Properties

Label 39.1.d.a
Level $39$
Weight $1$
Character orbit 39.d
Self dual yes
Analytic conductor $0.019$
Analytic rank $0$
Dimension $1$
Projective image $D_{2}$
CM/RM discs -3, -39, 13
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

This is the first weight $1$ newform with projective image $D_2$.

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [39,1,Mod(38,39)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(39, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("39.38");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 39.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.0194635354927\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{-3}, \sqrt{13})\)
Artin image: $D_4$
Artin field: Galois closure of 4.0.117.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{3} - q^{4} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{3} - q^{4} + q^{9} + q^{12} - q^{13} + q^{16} - q^{25} - q^{27} - q^{36} + q^{39} + 2 q^{43} - q^{48} + q^{49} + q^{52} - 2 q^{61} - q^{64} + q^{75} - 2 q^{79} + q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/39\mathbb{Z}\right)^\times\).

\(n\) \(14\) \(28\)
\(\chi(n)\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
38.1
0
0 −1.00000 −1.00000 0 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
13.b even 2 1 RM by \(\Q(\sqrt{13}) \)
39.d odd 2 1 CM by \(\Q(\sqrt{-39}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 39.1.d.a 1
3.b odd 2 1 CM 39.1.d.a 1
4.b odd 2 1 624.1.l.a 1
5.b even 2 1 975.1.g.a 1
5.c odd 4 2 975.1.e.a 2
7.b odd 2 1 1911.1.h.a 1
7.c even 3 2 1911.1.w.b 2
7.d odd 6 2 1911.1.w.a 2
8.b even 2 1 2496.1.l.b 1
8.d odd 2 1 2496.1.l.a 1
9.c even 3 2 1053.1.n.b 2
9.d odd 6 2 1053.1.n.b 2
12.b even 2 1 624.1.l.a 1
13.b even 2 1 RM 39.1.d.a 1
13.c even 3 2 507.1.h.a 2
13.d odd 4 2 507.1.c.a 1
13.e even 6 2 507.1.h.a 2
13.f odd 12 4 507.1.i.a 2
15.d odd 2 1 975.1.g.a 1
15.e even 4 2 975.1.e.a 2
21.c even 2 1 1911.1.h.a 1
21.g even 6 2 1911.1.w.a 2
21.h odd 6 2 1911.1.w.b 2
24.f even 2 1 2496.1.l.a 1
24.h odd 2 1 2496.1.l.b 1
39.d odd 2 1 CM 39.1.d.a 1
39.f even 4 2 507.1.c.a 1
39.h odd 6 2 507.1.h.a 2
39.i odd 6 2 507.1.h.a 2
39.k even 12 4 507.1.i.a 2
52.b odd 2 1 624.1.l.a 1
65.d even 2 1 975.1.g.a 1
65.h odd 4 2 975.1.e.a 2
91.b odd 2 1 1911.1.h.a 1
91.r even 6 2 1911.1.w.b 2
91.s odd 6 2 1911.1.w.a 2
104.e even 2 1 2496.1.l.b 1
104.h odd 2 1 2496.1.l.a 1
117.n odd 6 2 1053.1.n.b 2
117.t even 6 2 1053.1.n.b 2
156.h even 2 1 624.1.l.a 1
195.e odd 2 1 975.1.g.a 1
195.s even 4 2 975.1.e.a 2
273.g even 2 1 1911.1.h.a 1
273.w odd 6 2 1911.1.w.b 2
273.ba even 6 2 1911.1.w.a 2
312.b odd 2 1 2496.1.l.b 1
312.h even 2 1 2496.1.l.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.1.d.a 1 1.a even 1 1 trivial
39.1.d.a 1 3.b odd 2 1 CM
39.1.d.a 1 13.b even 2 1 RM
39.1.d.a 1 39.d odd 2 1 CM
507.1.c.a 1 13.d odd 4 2
507.1.c.a 1 39.f even 4 2
507.1.h.a 2 13.c even 3 2
507.1.h.a 2 13.e even 6 2
507.1.h.a 2 39.h odd 6 2
507.1.h.a 2 39.i odd 6 2
507.1.i.a 2 13.f odd 12 4
507.1.i.a 2 39.k even 12 4
624.1.l.a 1 4.b odd 2 1
624.1.l.a 1 12.b even 2 1
624.1.l.a 1 52.b odd 2 1
624.1.l.a 1 156.h even 2 1
975.1.e.a 2 5.c odd 4 2
975.1.e.a 2 15.e even 4 2
975.1.e.a 2 65.h odd 4 2
975.1.e.a 2 195.s even 4 2
975.1.g.a 1 5.b even 2 1
975.1.g.a 1 15.d odd 2 1
975.1.g.a 1 65.d even 2 1
975.1.g.a 1 195.e odd 2 1
1053.1.n.b 2 9.c even 3 2
1053.1.n.b 2 9.d odd 6 2
1053.1.n.b 2 117.n odd 6 2
1053.1.n.b 2 117.t even 6 2
1911.1.h.a 1 7.b odd 2 1
1911.1.h.a 1 21.c even 2 1
1911.1.h.a 1 91.b odd 2 1
1911.1.h.a 1 273.g even 2 1
1911.1.w.a 2 7.d odd 6 2
1911.1.w.a 2 21.g even 6 2
1911.1.w.a 2 91.s odd 6 2
1911.1.w.a 2 273.ba even 6 2
1911.1.w.b 2 7.c even 3 2
1911.1.w.b 2 21.h odd 6 2
1911.1.w.b 2 91.r even 6 2
1911.1.w.b 2 273.w odd 6 2
2496.1.l.a 1 8.d odd 2 1
2496.1.l.a 1 24.f even 2 1
2496.1.l.a 1 104.h odd 2 1
2496.1.l.a 1 312.h even 2 1
2496.1.l.b 1 8.b even 2 1
2496.1.l.b 1 24.h odd 2 1
2496.1.l.b 1 104.e even 2 1
2496.1.l.b 1 312.b odd 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(39, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T - 2 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T + 2 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less