Properties

Label 39.3.g
Level $39$
Weight $3$
Character orbit 39.g
Rep. character $\chi_{39}(31,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $8$
Newform subspaces $1$
Sturm bound $14$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 39.g (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(14\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(39, [\chi])\).

Total New Old
Modular forms 24 8 16
Cusp forms 16 8 8
Eisenstein series 8 0 8

Trace form

\( 8 q + 4 q^{2} - 20 q^{5} + 8 q^{7} - 24 q^{8} + 24 q^{9} - 20 q^{11} + 8 q^{13} - 16 q^{14} + 12 q^{15} + 56 q^{16} + 12 q^{18} - 40 q^{19} + 44 q^{20} - 48 q^{21} - 128 q^{22} + 36 q^{24} - 32 q^{26} + 32 q^{28}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(39, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
39.3.g.a 39.g 13.d $8$ $1.063$ 8.0.\(\cdots\).10 None 39.3.g.a \(4\) \(0\) \(-20\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{4}q^{2}-\beta _{2}q^{3}+(-1-\beta _{1}-\beta _{4}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(39, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(39, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)