# Properties

 Label 3888.2.a.n Level $3888$ Weight $2$ Character orbit 3888.a Self dual yes Analytic conductor $31.046$ Analytic rank $1$ Dimension $1$ CM discriminant -3 Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3888,2,Mod(1,3888)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3888, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3888.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3888 = 2^{4} \cdot 3^{5}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3888.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$31.0458363059$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 243) Fricke sign: $$1$$ Sato-Tate group: $N(\mathrm{U}(1))$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 4 q^{7}+O(q^{10})$$ q + 4 * q^7 $$q + 4 q^{7} - 7 q^{13} + q^{19} - 5 q^{25} - 11 q^{31} - 10 q^{37} - 5 q^{43} + 9 q^{49} - q^{61} - 5 q^{67} - 7 q^{73} + 13 q^{79} - 28 q^{91} + 5 q^{97}+O(q^{100})$$ q + 4 * q^7 - 7 * q^13 + q^19 - 5 * q^25 - 11 * q^31 - 10 * q^37 - 5 * q^43 + 9 * q^49 - q^61 - 5 * q^67 - 7 * q^73 + 13 * q^79 - 28 * q^91 + 5 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 0 0 4.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3888.2.a.n 1
3.b odd 2 1 CM 3888.2.a.n 1
4.b odd 2 1 243.2.a.a 1
12.b even 2 1 243.2.a.a 1
20.d odd 2 1 6075.2.a.w 1
36.f odd 6 2 243.2.c.b 2
36.h even 6 2 243.2.c.b 2
60.h even 2 1 6075.2.a.w 1
108.j odd 18 6 729.2.e.e 6
108.l even 18 6 729.2.e.e 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
243.2.a.a 1 4.b odd 2 1
243.2.a.a 1 12.b even 2 1
243.2.c.b 2 36.f odd 6 2
243.2.c.b 2 36.h even 6 2
729.2.e.e 6 108.j odd 18 6
729.2.e.e 6 108.l even 18 6
3888.2.a.n 1 1.a even 1 1 trivial
3888.2.a.n 1 3.b odd 2 1 CM
6075.2.a.w 1 20.d odd 2 1
6075.2.a.w 1 60.h even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3888))$$:

 $$T_{5}$$ T5 $$T_{7} - 4$$ T7 - 4 $$T_{11}$$ T11 $$T_{13} + 7$$ T13 + 7

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T$$
$7$ $$T - 4$$
$11$ $$T$$
$13$ $$T + 7$$
$17$ $$T$$
$19$ $$T - 1$$
$23$ $$T$$
$29$ $$T$$
$31$ $$T + 11$$
$37$ $$T + 10$$
$41$ $$T$$
$43$ $$T + 5$$
$47$ $$T$$
$53$ $$T$$
$59$ $$T$$
$61$ $$T + 1$$
$67$ $$T + 5$$
$71$ $$T$$
$73$ $$T + 7$$
$79$ $$T - 13$$
$83$ $$T$$
$89$ $$T$$
$97$ $$T - 5$$