Properties

Label 39.4
Level 39
Weight 4
Dimension 114
Nonzero newspaces 6
Newform subspaces 14
Sturm bound 448
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 39 = 3 \cdot 13 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 14 \)
Sturm bound: \(448\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(39))\).

Total New Old
Modular forms 192 138 54
Cusp forms 144 114 30
Eisenstein series 48 24 24

Trace form

\( 114 q - 6 q^{3} - 12 q^{4} - 6 q^{6} + 60 q^{7} + 144 q^{8} - 6 q^{9} - 192 q^{10} - 120 q^{11} - 240 q^{12} - 300 q^{13} - 240 q^{14} - 78 q^{15} - 12 q^{16} + 378 q^{17} + 660 q^{18} + 876 q^{19} + 1032 q^{20}+ \cdots - 11394 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(39))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
39.4.a \(\chi_{39}(1, \cdot)\) 39.4.a.a 1 1
39.4.a.b 2
39.4.a.c 3
39.4.b \(\chi_{39}(25, \cdot)\) 39.4.b.a 4 1
39.4.b.b 4
39.4.e \(\chi_{39}(16, \cdot)\) 39.4.e.a 2 2
39.4.e.b 2
39.4.e.c 8
39.4.f \(\chi_{39}(5, \cdot)\) 39.4.f.a 4 2
39.4.f.b 20
39.4.j \(\chi_{39}(4, \cdot)\) 39.4.j.a 2 2
39.4.j.b 4
39.4.j.c 10
39.4.k \(\chi_{39}(2, \cdot)\) 39.4.k.a 48 4

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(39))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(39)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 2}\)