Properties

Label 39.1
Level 39
Weight 1
Dimension 1
Nonzero newspaces 1
Newforms 1
Sturm bound 112
Trace bound 0

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 39 = 3 \cdot 13 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 1 \)
Newforms: \( 1 \)
Sturm bound: \(112\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(39))\).

Total New Old
Modular forms 25 11 14
Cusp forms 1 1 0
Eisenstein series 24 10 14

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 1 0 0 0

Trace form

\( q - q^{3} - q^{4} + q^{9} + O(q^{10}) \) \( q - q^{3} - q^{4} + q^{9} + q^{12} - q^{13} + q^{16} - q^{25} - q^{27} - q^{36} + q^{39} + 2q^{43} - q^{48} + q^{49} + q^{52} - 2q^{61} - q^{64} + q^{75} - 2q^{79} + q^{81} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(39))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
39.1.c \(\chi_{39}(14, \cdot)\) None 0 1
39.1.d \(\chi_{39}(38, \cdot)\) 39.1.d.a 1 1
39.1.g \(\chi_{39}(31, \cdot)\) None 0 2
39.1.h \(\chi_{39}(17, \cdot)\) None 0 2
39.1.i \(\chi_{39}(29, \cdot)\) None 0 2
39.1.l \(\chi_{39}(7, \cdot)\) None 0 4