Defining parameters
Level: | \( N \) | \(=\) | \( 39 = 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 39.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(39))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 6 | 10 |
Cusp forms | 12 | 6 | 6 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(13\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(3\) |
Plus space | \(+\) | \(5\) | |
Minus space | \(-\) | \(1\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(39))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 13 | |||||||
39.4.a.a | $1$ | $2.301$ | \(\Q\) | None | \(0\) | \(-3\) | \(-12\) | \(2\) | $+$ | $-$ | \(q-3q^{3}-8q^{4}-12q^{5}+2q^{7}+9q^{9}+\cdots\) | |
39.4.a.b | $2$ | $2.301$ | \(\Q(\sqrt{14}) \) | None | \(2\) | \(-6\) | \(24\) | \(0\) | $+$ | $+$ | \(q+(1+\beta )q^{2}-3q^{3}+(7+2\beta )q^{4}+(12+\cdots)q^{5}+\cdots\) | |
39.4.a.c | $3$ | $2.301$ | 3.3.3144.1 | None | \(2\) | \(9\) | \(4\) | \(30\) | $-$ | $-$ | \(q+(1-\beta _{1})q^{2}+3q^{3}+(3+\beta _{2})q^{4}+(2+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(39))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(39)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 2}\)