Properties

Label 39.2.k.b
Level $39$
Weight $2$
Character orbit 39.k
Analytic conductor $0.311$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 39.k (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.311416567883\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.56070144.2
Defining polynomial: \(x^{8} - 4 x^{7} + 16 x^{6} - 34 x^{5} + 63 x^{4} - 74 x^{3} + 70 x^{2} - 38 x + 13\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -\beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{5} + \beta_{7} ) q^{2} + ( -1 + \beta_{1} + \beta_{2} ) q^{3} + ( -2 - 2 \beta_{5} + \beta_{6} ) q^{4} + ( \beta_{1} - \beta_{3} + \beta_{4} - \beta_{5} ) q^{5} + ( 2 - \beta_{1} - \beta_{3} - \beta_{4} + 2 \beta_{5} - 2 \beta_{6} - \beta_{7} ) q^{6} + ( -\beta_{5} - \beta_{6} ) q^{7} + ( \beta_{1} + 2 \beta_{2} - \beta_{3} + \beta_{4} - 3 \beta_{5} - 2 \beta_{7} ) q^{8} + ( -1 - \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{5} + \beta_{6} + \beta_{7} ) q^{9} +O(q^{10})\) \( q + ( -\beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{5} + \beta_{7} ) q^{2} + ( -1 + \beta_{1} + \beta_{2} ) q^{3} + ( -2 - 2 \beta_{5} + \beta_{6} ) q^{4} + ( \beta_{1} - \beta_{3} + \beta_{4} - \beta_{5} ) q^{5} + ( 2 - \beta_{1} - \beta_{3} - \beta_{4} + 2 \beta_{5} - 2 \beta_{6} - \beta_{7} ) q^{6} + ( -\beta_{5} - \beta_{6} ) q^{7} + ( \beta_{1} + 2 \beta_{2} - \beta_{3} + \beta_{4} - 3 \beta_{5} - 2 \beta_{7} ) q^{8} + ( -1 - \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{5} + \beta_{6} + \beta_{7} ) q^{9} + ( 1 + 4 \beta_{4} + \beta_{6} ) q^{10} + ( 1 - 2 \beta_{1} - \beta_{4} + \beta_{6} - 2 \beta_{7} ) q^{11} + ( 1 - \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + \beta_{4} + 2 \beta_{6} ) q^{12} + ( 2 - 3 \beta_{4} - 2 \beta_{6} ) q^{13} + ( -1 + 2 \beta_{1} + \beta_{4} - \beta_{5} ) q^{14} + ( -3 - \beta_{2} + \beta_{3} - 2 \beta_{4} + 2 \beta_{6} ) q^{15} + ( -1 - 2 \beta_{4} + 4 \beta_{5} + \beta_{6} ) q^{16} + ( -1 + 2 \beta_{1} + \beta_{2} + \beta_{4} - 2 \beta_{6} + 3 \beta_{7} ) q^{17} + ( 1 + 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - \beta_{5} - 5 \beta_{6} + 2 \beta_{7} ) q^{18} + ( -2 + 2 \beta_{4} ) q^{19} + ( -2 \beta_{1} + \beta_{2} + 2 \beta_{3} - 2 \beta_{4} + 3 \beta_{5} - 2 \beta_{6} + 3 \beta_{7} ) q^{20} + ( 1 - \beta_{1} - \beta_{3} - \beta_{4} + \beta_{6} ) q^{21} + ( -6 \beta_{4} + 3 \beta_{5} + \beta_{6} ) q^{22} + ( -1 + 2 \beta_{1} + \beta_{2} + \beta_{3} + 4 \beta_{4} - 4 \beta_{5} + 2 \beta_{6} + 2 \beta_{7} ) q^{24} + ( 1 + \beta_{4} - \beta_{5} - 2 \beta_{6} ) q^{25} + ( -5 \beta_{2} + 2 \beta_{5} + 3 \beta_{6} - \beta_{7} ) q^{26} + ( 2 - \beta_{1} - 2 \beta_{3} + 2 \beta_{4} - \beta_{5} + 2 \beta_{6} - 4 \beta_{7} ) q^{27} + ( 3 + \beta_{4} + 2 \beta_{5} - \beta_{6} ) q^{28} + ( 2 - 5 \beta_{1} - 5 \beta_{2} + \beta_{3} - 3 \beta_{4} + 5 \beta_{5} + 3 \beta_{6} - \beta_{7} ) q^{29} + ( 2 + 2 \beta_{1} + \beta_{2} + \beta_{4} - 4 \beta_{5} - 4 \beta_{7} ) q^{30} + ( -1 + 3 \beta_{4} + \beta_{5} + 4 \beta_{6} ) q^{31} + ( \beta_{2} - \beta_{5} - \beta_{7} ) q^{32} + ( 3 + 2 \beta_{1} + 3 \beta_{2} - 2 \beta_{3} + 5 \beta_{4} - 5 \beta_{5} - 4 \beta_{6} + \beta_{7} ) q^{33} + ( -4 + 5 \beta_{4} - 4 \beta_{5} - \beta_{6} ) q^{34} + ( 2 \beta_{2} - \beta_{5} - \beta_{6} ) q^{35} + ( -3 + \beta_{1} - \beta_{2} - \beta_{3} - 4 \beta_{4} - \beta_{5} - 2 \beta_{6} - \beta_{7} ) q^{36} + ( -2 - 3 \beta_{4} + 5 \beta_{5} - 3 \beta_{6} ) q^{37} + ( 2 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} - 4 \beta_{5} - 2 \beta_{6} ) q^{38} + ( -3 + 2 \beta_{2} - 2 \beta_{4} + 3 \beta_{5} + 3 \beta_{7} ) q^{39} + ( -3 - 4 \beta_{4} - 4 \beta_{5} ) q^{40} + ( 1 + \beta_{1} + 3 \beta_{2} - 3 \beta_{3} + 2 \beta_{4} - 4 \beta_{5} - \beta_{6} - \beta_{7} ) q^{41} + ( -4 - \beta_{1} - \beta_{2} + \beta_{3} - \beta_{5} + 5 \beta_{6} - \beta_{7} ) q^{42} + ( 6 + 3 \beta_{5} - 3 \beta_{6} ) q^{43} + ( 1 - 2 \beta_{2} - 2 \beta_{3} + \beta_{4} - \beta_{5} + 2 \beta_{6} - 2 \beta_{7} ) q^{44} + ( -1 - 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + 3 \beta_{4} + 2 \beta_{6} ) q^{45} + ( -4 + 4 \beta_{1} + 4 \beta_{3} ) q^{47} + ( -2 - \beta_{2} + 4 \beta_{3} + \beta_{4} + 2 \beta_{5} - 4 \beta_{6} + 2 \beta_{7} ) q^{48} -5 \beta_{4} q^{49} + ( -1 + 2 \beta_{1} + \beta_{4} - \beta_{6} + 2 \beta_{7} ) q^{50} + ( -1 - 2 \beta_{1} - 4 \beta_{2} + 3 \beta_{3} - 7 \beta_{4} + 9 \beta_{5} + 3 \beta_{6} ) q^{51} + ( 4 + 7 \beta_{4} - \beta_{5} + 4 \beta_{6} ) q^{52} + ( -\beta_{1} + \beta_{3} - \beta_{4} + 2 \beta_{5} - \beta_{6} + 2 \beta_{7} ) q^{53} + ( 6 - 2 \beta_{1} + \beta_{2} - \beta_{3} - 3 \beta_{4} + 8 \beta_{5} + \beta_{6} + 2 \beta_{7} ) q^{54} + ( 1 + 3 \beta_{4} - 6 \beta_{5} - \beta_{6} ) q^{55} + ( 2 - 4 \beta_{1} - 2 \beta_{2} - 2 \beta_{4} + 3 \beta_{5} + \beta_{6} ) q^{56} + ( 4 - 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{5} - 2 \beta_{7} ) q^{57} + ( -1 + \beta_{4} - 9 \beta_{5} + 9 \beta_{6} ) q^{58} + ( -2 \beta_{2} + 2 \beta_{6} - 2 \beta_{7} ) q^{59} + ( 9 - \beta_{1} - \beta_{2} - 3 \beta_{4} + 10 \beta_{5} - 6 \beta_{6} + \beta_{7} ) q^{60} + 7 \beta_{6} q^{61} + ( 1 - 4 \beta_{1} + 4 \beta_{2} + 2 \beta_{3} - 3 \beta_{4} + 2 \beta_{5} - 3 \beta_{6} + 2 \beta_{7} ) q^{62} + ( -1 + 2 \beta_{1} - \beta_{4} + 2 \beta_{5} - 3 \beta_{6} + 2 \beta_{7} ) q^{63} + ( 5 - 2 \beta_{4} + 2 \beta_{5} - 10 \beta_{6} ) q^{64} + ( -3 + 5 \beta_{1} + 5 \beta_{2} + \beta_{3} + 2 \beta_{4} - 4 \beta_{5} - 3 \beta_{6} + \beta_{7} ) q^{65} + ( -7 + \beta_{1} + 3 \beta_{3} + \beta_{4} + 6 \beta_{5} - 3 \beta_{6} + 6 \beta_{7} ) q^{66} + ( -4 + 2 \beta_{4} - 6 \beta_{5} - 2 \beta_{6} ) q^{67} + ( -2 + 3 \beta_{1} + 3 \beta_{2} + \beta_{3} + \beta_{4} - 3 \beta_{5} - \beta_{6} - \beta_{7} ) q^{68} + ( -3 - 5 \beta_{4} + 3 \beta_{5} - 2 \beta_{6} ) q^{70} + ( -2 \beta_{2} + 2 \beta_{5} + 2 \beta_{7} ) q^{71} + ( -1 + 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + \beta_{4} + 2 \beta_{5} + 8 \beta_{6} - 4 \beta_{7} ) q^{72} + ( -5 + 2 \beta_{4} - 5 \beta_{5} + 3 \beta_{6} ) q^{73} + ( 5 - \beta_{2} - 10 \beta_{3} + 5 \beta_{4} - 7 \beta_{5} + 3 \beta_{6} - 5 \beta_{7} ) q^{74} + ( 2 - \beta_{1} + \beta_{2} - \beta_{3} - 2 \beta_{4} - \beta_{5} + \beta_{6} - \beta_{7} ) q^{75} + ( -2 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} ) q^{76} + ( -2 \beta_{1} - 4 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} + 4 \beta_{5} + 2 \beta_{6} ) q^{77} + ( -8 - 2 \beta_{1} + \beta_{2} - 3 \beta_{3} - 8 \beta_{5} + 3 \beta_{6} - 5 \beta_{7} ) q^{78} + 2 q^{79} + ( -2 + \beta_{1} - 3 \beta_{2} + 3 \beta_{3} - \beta_{4} + 2 \beta_{5} + 2 \beta_{6} - \beta_{7} ) q^{80} + ( -1 + 4 \beta_{1} + 4 \beta_{2} + 6 \beta_{4} - 12 \beta_{5} - 3 \beta_{6} ) q^{81} + ( -4 + 5 \beta_{5} + 2 \beta_{6} ) q^{82} + ( -1 + 2 \beta_{1} + 2 \beta_{2} + \beta_{4} - \beta_{5} - 2 \beta_{6} + 2 \beta_{7} ) q^{83} + ( -1 + 2 \beta_{1} + 3 \beta_{2} + 2 \beta_{3} - \beta_{4} - \beta_{5} - 2 \beta_{6} - \beta_{7} ) q^{84} + ( -1 - \beta_{4} + 5 \beta_{5} + 5 \beta_{6} ) q^{85} + ( 3 - 6 \beta_{1} - 6 \beta_{2} - 3 \beta_{4} + 9 \beta_{5} + 6 \beta_{7} ) q^{86} + ( 3 + 4 \beta_{2} - 6 \beta_{3} + 2 \beta_{4} - 6 \beta_{5} - 9 \beta_{6} - 3 \beta_{7} ) q^{87} + ( -1 + 9 \beta_{4} - \beta_{6} ) q^{88} + ( 1 - 4 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} - 3 \beta_{4} + \beta_{6} - 4 \beta_{7} ) q^{89} + ( -6 + 3 \beta_{1} + 6 \beta_{2} - \beta_{3} + 9 \beta_{4} - 12 \beta_{5} + 7 \beta_{6} ) q^{90} + ( 1 + 5 \beta_{4} - 5 \beta_{5} ) q^{91} + ( 3 \beta_{1} - \beta_{2} + \beta_{3} + 4 \beta_{4} - 3 \beta_{5} - \beta_{6} - 3 \beta_{7} ) q^{93} + ( 16 - 4 \beta_{4} + 8 \beta_{5} - 16 \beta_{6} ) q^{94} + ( 2 - 4 \beta_{1} - 2 \beta_{2} - 2 \beta_{4} + 2 \beta_{5} + 2 \beta_{6} - 2 \beta_{7} ) q^{95} + ( 1 + \beta_{1} + \beta_{2} + 3 \beta_{4} - 2 \beta_{5} + \beta_{7} ) q^{96} + ( 6 - 6 \beta_{4} + 7 \beta_{5} - 7 \beta_{6} ) q^{97} + ( -5 \beta_{2} + 5 \beta_{6} - 5 \beta_{7} ) q^{98} + ( 1 + 2 \beta_{1} + 2 \beta_{3} - 7 \beta_{4} + 3 \beta_{5} + 4 \beta_{6} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 2q^{3} - 12q^{4} - 2q^{6} - 4q^{7} + 4q^{9} + O(q^{10}) \) \( 8q - 2q^{3} - 12q^{4} - 2q^{6} - 4q^{7} + 4q^{9} + 12q^{10} + 8q^{13} - 14q^{15} - 4q^{16} + 4q^{18} - 16q^{19} + 4q^{21} + 4q^{22} + 18q^{24} + 4q^{27} + 20q^{28} + 18q^{30} + 8q^{31} + 16q^{33} - 36q^{34} - 36q^{36} - 28q^{37} - 14q^{39} - 24q^{40} - 16q^{42} + 36q^{43} - 20q^{45} - 14q^{48} + 48q^{52} + 46q^{54} + 4q^{55} + 16q^{57} + 28q^{58} + 44q^{60} + 28q^{61} - 8q^{63} - 40q^{66} - 40q^{67} - 32q^{70} + 12q^{72} - 28q^{73} + 12q^{75} - 8q^{76} - 80q^{78} + 16q^{79} + 4q^{81} - 24q^{82} + 4q^{84} + 12q^{85} - 34q^{87} - 12q^{88} + 8q^{91} + 4q^{93} + 64q^{94} + 16q^{96} + 20q^{97} + 40q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 4 x^{7} + 16 x^{6} - 34 x^{5} + 63 x^{4} - 74 x^{3} + 70 x^{2} - 38 x + 13\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{7} - 15 \nu^{6} + 32 \nu^{5} - 172 \nu^{4} + 221 \nu^{3} - 426 \nu^{2} + 235 \nu - 159 \)\()/37\)
\(\beta_{3}\)\(=\)\((\)\( -3 \nu^{7} - 8 \nu^{6} + 22 \nu^{5} - 146 \nu^{4} + 256 \nu^{3} - 390 \nu^{2} + 298 \nu - 70 \)\()/37\)
\(\beta_{4}\)\(=\)\((\)\( -3 \nu^{7} - 8 \nu^{6} + 22 \nu^{5} - 146 \nu^{4} + 256 \nu^{3} - 427 \nu^{2} + 335 \nu - 181 \)\()/37\)
\(\beta_{5}\)\(=\)\((\)\( 3 \nu^{7} - 29 \nu^{6} + 89 \nu^{5} - 261 \nu^{4} + 373 \nu^{3} - 498 \nu^{2} + 294 \nu - 152 \)\()/37\)
\(\beta_{6}\)\(=\)\((\)\( -8 \nu^{7} + 28 \nu^{6} - 114 \nu^{5} + 215 \nu^{4} - 378 \nu^{3} + 366 \nu^{2} - 266 \nu + 97 \)\()/37\)
\(\beta_{7}\)\(=\)\((\)\( 17 \nu^{7} - 41 \nu^{6} + 159 \nu^{5} - 184 \nu^{4} + 276 \nu^{3} - 84 \nu^{2} + 38 \nu + 39 \)\()/37\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(-\beta_{4} + \beta_{3} + \beta_{1} - 3\)
\(\nu^{3}\)\(=\)\(\beta_{7} + \beta_{6} - \beta_{5} + 2 \beta_{3} - 2 \beta_{1} - 4\)
\(\nu^{4}\)\(=\)\(2 \beta_{7} + 3 \beta_{6} + 6 \beta_{4} - 2 \beta_{3} - 2 \beta_{2} - 6 \beta_{1} + 7\)
\(\nu^{5}\)\(=\)\(-4 \beta_{7} - 3 \beta_{6} + 7 \beta_{5} + 6 \beta_{4} - 12 \beta_{3} - 5 \beta_{2} + \beta_{1} + 26\)
\(\nu^{6}\)\(=\)\(-17 \beta_{7} - 25 \beta_{6} + 3 \beta_{5} - 24 \beta_{4} - 5 \beta_{3} + 7 \beta_{2} + 27 \beta_{1} - 1\)
\(\nu^{7}\)\(=\)\(4 \beta_{7} - 16 \beta_{6} - 42 \beta_{5} - 54 \beta_{4} + 51 \beta_{3} + 42 \beta_{2} + 26 \beta_{1} - 122\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/39\mathbb{Z}\right)^\times\).

\(n\) \(14\) \(28\)
\(\chi(n)\) \(-1\) \(\beta_{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2.1
0.500000 1.19293i
0.500000 + 2.19293i
0.500000 1.56488i
0.500000 + 0.564882i
0.500000 + 1.19293i
0.500000 2.19293i
0.500000 + 1.56488i
0.500000 0.564882i
−0.619657 + 2.31259i 1.64914 0.529480i −3.23205 1.86603i −1.69293 1.69293i 0.202571 + 4.14187i −1.36603 + 0.366025i 2.93225 2.93225i 2.43930 1.74637i 4.96410 2.86603i
2.2 0.619657 2.31259i −1.28311 + 1.16345i −3.23205 1.86603i 1.69293 + 1.69293i 1.89551 + 3.68825i −1.36603 + 0.366025i −2.93225 + 2.93225i 0.292748 2.98568i 4.96410 2.86603i
11.1 −1.45466 0.389774i 0.239203 1.71545i 0.232051 + 0.133975i 1.06488 1.06488i −1.01660 + 2.40216i 0.366025 + 1.36603i 1.84443 + 1.84443i −2.88556 0.820682i −1.96410 + 1.13397i
11.2 1.45466 + 0.389774i −1.60523 0.650571i 0.232051 + 0.133975i −1.06488 + 1.06488i −2.08148 1.57203i 0.366025 + 1.36603i −1.84443 1.84443i 2.15351 + 2.08863i −1.96410 + 1.13397i
20.1 −0.619657 2.31259i 1.64914 + 0.529480i −3.23205 + 1.86603i −1.69293 + 1.69293i 0.202571 4.14187i −1.36603 0.366025i 2.93225 + 2.93225i 2.43930 + 1.74637i 4.96410 + 2.86603i
20.2 0.619657 + 2.31259i −1.28311 1.16345i −3.23205 + 1.86603i 1.69293 1.69293i 1.89551 3.68825i −1.36603 0.366025i −2.93225 2.93225i 0.292748 + 2.98568i 4.96410 + 2.86603i
32.1 −1.45466 + 0.389774i 0.239203 + 1.71545i 0.232051 0.133975i 1.06488 + 1.06488i −1.01660 2.40216i 0.366025 1.36603i 1.84443 1.84443i −2.88556 + 0.820682i −1.96410 1.13397i
32.2 1.45466 0.389774i −1.60523 + 0.650571i 0.232051 0.133975i −1.06488 1.06488i −2.08148 + 1.57203i 0.366025 1.36603i −1.84443 + 1.84443i 2.15351 2.08863i −1.96410 1.13397i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 32.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.f odd 12 1 inner
39.k even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 39.2.k.b 8
3.b odd 2 1 inner 39.2.k.b 8
4.b odd 2 1 624.2.cn.c 8
5.b even 2 1 975.2.bo.d 8
5.c odd 4 1 975.2.bp.e 8
5.c odd 4 1 975.2.bp.f 8
12.b even 2 1 624.2.cn.c 8
13.b even 2 1 507.2.k.d 8
13.c even 3 1 507.2.f.f 8
13.c even 3 1 507.2.k.e 8
13.d odd 4 1 507.2.k.e 8
13.d odd 4 1 507.2.k.f 8
13.e even 6 1 507.2.f.e 8
13.e even 6 1 507.2.k.f 8
13.f odd 12 1 inner 39.2.k.b 8
13.f odd 12 1 507.2.f.e 8
13.f odd 12 1 507.2.f.f 8
13.f odd 12 1 507.2.k.d 8
15.d odd 2 1 975.2.bo.d 8
15.e even 4 1 975.2.bp.e 8
15.e even 4 1 975.2.bp.f 8
39.d odd 2 1 507.2.k.d 8
39.f even 4 1 507.2.k.e 8
39.f even 4 1 507.2.k.f 8
39.h odd 6 1 507.2.f.e 8
39.h odd 6 1 507.2.k.f 8
39.i odd 6 1 507.2.f.f 8
39.i odd 6 1 507.2.k.e 8
39.k even 12 1 inner 39.2.k.b 8
39.k even 12 1 507.2.f.e 8
39.k even 12 1 507.2.f.f 8
39.k even 12 1 507.2.k.d 8
52.l even 12 1 624.2.cn.c 8
65.o even 12 1 975.2.bp.f 8
65.s odd 12 1 975.2.bo.d 8
65.t even 12 1 975.2.bp.e 8
156.v odd 12 1 624.2.cn.c 8
195.bc odd 12 1 975.2.bp.e 8
195.bh even 12 1 975.2.bo.d 8
195.bn odd 12 1 975.2.bp.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.2.k.b 8 1.a even 1 1 trivial
39.2.k.b 8 3.b odd 2 1 inner
39.2.k.b 8 13.f odd 12 1 inner
39.2.k.b 8 39.k even 12 1 inner
507.2.f.e 8 13.e even 6 1
507.2.f.e 8 13.f odd 12 1
507.2.f.e 8 39.h odd 6 1
507.2.f.e 8 39.k even 12 1
507.2.f.f 8 13.c even 3 1
507.2.f.f 8 13.f odd 12 1
507.2.f.f 8 39.i odd 6 1
507.2.f.f 8 39.k even 12 1
507.2.k.d 8 13.b even 2 1
507.2.k.d 8 13.f odd 12 1
507.2.k.d 8 39.d odd 2 1
507.2.k.d 8 39.k even 12 1
507.2.k.e 8 13.c even 3 1
507.2.k.e 8 13.d odd 4 1
507.2.k.e 8 39.f even 4 1
507.2.k.e 8 39.i odd 6 1
507.2.k.f 8 13.d odd 4 1
507.2.k.f 8 13.e even 6 1
507.2.k.f 8 39.f even 4 1
507.2.k.f 8 39.h odd 6 1
624.2.cn.c 8 4.b odd 2 1
624.2.cn.c 8 12.b even 2 1
624.2.cn.c 8 52.l even 12 1
624.2.cn.c 8 156.v odd 12 1
975.2.bo.d 8 5.b even 2 1
975.2.bo.d 8 15.d odd 2 1
975.2.bo.d 8 65.s odd 12 1
975.2.bo.d 8 195.bh even 12 1
975.2.bp.e 8 5.c odd 4 1
975.2.bp.e 8 15.e even 4 1
975.2.bp.e 8 65.t even 12 1
975.2.bp.e 8 195.bc odd 12 1
975.2.bp.f 8 5.c odd 4 1
975.2.bp.f 8 15.e even 4 1
975.2.bp.f 8 65.o even 12 1
975.2.bp.f 8 195.bn odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} + 6 T_{2}^{6} - T_{2}^{4} - 78 T_{2}^{2} + 169 \) acting on \(S_{2}^{\mathrm{new}}(39, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 169 - 78 T^{2} - T^{4} + 6 T^{6} + T^{8} \)
$3$ \( 81 + 54 T - 12 T^{3} - 5 T^{4} - 4 T^{5} + 2 T^{7} + T^{8} \)
$5$ \( 169 + 38 T^{4} + T^{8} \)
$7$ \( ( 4 + 4 T + 2 T^{2} + 2 T^{3} + T^{4} )^{2} \)
$11$ \( 2704 - 1248 T^{2} + 140 T^{4} + 24 T^{6} + T^{8} \)
$13$ \( ( 169 - 52 T + 3 T^{2} - 4 T^{3} + T^{4} )^{2} \)
$17$ \( 13689 + 3510 T^{2} + 783 T^{4} + 30 T^{6} + T^{8} \)
$19$ \( ( 16 + 16 T + 20 T^{2} + 8 T^{3} + T^{4} )^{2} \)
$23$ \( T^{8} \)
$29$ \( 2474329 - 128986 T^{2} + 5151 T^{4} - 82 T^{6} + T^{8} \)
$31$ \( ( 484 + 88 T + 8 T^{2} - 4 T^{3} + T^{4} )^{2} \)
$37$ \( ( 1369 + 592 T + 113 T^{2} + 14 T^{3} + T^{4} )^{2} \)
$41$ \( 169 + 702 T^{2} + 959 T^{4} - 54 T^{6} + T^{8} \)
$43$ \( ( 324 - 324 T + 126 T^{2} - 18 T^{3} + T^{4} )^{2} \)
$47$ \( 11075584 + 9728 T^{4} + T^{8} \)
$53$ \( ( 13 + 22 T^{2} + T^{4} )^{2} \)
$59$ \( 43264 - 4992 T^{2} - 16 T^{4} + 24 T^{6} + T^{8} \)
$61$ \( ( 49 - 7 T + T^{2} )^{4} \)
$67$ \( ( 2704 + 832 T + 164 T^{2} + 20 T^{3} + T^{4} )^{2} \)
$71$ \( 43264 + 4992 T^{2} - 16 T^{4} - 24 T^{6} + T^{8} \)
$73$ \( ( 121 + 154 T + 98 T^{2} + 14 T^{3} + T^{4} )^{2} \)
$79$ \( ( -2 + T )^{8} \)
$83$ \( 2704 + 296 T^{4} + T^{8} \)
$89$ \( 77228944 + 210912 T^{2} - 8596 T^{4} - 24 T^{6} + T^{8} \)
$97$ \( ( 484 - 572 T + 194 T^{2} - 10 T^{3} + T^{4} )^{2} \)
show more
show less