Properties

Label 39.4.a
Level $39$
Weight $4$
Character orbit 39.a
Rep. character $\chi_{39}(1,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $3$
Sturm bound $18$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 39.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(18\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(39))\).

Total New Old
Modular forms 16 6 10
Cusp forms 12 6 6
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(3\)
Plus space\(+\)\(5\)
Minus space\(-\)\(1\)

Trace form

\( 6 q + 4 q^{2} + 16 q^{4} + 16 q^{5} + 32 q^{7} + 48 q^{8} + 54 q^{9} - 36 q^{10} - 96 q^{11} + 12 q^{12} + 26 q^{13} - 232 q^{14} - 24 q^{15} - 76 q^{16} - 60 q^{17} + 36 q^{18} + 216 q^{19} - 92 q^{20}+ \cdots - 864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(39))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 13
39.4.a.a 39.a 1.a $1$ $2.301$ \(\Q\) None 39.4.a.a \(0\) \(-3\) \(-12\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-8q^{4}-12q^{5}+2q^{7}+9q^{9}+\cdots\)
39.4.a.b 39.a 1.a $2$ $2.301$ \(\Q(\sqrt{14}) \) None 39.4.a.b \(2\) \(-6\) \(24\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}-3q^{3}+(7+2\beta )q^{4}+(12+\cdots)q^{5}+\cdots\)
39.4.a.c 39.a 1.a $3$ $2.301$ 3.3.3144.1 None 39.4.a.c \(2\) \(9\) \(4\) \(30\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+3q^{3}+(3+\beta _{2})q^{4}+(2+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(39))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(39)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 2}\)