Properties

Label 3888.2.a.bm
Level $3888$
Weight $2$
Character orbit 3888.a
Self dual yes
Analytic conductor $31.046$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3888,2,Mod(1,3888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3888 = 2^{4} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,-3,0,0,0,3,0,3,0,0,0,9,0,-9,0,0,0,6,0,18,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.0458363059\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.9926793.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 12x^{4} - x^{3} + 36x^{2} + 9x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 1944)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{5} + (\beta_{4} - 1) q^{7} + (\beta_{5} + \beta_{3} + \beta_1) q^{11} + ( - \beta_{4} - \beta_{2} + \beta_1 + 1) q^{13} + (\beta_{4} - \beta_{3} - \beta_1 + 1) q^{17} + (\beta_{5} - \beta_{2} - 2) q^{19}+ \cdots + (\beta_{5} - \beta_{3} + \beta_{2} + \cdots + 4) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{7} + 3 q^{11} + 3 q^{13} + 9 q^{17} - 9 q^{19} + 6 q^{23} + 18 q^{25} - 3 q^{29} - 24 q^{31} + 15 q^{35} + 15 q^{37} + 21 q^{41} - 18 q^{43} + 6 q^{47} + 21 q^{49} + 12 q^{53} - 18 q^{55} + 12 q^{59}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 12x^{4} - x^{3} + 36x^{2} + 9x - 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{4} + 2\nu^{3} - 7\nu^{2} - 11\nu + 3 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} + \nu^{4} - 7\nu^{3} - 4\nu^{2} - 7 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - \nu^{4} - 11\nu^{3} + 6\nu^{2} + 26\nu + 3 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{5} - \nu^{4} + 11\nu^{3} + 4\nu^{2} - 28\nu + 7 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{4} + 9\nu^{2} + \nu - 11 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} - \beta_{4} + \beta_{3} - 2\beta_{2} + 2\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} - \beta_{4} - 2\beta_{3} + \beta_{2} - \beta _1 + 12 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 7\beta_{5} - 4\beta_{4} + 7\beta_{3} - 11\beta_{2} + 14\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 4\beta_{5} - 10\beta_{4} - 17\beta_{3} + 7\beta_{2} - 7\beta _1 + 75 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 49\beta_{5} - 22\beta_{4} + 58\beta_{3} - 68\beta_{2} + 101\beta _1 - 6 ) / 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.93230
−2.71168
2.58232
−0.702936
0.400207
2.36439
0 0 0 −3.89275 0 1.41858 0 0 0
1.2 0 0 0 −2.65344 0 −4.61130 0 0 0
1.3 0 0 0 −1.27086 0 −3.12719 0 0 0
1.4 0 0 0 1.61815 0 5.19137 0 0 0
1.5 0 0 0 2.01336 0 −1.72399 0 0 0
1.6 0 0 0 4.18553 0 −0.147474 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3888.2.a.bm 6
3.b odd 2 1 3888.2.a.bl 6
4.b odd 2 1 1944.2.a.q 6
12.b even 2 1 1944.2.a.r yes 6
36.f odd 6 2 1944.2.i.r 12
36.h even 6 2 1944.2.i.q 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1944.2.a.q 6 4.b odd 2 1
1944.2.a.r yes 6 12.b even 2 1
1944.2.i.q 12 36.h even 6 2
1944.2.i.r 12 36.f odd 6 2
3888.2.a.bl 6 3.b odd 2 1
3888.2.a.bm 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3888))\):

\( T_{5}^{6} - 24T_{5}^{4} - 2T_{5}^{3} + 135T_{5}^{2} - 12T_{5} - 179 \) Copy content Toggle raw display
\( T_{7}^{6} + 3T_{7}^{5} - 27T_{7}^{4} - 93T_{7}^{3} + 27T_{7}^{2} + 189T_{7} + 27 \) Copy content Toggle raw display
\( T_{11}^{6} - 3T_{11}^{5} - 39T_{11}^{4} + 65T_{11}^{3} + 465T_{11}^{2} - 129T_{11} - 1223 \) Copy content Toggle raw display
\( T_{13}^{6} - 3T_{13}^{5} - 36T_{13}^{4} + 151T_{13}^{3} - 114T_{13}^{2} - 72T_{13} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 24 T^{4} + \cdots - 179 \) Copy content Toggle raw display
$7$ \( T^{6} + 3 T^{5} + \cdots + 27 \) Copy content Toggle raw display
$11$ \( T^{6} - 3 T^{5} + \cdots - 1223 \) Copy content Toggle raw display
$13$ \( T^{6} - 3 T^{5} + \cdots - 8 \) Copy content Toggle raw display
$17$ \( T^{6} - 9 T^{5} + \cdots + 136 \) Copy content Toggle raw display
$19$ \( T^{6} + 9 T^{5} + \cdots + 568 \) Copy content Toggle raw display
$23$ \( T^{6} - 6 T^{5} + \cdots + 712 \) Copy content Toggle raw display
$29$ \( T^{6} + 3 T^{5} + \cdots - 6777 \) Copy content Toggle raw display
$31$ \( T^{6} + 24 T^{5} + \cdots - 50651 \) Copy content Toggle raw display
$37$ \( T^{6} - 15 T^{5} + \cdots - 23976 \) Copy content Toggle raw display
$41$ \( T^{6} - 21 T^{5} + \cdots - 648 \) Copy content Toggle raw display
$43$ \( T^{6} + 18 T^{5} + \cdots - 23624 \) Copy content Toggle raw display
$47$ \( T^{6} - 6 T^{5} + \cdots - 173016 \) Copy content Toggle raw display
$53$ \( T^{6} - 12 T^{5} + \cdots - 15263 \) Copy content Toggle raw display
$59$ \( T^{6} - 12 T^{5} + \cdots - 10259 \) Copy content Toggle raw display
$61$ \( T^{6} - 18 T^{5} + \cdots + 242776 \) Copy content Toggle raw display
$67$ \( T^{6} + 24 T^{5} + \cdots + 284608 \) Copy content Toggle raw display
$71$ \( T^{6} - 15 T^{5} + \cdots + 303832 \) Copy content Toggle raw display
$73$ \( T^{6} - 6 T^{5} + \cdots - 11177 \) Copy content Toggle raw display
$79$ \( T^{6} + 21 T^{5} + \cdots - 359 \) Copy content Toggle raw display
$83$ \( T^{6} - 18 T^{5} + \cdots + 139303 \) Copy content Toggle raw display
$89$ \( T^{6} - 18 T^{5} + \cdots - 174312 \) Copy content Toggle raw display
$97$ \( T^{6} - 27 T^{5} + \cdots + 115471 \) Copy content Toggle raw display
show more
show less