i \(0.591209\pi\)
\(660\) 646.915 0.0381533
\(661\) 2409.69 0.141795 0.0708973 0.997484i \(-0.477414\pi\)
0.0708973 + 0.997484i \(0.477414\pi\)
\(662\) −15324.8 −0.899722
\(663\) 2614.30 0.153139
\(664\) −21710.9 −1.26889
\(665\) 2408.13 0.140426
\(666\) 3818.85 0.222188
\(667\) −51239.9 −2.97454
\(668\) −352.368 −0.0204095
\(669\) −11354.9 −0.656209
\(670\) −21371.0 −1.23229
\(671\) −4462.40 −0.256735
\(672\) 490.346 0.0281481
\(673\) 7929.02 0.454147 0.227074 0.973878i \(-0.427084\pi\)
0.227074 + 0.973878i \(0.427084\pi\)
\(674\) −2471.72 −0.141257
\(675\) −6874.19 −0.391982
\(676\) −81.6802 −0.00464726
\(677\) −2628.26 −0.149206 −0.0746030 0.997213i \(-0.523769\pi\)
−0.0746030 + 0.997213i \(0.523769\pi\)
\(678\) −1365.88 −0.0773690
\(679\) 4169.44 0.235653
\(680\) 30376.1 1.71305
\(681\) −6041.48 −0.339956
\(682\) −7363.46 −0.413433
\(683\) 10021.5 0.561437 0.280719 0.959790i \(-0.409427\pi\)
0.280719 + 0.959790i \(0.409427\pi\)
\(684\) −71.8448 −0.00401616
\(685\) −10655.7 −0.594356
\(686\) 12925.5 0.719385
\(687\) 9152.18 0.508264
\(688\) 30103.7 1.66816
\(689\) −4770.99 −0.263803
\(690\) −28139.8 −1.55256
\(691\) 23987.2 1.32057 0.660286 0.751014i \(-0.270435\pi\)
0.660286 + 0.751014i \(0.270435\pi\)
\(692\) 1853.43 0.101816
\(693\) 1542.30 0.0845415
\(694\) 2227.10 0.121815
\(695\) 11878.3 0.648303
\(696\) −20360.3 −1.10885
\(697\) −16873.4 −0.916964
\(698\) −12167.4 −0.659801
\(699\) −16762.5 −0.907032
\(700\) −920.835 −0.0497204
\(701\) −3763.71 −0.202787 −0.101393 0.994846i \(-0.532330\pi\)
−0.101393 + 0.994846i \(0.532330\pi\)
\(702\) −962.322 −0.0517386
\(703\) −2556.23 −0.137141
\(704\) 12344.9 0.660890
\(705\) 16467.3 0.879707
\(706\) −19507.8 −1.03993
\(707\) −2145.96 −0.114155
\(708\) −115.512 −0.00613163
\(709\) −36047.8 −1.90946 −0.954728 0.297479i \(-0.903854\pi\)
−0.954728 + 0.297479i \(0.903854\pi\)
\(710\) −28219.9 −1.49166
\(711\) 1019.39 0.0537696
\(712\) 27698.7 1.45794
\(713\) −20594.9 −1.08174
\(714\) 4125.91 0.216258
\(715\) −5800.15 −0.303376
\(716\) 137.195 0.00716090
\(717\) 4007.08 0.208713
\(718\) −12869.3 −0.668910
\(719\) −3944.18 −0.204580 −0.102290 0.994755i \(-0.532617\pi\)
−0.102290 + 0.994755i \(0.532617\pi\)
\(720\) −10503.4 −0.543667
\(721\) −14303.3 −0.738812
\(722\) 18057.1 0.930770
\(723\) 1714.68 0.0882012
\(724\) −1142.36 −0.0586402
\(725\) 74292.1 3.80571
\(726\) −6634.22 −0.339145
\(727\) −20447.8 −1.04315 −0.521573 0.853206i \(-0.674655\pi\)
−0.521573 + 0.853206i \(0.674655\pi\)
\(728\) −2262.64 −0.115191
\(729\) 729.000 0.0370370
\(730\) 39227.3 1.98886
\(731\) −33688.7 −1.70454
\(732\) −282.544 −0.0142666
\(733\) −13536.2 −0.682089 −0.341045 0.940047i \(-0.610781\pi\)
−0.341045 + 0.940047i \(0.610781\pi\)
\(734\) −25343.8 −1.27447
\(735\) 16775.1 0.841851
\(736\) 3835.40 0.192085
\(737\) 9161.83 0.457911
\(738\) 6211.07 0.309800
\(739\) 15839.1 0.788433 0.394217 0.919018i \(-0.371016\pi\)
0.394217 + 0.919018i \(0.371016\pi\)
\(740\) 1457.37 0.0723972
\(741\) 644.151 0.0319345
\(742\) −7529.60 −0.372534
\(743\) −1664.92 −0.0822075 −0.0411037 0.999155i \(-0.513087\pi\)
−0.0411037 + 0.999155i \(0.513087\pi\)
\(744\) −8183.43 −0.403252
\(745\) −42182.9 −2.07445
\(746\) 11822.0 0.580206
\(747\) −8401.19 −0.411491
\(748\) −741.916 −0.0362662
\(749\) 6243.58 0.304587
\(750\) 20768.3 1.01113
\(751\) 22399.1 1.08835 0.544177 0.838970i \(-0.316842\pi\)
0.544177 + 0.838970i \(0.316842\pi\)
\(752\) 16875.8 0.818346
\(753\) −12265.8 −0.593613
\(754\) 10400.2 0.502325
\(755\) −16493.6 −0.795050
\(756\) 97.6535 0.00469792
\(757\) 23798.9 1.14265 0.571326 0.820723i \(-0.306429\pi\)
0.571326 + 0.820723i \(0.306429\pi\)
\(758\) 6532.64 0.313029
\(759\) 12063.6 0.576920
\(760\) 7484.53 0.357227
\(761\) 13693.5 0.652285 0.326142 0.945321i \(-0.394251\pi\)
0.326142 + 0.945321i \(0.394251\pi\)
\(762\) 10660.9 0.506829
\(763\) −8064.50 −0.382640
\(764\) −1215.18 −0.0575441
\(765\) 11754.3 0.555526
\(766\) −13285.5 −0.626666
\(767\) 1035.66 0.0487556
\(768\) 2218.82 0.104251
\(769\) 16299.9 0.764358 0.382179 0.924088i \(-0.375174\pi\)
0.382179 + 0.924088i \(0.375174\pi\)
\(770\) −9153.84 −0.428418
\(771\) −9150.68 −0.427437
\(772\) −1169.97 −0.0545444
\(773\) 33532.2 1.56024 0.780122 0.625628i \(-0.215157\pi\)
0.780122 + 0.625628i \(0.215157\pi\)
\(774\) 12400.8 0.575887
\(775\) 29860.2 1.38401
\(776\) 12958.7 0.599473
\(777\) 3474.50 0.160421
\(778\) −26214.3 −1.20801
\(779\) −4157.51 −0.191217
\(780\) −367.246 −0.0168584
\(781\) 12098.0 0.554290
\(782\) 32272.1 1.47577
\(783\) −7878.59 −0.359589
\(784\) 17191.3 0.783130
\(785\) 32217.5 1.46483
\(786\) −1621.98 −0.0736055
\(787\) 16163.3 0.732097 0.366049 0.930596i \(-0.380710\pi\)
0.366049 + 0.930596i \(0.380710\pi\)
\(788\) 2239.51 0.101243
\(789\) −17313.0 −0.781189
\(790\) −6050.27 −0.272480
\(791\) −1242.71 −0.0558607
\(792\) 4793.52 0.215064
\(793\) 2533.25 0.113441
\(794\) 20398.2 0.911720
\(795\) −21451.1 −0.956970
\(796\) −1476.12 −0.0657284
\(797\) −39636.4 −1.76160 −0.880798 0.473492i \(-0.842993\pi\)
−0.880798 + 0.473492i \(0.842993\pi\)
\(798\) 1016.60 0.0450969
\(799\) −18885.5 −0.836197
\(800\) −5560.90 −0.245760
\(801\) 10718.2 0.472797
\(802\) 23819.0 1.04872
\(803\) −16816.9 −0.739048
\(804\) 580.096 0.0254458
\(805\) −25602.4 −1.12095
\(806\) 4180.15 0.182679
\(807\) 6238.21 0.272113
\(808\) −6669.71 −0.290396
\(809\) −23811.2 −1.03481 −0.517403 0.855742i \(-0.673101\pi\)
−0.517403 + 0.855742i \(0.673101\pi\)
\(810\) −4326.74 −0.187687
\(811\) 27218.6 1.17851 0.589256 0.807946i \(-0.299421\pi\)
0.589256 + 0.807946i \(0.299421\pi\)
\(812\) −1055.38 −0.0456116
\(813\) −18036.0 −0.778045
\(814\) 9716.80 0.418395
\(815\) −55849.2 −2.40038
\(816\) 12045.9 0.516777
\(817\) −8300.73 −0.355454
\(818\) −7007.94 −0.299544
\(819\) −875.548 −0.0373555
\(820\) 2370.30 0.100944
\(821\) −43094.8 −1.83193 −0.915967 0.401253i \(-0.868575\pi\)
−0.915967 + 0.401253i \(0.868575\pi\)
\(822\) −4498.36 −0.190874
\(823\) 26541.1 1.12414 0.562068 0.827091i \(-0.310006\pi\)
0.562068 + 0.827091i \(0.310006\pi\)
\(824\) −44455.1 −1.87945
\(825\) −17490.9 −0.738127
\(826\) 1634.49 0.0688512
\(827\) −44898.7 −1.88788 −0.943942 0.330112i \(-0.892913\pi\)
−0.943942 + 0.330112i \(0.892913\pi\)
\(828\) 763.829 0.0320590
\(829\) −7137.48 −0.299029 −0.149514 0.988760i \(-0.547771\pi\)
−0.149514 + 0.988760i \(0.547771\pi\)
\(830\) 49862.6 2.08525
\(831\) 2205.60 0.0920717
\(832\) −7008.06 −0.292020
\(833\) −19238.6 −0.800213
\(834\) 5014.49 0.208198
\(835\) 14204.6 0.588708
\(836\) −182.804 −0.00756270
\(837\) −3166.64 −0.130771
\(838\) 9177.59 0.378323
\(839\) −4387.17 −0.180527 −0.0902634 0.995918i \(-0.528771\pi\)
−0.0902634 + 0.995918i \(0.528771\pi\)
\(840\) −10173.2 −0.417867
\(841\) 60758.1 2.49121
\(842\) 5084.36 0.208098
\(843\) 5708.76 0.233239
\(844\) 1948.53 0.0794683
\(845\) 3292.68 0.134049
\(846\) 6951.74 0.282513
\(847\) −6036.01 −0.244864
\(848\) −21983.2 −0.890219
\(849\) −6377.12 −0.257788
\(850\) −46791.0 −1.88814
\(851\) 27176.9 1.09473
\(852\) 766.004 0.0308015
\(853\) −9328.85 −0.374459 −0.187230 0.982316i \(-0.559951\pi\)
−0.187230 + 0.982316i \(0.559951\pi\)
\(854\) 3997.99 0.160197
\(855\) 2896.20 0.115845
\(856\) 19405.2 0.774833
\(857\) −5010.39 −0.199710 −0.0998552 0.995002i \(-0.531838\pi\)
−0.0998552 + 0.995002i \(0.531838\pi\)
\(858\) −2448.56 −0.0974272
\(859\) 30233.4 1.20088 0.600438 0.799672i \(-0.294993\pi\)
0.600438 + 0.799672i \(0.294993\pi\)
\(860\) 4732.45 0.187646
\(861\) 5651.01 0.223677
\(862\) 38501.4 1.52130
\(863\) 4334.93 0.170988 0.0854940 0.996339i \(-0.472753\pi\)
0.0854940 + 0.996339i \(0.472753\pi\)
\(864\) 589.728 0.0232210
\(865\) −74715.2 −2.93687
\(866\) −8462.05 −0.332047
\(867\) 1258.58 0.0493007
\(868\) −424.189 −0.0165875
\(869\) 2593.78 0.101252
\(870\) 46760.8 1.82223
\(871\) −5201.06 −0.202332
\(872\) −25064.7 −0.973391
\(873\) 5014.48 0.194404
\(874\) 7951.69 0.307746
\(875\) 18895.6 0.730043
\(876\) −1064.79 −0.0410684
\(877\) 34683.3 1.33543 0.667716 0.744416i \(-0.267272\pi\)
0.667716 + 0.744416i \(0.267272\pi\)
\(878\) −7779.95 −0.299044
\(879\) 4923.08 0.188909
\(880\) −26725.3 −1.02376
\(881\) −18269.2 −0.698642 −0.349321 0.937003i \(-0.613588\pi\)
−0.349321 + 0.937003i \(0.613588\pi\)
\(882\) 7081.70 0.270355
\(883\) −14592.0 −0.556128 −0.278064 0.960563i \(-0.589693\pi\)
−0.278064 + 0.960563i \(0.589693\pi\)
\(884\) 421.177 0.0160246
\(885\) 4656.49 0.176866
\(886\) −50198.0 −1.90343
\(887\) 30459.3 1.15301 0.576507 0.817092i \(-0.304415\pi\)
0.576507 + 0.817092i \(0.304415\pi\)
\(888\) 10798.8 0.408091
\(889\) 9699.60 0.365933
\(890\) −63614.6 −2.39592
\(891\) 1854.89 0.0697432
\(892\) −1829.32 −0.0686662
\(893\) −4653.30 −0.174375
\(894\) −17807.7 −0.666196
\(895\) −5530.57 −0.206555
\(896\) −9752.58 −0.363628
\(897\) −6848.38 −0.254917
\(898\) −38002.6 −1.41221
\(899\) 34223.2 1.26964
\(900\) −1107.47 −0.0410172
\(901\) 24601.2 0.909638
\(902\) 15803.6 0.583374
\(903\) 11282.6 0.415793
\(904\) −3862.39 −0.142103
\(905\) 46050.7 1.69147
\(906\) −6962.84 −0.255326
\(907\) −9364.89 −0.342840 −0.171420 0.985198i \(-0.554836\pi\)
−0.171420 + 0.985198i \(0.554836\pi\)
\(908\) −973.313 −0.0355733
\(909\) −2580.90 −0.0941727
\(910\) 5196.53 0.189300
\(911\) 32479.8 1.18123 0.590616 0.806952i \(-0.298885\pi\)
0.590616 + 0.806952i \(0.298885\pi\)
\(912\) 2968.04 0.107765
\(913\) −21376.3 −0.774864
\(914\) 24648.5 0.892012
\(915\) 11389.9 0.411516
\(916\) 1474.46 0.0531851
\(917\) −1475.72 −0.0531435
\(918\) 4962.13 0.178404
\(919\) 295.958 0.0106232 0.00531161 0.999986i \(-0.498309\pi\)
0.00531161 + 0.999986i \(0.498309\pi\)
\(920\) −79572.9 −2.85157
\(921\) 10119.8 0.362062
\(922\) 9340.56 0.333639
\(923\) −6867.89 −0.244918
\(924\) 248.473 0.00884649
\(925\) −39403.5 −1.40062
\(926\) 20558.2 0.729572
\(927\) −17202.3 −0.609489
\(928\) −6373.42 −0.225450
\(929\) −5620.38 −0.198492 −0.0992458 0.995063i \(-0.531643\pi\)
−0.0992458 + 0.995063i \(0.531643\pi\)
\(930\) 18794.6 0.662687
\(931\) −4740.29 −0.166871
\(932\) −2700.52 −0.0949125
\(933\) 2605.58 0.0914284
\(934\) −21142.0 −0.740670
\(935\) 29908.0 1.04609
\(936\) −2721.23 −0.0950278
\(937\) −32583.1 −1.13601 −0.568006 0.823024i \(-0.692285\pi\)
−0.568006 + 0.823024i \(0.692285\pi\)
\(938\) −8208.35 −0.285727
\(939\) 13029.6 0.452827
\(940\) 2652.96 0.0920532
\(941\) 8812.99 0.305308 0.152654 0.988280i \(-0.451218\pi\)
0.152654 + 0.988280i \(0.451218\pi\)
\(942\) 13600.8 0.470422
\(943\) 44201.2 1.52639
\(944\) 4772.00 0.164529
\(945\) −3936.59 −0.135510
\(946\) 31552.9 1.08443
\(947\) 13426.8 0.460732 0.230366 0.973104i \(-0.426008\pi\)
0.230366 + 0.973104i \(0.426008\pi\)
\(948\) 164.229 0.00562649
\(949\) 9546.76 0.326555
\(950\) −11529.1 −0.393739
\(951\) 9832.96 0.335285
\(952\) 11667.1 0.397199
\(953\) −13394.6 −0.455293 −0.227647 0.973744i \(-0.573103\pi\)
−0.227647 + 0.973744i \(0.573103\pi\)
\(954\) −9055.67 −0.307325
\(955\) 48986.2 1.65985
\(956\) 645.560 0.0218398
\(957\) −20046.5 −0.677129
\(958\) 25880.7 0.872828
\(959\) −4092.74 −0.137812
\(960\) −31509.3 −1.05933
\(961\) −16035.7 −0.538273
\(962\) −5516.11 −0.184872
\(963\) 7509.00 0.251271
\(964\) 276.243 0.00922944
\(965\) 47163.8 1.57332
\(966\) −10808.2 −0.359986
\(967\) 45590.8 1.51613 0.758066 0.652178i \(-0.226144\pi\)
0.758066 + 0.652178i \(0.226144\pi\)
\(968\) −18760.1 −0.622904
\(969\) −3321.51 −0.110116
\(970\) −29761.8 −0.985149
\(971\) 264.763 0.00875041 0.00437521 0.999990i \(-0.498607\pi\)
0.00437521 + 0.999990i \(0.498607\pi\)
\(972\) 117.445 0.00387558
\(973\) 4562.32 0.150320
\(974\) 16878.2 0.555248
\(975\) 9929.38 0.326148
\(976\) 11672.4 0.382812
\(977\) 610.521 0.0199921 0.00999606 0.999950i \(-0.496818\pi\)
0.00999606 + 0.999950i \(0.496818\pi\)
\(978\) −23577.0 −0.770868
\(979\) 27271.8 0.890308
\(980\) 2702.56 0.0880918
\(981\) −9698.98 −0.315662
\(982\) −10535.5 −0.342363
\(983\) −57829.7 −1.87638 −0.938190 0.346121i \(-0.887499\pi\)
−0.938190 + 0.346121i \(0.887499\pi\)
\(984\) 17563.5 0.569007
\(985\) −90278.8 −2.92033
\(986\) −53627.7 −1.73210
\(987\) 6324.89 0.203975
\(988\) 103.776 0.00334165
\(989\) 88250.4 2.83741
\(990\) −11009.1 −0.353427
\(991\) −56780.7 −1.82008 −0.910039 0.414522i \(-0.863949\pi\)
−0.910039 + 0.414522i \(0.863949\pi\)
\(992\) −2561.67 −0.0819890
\(993\) −16768.9 −0.535895
\(994\) −10838.9 −0.345866
\(995\) 59505.3 1.89592
\(996\) −1353.47 −0.0430587
\(997\) 18616.6 0.591369 0.295684 0.955286i \(-0.404452\pi\)
0.295684 + 0.955286i \(0.404452\pi\)
\(998\) 35209.4 1.11677
\(999\) 4178.69 0.132340
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 39.4.a.b.1.1 2
3.2 odd 2 117.4.a.c.1.2 2
4.3 odd 2 624.4.a.r.1.2 2
5.4 even 2 975.4.a.j.1.2 2
7.6 odd 2 1911.4.a.h.1.1 2
8.3 odd 2 2496.4.a.s.1.1 2
8.5 even 2 2496.4.a.bc.1.1 2
12.11 even 2 1872.4.a.t.1.1 2
13.5 odd 4 507.4.b.f.337.3 4
13.8 odd 4 507.4.b.f.337.2 4
13.12 even 2 507.4.a.f.1.2 2
39.38 odd 2 1521.4.a.s.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.4.a.b.1.1 2 1.1 even 1 trivial
117.4.a.c.1.2 2 3.2 odd 2
507.4.a.f.1.2 2 13.12 even 2
507.4.b.f.337.2 4 13.8 odd 4
507.4.b.f.337.3 4 13.5 odd 4
624.4.a.r.1.2 2 4.3 odd 2
975.4.a.j.1.2 2 5.4 even 2
1521.4.a.s.1.1 2 39.38 odd 2
1872.4.a.t.1.1 2 12.11 even 2
1911.4.a.h.1.1 2 7.6 odd 2
2496.4.a.s.1.1 2 8.3 odd 2
2496.4.a.bc.1.1 2 8.5 even 2