Properties

Label 3888.2.a.bd.1.3
Level $3888$
Weight $2$
Character 3888.1
Self dual yes
Analytic conductor $31.046$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3888,2,Mod(1,3888)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3888, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3888.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3888 = 2^{4} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3888.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.0458363059\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.53209\) of defining polynomial
Character \(\chi\) \(=\) 3888.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.467911 q^{5} +3.22668 q^{7} -3.10607 q^{11} -2.18479 q^{13} -3.00000 q^{17} -0.0418891 q^{19} +6.10607 q^{23} -4.78106 q^{25} -6.57398 q^{29} +6.22668 q^{31} -1.50980 q^{35} +3.59627 q^{37} -7.70233 q^{41} +0.588526 q^{43} -9.66044 q^{47} +3.41147 q^{49} -4.95811 q^{53} +1.45336 q^{55} -8.53209 q^{59} -1.26857 q^{61} +1.02229 q^{65} -10.0077 q^{67} +11.8307 q^{71} -8.23442 q^{73} -10.0223 q^{77} -11.0496 q^{79} -1.50980 q^{83} +1.40373 q^{85} +15.8726 q^{89} -7.04963 q^{91} +0.0196004 q^{95} +18.6459 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{5} + 3 q^{7} + 3 q^{11} - 3 q^{13} - 9 q^{17} + 3 q^{19} + 6 q^{23} + 3 q^{25} - 12 q^{29} + 12 q^{31} - 6 q^{35} - 3 q^{37} + 3 q^{41} + 12 q^{43} - 6 q^{47} - 18 q^{53} - 9 q^{55} - 21 q^{59}+ \cdots + 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.467911 −0.209256 −0.104628 0.994511i \(-0.533365\pi\)
−0.104628 + 0.994511i \(0.533365\pi\)
\(6\) 0 0
\(7\) 3.22668 1.21957 0.609786 0.792566i \(-0.291256\pi\)
0.609786 + 0.792566i \(0.291256\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.10607 −0.936514 −0.468257 0.883592i \(-0.655118\pi\)
−0.468257 + 0.883592i \(0.655118\pi\)
\(12\) 0 0
\(13\) −2.18479 −0.605952 −0.302976 0.952998i \(-0.597980\pi\)
−0.302976 + 0.952998i \(0.597980\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) −0.0418891 −0.00961001 −0.00480501 0.999988i \(-0.501529\pi\)
−0.00480501 + 0.999988i \(0.501529\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.10607 1.27320 0.636601 0.771193i \(-0.280340\pi\)
0.636601 + 0.771193i \(0.280340\pi\)
\(24\) 0 0
\(25\) −4.78106 −0.956212
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.57398 −1.22076 −0.610379 0.792110i \(-0.708983\pi\)
−0.610379 + 0.792110i \(0.708983\pi\)
\(30\) 0 0
\(31\) 6.22668 1.11835 0.559173 0.829051i \(-0.311119\pi\)
0.559173 + 0.829051i \(0.311119\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.50980 −0.255203
\(36\) 0 0
\(37\) 3.59627 0.591223 0.295611 0.955308i \(-0.404477\pi\)
0.295611 + 0.955308i \(0.404477\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.70233 −1.20290 −0.601451 0.798910i \(-0.705411\pi\)
−0.601451 + 0.798910i \(0.705411\pi\)
\(42\) 0 0
\(43\) 0.588526 0.0897494 0.0448747 0.998993i \(-0.485711\pi\)
0.0448747 + 0.998993i \(0.485711\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.66044 −1.40912 −0.704560 0.709644i \(-0.748856\pi\)
−0.704560 + 0.709644i \(0.748856\pi\)
\(48\) 0 0
\(49\) 3.41147 0.487353
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.95811 −0.681049 −0.340524 0.940236i \(-0.610605\pi\)
−0.340524 + 0.940236i \(0.610605\pi\)
\(54\) 0 0
\(55\) 1.45336 0.195971
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.53209 −1.11078 −0.555392 0.831589i \(-0.687432\pi\)
−0.555392 + 0.831589i \(0.687432\pi\)
\(60\) 0 0
\(61\) −1.26857 −0.162424 −0.0812119 0.996697i \(-0.525879\pi\)
−0.0812119 + 0.996697i \(0.525879\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.02229 0.126799
\(66\) 0 0
\(67\) −10.0077 −1.22264 −0.611320 0.791383i \(-0.709361\pi\)
−0.611320 + 0.791383i \(0.709361\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.8307 1.40404 0.702022 0.712155i \(-0.252281\pi\)
0.702022 + 0.712155i \(0.252281\pi\)
\(72\) 0 0
\(73\) −8.23442 −0.963766 −0.481883 0.876236i \(-0.660047\pi\)
−0.481883 + 0.876236i \(0.660047\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.0223 −1.14215
\(78\) 0 0
\(79\) −11.0496 −1.24318 −0.621590 0.783343i \(-0.713513\pi\)
−0.621590 + 0.783343i \(0.713513\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.50980 −0.165722 −0.0828610 0.996561i \(-0.526406\pi\)
−0.0828610 + 0.996561i \(0.526406\pi\)
\(84\) 0 0
\(85\) 1.40373 0.152256
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.8726 1.68249 0.841245 0.540654i \(-0.181823\pi\)
0.841245 + 0.540654i \(0.181823\pi\)
\(90\) 0 0
\(91\) −7.04963 −0.739002
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.0196004 0.00201095
\(96\) 0 0
\(97\) 18.6459 1.89320 0.946602 0.322405i \(-0.104491\pi\)
0.946602 + 0.322405i \(0.104491\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.08647 −0.904137 −0.452069 0.891983i \(-0.649314\pi\)
−0.452069 + 0.891983i \(0.649314\pi\)
\(102\) 0 0
\(103\) −0.260830 −0.0257003 −0.0128502 0.999917i \(-0.504090\pi\)
−0.0128502 + 0.999917i \(0.504090\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.04189 0.390744 0.195372 0.980729i \(-0.437409\pi\)
0.195372 + 0.980729i \(0.437409\pi\)
\(108\) 0 0
\(109\) −5.40373 −0.517584 −0.258792 0.965933i \(-0.583324\pi\)
−0.258792 + 0.965933i \(0.583324\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.38413 −0.130208 −0.0651041 0.997878i \(-0.520738\pi\)
−0.0651041 + 0.997878i \(0.520738\pi\)
\(114\) 0 0
\(115\) −2.85710 −0.266426
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −9.68004 −0.887368
\(120\) 0 0
\(121\) −1.35235 −0.122941
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 4.57667 0.409349
\(126\) 0 0
\(127\) 6.63816 0.589041 0.294521 0.955645i \(-0.404840\pi\)
0.294521 + 0.955645i \(0.404840\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −12.6408 −1.10444 −0.552218 0.833700i \(-0.686218\pi\)
−0.552218 + 0.833700i \(0.686218\pi\)
\(132\) 0 0
\(133\) −0.135163 −0.0117201
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.6159 −0.906975 −0.453487 0.891263i \(-0.649820\pi\)
−0.453487 + 0.891263i \(0.649820\pi\)
\(138\) 0 0
\(139\) 7.46110 0.632843 0.316421 0.948619i \(-0.397519\pi\)
0.316421 + 0.948619i \(0.397519\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.78611 0.567483
\(144\) 0 0
\(145\) 3.07604 0.255451
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.25402 0.348503 0.174252 0.984701i \(-0.444249\pi\)
0.174252 + 0.984701i \(0.444249\pi\)
\(150\) 0 0
\(151\) −0.135163 −0.0109994 −0.00549969 0.999985i \(-0.501751\pi\)
−0.00549969 + 0.999985i \(0.501751\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.91353 −0.234021
\(156\) 0 0
\(157\) 13.3259 1.06353 0.531763 0.846893i \(-0.321530\pi\)
0.531763 + 0.846893i \(0.321530\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 19.7023 1.55276
\(162\) 0 0
\(163\) 9.76382 0.764762 0.382381 0.924005i \(-0.375104\pi\)
0.382381 + 0.924005i \(0.375104\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.57398 −0.276563 −0.138281 0.990393i \(-0.544158\pi\)
−0.138281 + 0.990393i \(0.544158\pi\)
\(168\) 0 0
\(169\) −8.22668 −0.632822
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −18.7665 −1.42679 −0.713396 0.700761i \(-0.752844\pi\)
−0.713396 + 0.700761i \(0.752844\pi\)
\(174\) 0 0
\(175\) −15.4270 −1.16617
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.08378 −0.379979 −0.189990 0.981786i \(-0.560845\pi\)
−0.189990 + 0.981786i \(0.560845\pi\)
\(180\) 0 0
\(181\) 7.15064 0.531503 0.265752 0.964042i \(-0.414380\pi\)
0.265752 + 0.964042i \(0.414380\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.68273 −0.123717
\(186\) 0 0
\(187\) 9.31820 0.681414
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.5098 −0.760462 −0.380231 0.924891i \(-0.624156\pi\)
−0.380231 + 0.924891i \(0.624156\pi\)
\(192\) 0 0
\(193\) −10.1429 −0.730102 −0.365051 0.930987i \(-0.618948\pi\)
−0.365051 + 0.930987i \(0.618948\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.0838 −1.00343 −0.501714 0.865034i \(-0.667297\pi\)
−0.501714 + 0.865034i \(0.667297\pi\)
\(198\) 0 0
\(199\) −10.2763 −0.728468 −0.364234 0.931307i \(-0.618669\pi\)
−0.364234 + 0.931307i \(0.618669\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −21.2121 −1.48880
\(204\) 0 0
\(205\) 3.60401 0.251715
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.130110 0.00899991
\(210\) 0 0
\(211\) 7.14290 0.491738 0.245869 0.969303i \(-0.420927\pi\)
0.245869 + 0.969303i \(0.420927\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.275378 −0.0187806
\(216\) 0 0
\(217\) 20.0915 1.36390
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.55438 0.440895
\(222\) 0 0
\(223\) 10.3354 0.692112 0.346056 0.938214i \(-0.387521\pi\)
0.346056 + 0.938214i \(0.387521\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.0223 −0.864320 −0.432160 0.901797i \(-0.642248\pi\)
−0.432160 + 0.901797i \(0.642248\pi\)
\(228\) 0 0
\(229\) −28.0993 −1.85685 −0.928426 0.371518i \(-0.878837\pi\)
−0.928426 + 0.371518i \(0.878837\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.9145 0.911567 0.455784 0.890091i \(-0.349359\pi\)
0.455784 + 0.890091i \(0.349359\pi\)
\(234\) 0 0
\(235\) 4.52023 0.294867
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −15.0196 −0.971537 −0.485769 0.874087i \(-0.661460\pi\)
−0.485769 + 0.874087i \(0.661460\pi\)
\(240\) 0 0
\(241\) −12.9736 −0.835703 −0.417851 0.908515i \(-0.637217\pi\)
−0.417851 + 0.908515i \(0.637217\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.59627 −0.101982
\(246\) 0 0
\(247\) 0.0915189 0.00582321
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.872578 0.0550766 0.0275383 0.999621i \(-0.491233\pi\)
0.0275383 + 0.999621i \(0.491233\pi\)
\(252\) 0 0
\(253\) −18.9659 −1.19237
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.57667 −0.285485 −0.142742 0.989760i \(-0.545592\pi\)
−0.142742 + 0.989760i \(0.545592\pi\)
\(258\) 0 0
\(259\) 11.6040 0.721038
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.29767 0.265005 0.132503 0.991183i \(-0.457699\pi\)
0.132503 + 0.991183i \(0.457699\pi\)
\(264\) 0 0
\(265\) 2.31996 0.142514
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.1257 −0.739315 −0.369657 0.929168i \(-0.620525\pi\)
−0.369657 + 0.929168i \(0.620525\pi\)
\(270\) 0 0
\(271\) 0.319955 0.0194359 0.00971795 0.999953i \(-0.496907\pi\)
0.00971795 + 0.999953i \(0.496907\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 14.8503 0.895506
\(276\) 0 0
\(277\) −26.8212 −1.61153 −0.805765 0.592236i \(-0.798245\pi\)
−0.805765 + 0.592236i \(0.798245\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −26.6810 −1.59165 −0.795827 0.605524i \(-0.792963\pi\)
−0.795827 + 0.605524i \(0.792963\pi\)
\(282\) 0 0
\(283\) 9.29355 0.552444 0.276222 0.961094i \(-0.410917\pi\)
0.276222 + 0.961094i \(0.410917\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −24.8530 −1.46702
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 19.6391 1.14733 0.573664 0.819091i \(-0.305522\pi\)
0.573664 + 0.819091i \(0.305522\pi\)
\(294\) 0 0
\(295\) 3.99226 0.232438
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −13.3405 −0.771500
\(300\) 0 0
\(301\) 1.89899 0.109456
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.593578 0.0339882
\(306\) 0 0
\(307\) −28.3432 −1.61763 −0.808815 0.588063i \(-0.799891\pi\)
−0.808815 + 0.588063i \(0.799891\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.04458 −0.115937 −0.0579687 0.998318i \(-0.518462\pi\)
−0.0579687 + 0.998318i \(0.518462\pi\)
\(312\) 0 0
\(313\) 8.41147 0.475445 0.237722 0.971333i \(-0.423599\pi\)
0.237722 + 0.971333i \(0.423599\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −31.1284 −1.74834 −0.874171 0.485618i \(-0.838595\pi\)
−0.874171 + 0.485618i \(0.838595\pi\)
\(318\) 0 0
\(319\) 20.4192 1.14326
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.125667 0.00699231
\(324\) 0 0
\(325\) 10.4456 0.579419
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −31.1712 −1.71852
\(330\) 0 0
\(331\) −31.0310 −1.70562 −0.852808 0.522225i \(-0.825102\pi\)
−0.852808 + 0.522225i \(0.825102\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.68273 0.255845
\(336\) 0 0
\(337\) 23.7297 1.29264 0.646319 0.763067i \(-0.276308\pi\)
0.646319 + 0.763067i \(0.276308\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −19.3405 −1.04735
\(342\) 0 0
\(343\) −11.5790 −0.625209
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.80840 −0.0970800 −0.0485400 0.998821i \(-0.515457\pi\)
−0.0485400 + 0.998821i \(0.515457\pi\)
\(348\) 0 0
\(349\) 15.2608 0.816893 0.408447 0.912782i \(-0.366071\pi\)
0.408447 + 0.912782i \(0.366071\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 32.3824 1.72354 0.861770 0.507299i \(-0.169356\pi\)
0.861770 + 0.507299i \(0.169356\pi\)
\(354\) 0 0
\(355\) −5.53571 −0.293805
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.91447 −0.101042 −0.0505209 0.998723i \(-0.516088\pi\)
−0.0505209 + 0.998723i \(0.516088\pi\)
\(360\) 0 0
\(361\) −18.9982 −0.999908
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.85298 0.201674
\(366\) 0 0
\(367\) 26.8648 1.40233 0.701167 0.712998i \(-0.252663\pi\)
0.701167 + 0.712998i \(0.252663\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −15.9982 −0.830588
\(372\) 0 0
\(373\) 14.8402 0.768396 0.384198 0.923251i \(-0.374478\pi\)
0.384198 + 0.923251i \(0.374478\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.3628 0.739721
\(378\) 0 0
\(379\) 33.7870 1.73552 0.867762 0.496980i \(-0.165558\pi\)
0.867762 + 0.496980i \(0.165558\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9.27900 −0.474135 −0.237067 0.971493i \(-0.576186\pi\)
−0.237067 + 0.971493i \(0.576186\pi\)
\(384\) 0 0
\(385\) 4.68954 0.239001
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15.9786 0.810149 0.405075 0.914284i \(-0.367245\pi\)
0.405075 + 0.914284i \(0.367245\pi\)
\(390\) 0 0
\(391\) −18.3182 −0.926391
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.17024 0.260143
\(396\) 0 0
\(397\) 19.7050 0.988967 0.494483 0.869187i \(-0.335357\pi\)
0.494483 + 0.869187i \(0.335357\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.14796 −0.0573262 −0.0286631 0.999589i \(-0.509125\pi\)
−0.0286631 + 0.999589i \(0.509125\pi\)
\(402\) 0 0
\(403\) −13.6040 −0.677664
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11.1702 −0.553688
\(408\) 0 0
\(409\) −3.10101 −0.153335 −0.0766676 0.997057i \(-0.524428\pi\)
−0.0766676 + 0.997057i \(0.524428\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −27.5303 −1.35468
\(414\) 0 0
\(415\) 0.706452 0.0346784
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 35.4492 1.73181 0.865904 0.500209i \(-0.166744\pi\)
0.865904 + 0.500209i \(0.166744\pi\)
\(420\) 0 0
\(421\) 9.21719 0.449218 0.224609 0.974449i \(-0.427889\pi\)
0.224609 + 0.974449i \(0.427889\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 14.3432 0.695746
\(426\) 0 0
\(427\) −4.09327 −0.198087
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.5794 0.557758 0.278879 0.960326i \(-0.410037\pi\)
0.278879 + 0.960326i \(0.410037\pi\)
\(432\) 0 0
\(433\) 6.06511 0.291471 0.145735 0.989324i \(-0.453445\pi\)
0.145735 + 0.989324i \(0.453445\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.255777 −0.0122355
\(438\) 0 0
\(439\) −29.0060 −1.38438 −0.692190 0.721715i \(-0.743354\pi\)
−0.692190 + 0.721715i \(0.743354\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 30.8922 1.46773 0.733866 0.679294i \(-0.237714\pi\)
0.733866 + 0.679294i \(0.237714\pi\)
\(444\) 0 0
\(445\) −7.42696 −0.352071
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 39.0820 1.84439 0.922197 0.386720i \(-0.126392\pi\)
0.922197 + 0.386720i \(0.126392\pi\)
\(450\) 0 0
\(451\) 23.9240 1.12654
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.29860 0.154641
\(456\) 0 0
\(457\) −1.50475 −0.0703891 −0.0351946 0.999380i \(-0.511205\pi\)
−0.0351946 + 0.999380i \(0.511205\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −26.2371 −1.22198 −0.610992 0.791637i \(-0.709229\pi\)
−0.610992 + 0.791637i \(0.709229\pi\)
\(462\) 0 0
\(463\) −6.75641 −0.313997 −0.156998 0.987599i \(-0.550182\pi\)
−0.156998 + 0.987599i \(0.550182\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 33.7469 1.56162 0.780810 0.624768i \(-0.214806\pi\)
0.780810 + 0.624768i \(0.214806\pi\)
\(468\) 0 0
\(469\) −32.2918 −1.49110
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.82800 −0.0840516
\(474\) 0 0
\(475\) 0.200274 0.00918921
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11.1266 0.508387 0.254194 0.967153i \(-0.418190\pi\)
0.254194 + 0.967153i \(0.418190\pi\)
\(480\) 0 0
\(481\) −7.85710 −0.358253
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.72462 −0.396165
\(486\) 0 0
\(487\) 4.74691 0.215103 0.107552 0.994200i \(-0.465699\pi\)
0.107552 + 0.994200i \(0.465699\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 22.3405 1.00821 0.504106 0.863642i \(-0.331822\pi\)
0.504106 + 0.863642i \(0.331822\pi\)
\(492\) 0 0
\(493\) 19.7219 0.888231
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 38.1739 1.71233
\(498\) 0 0
\(499\) 10.4611 0.468303 0.234152 0.972200i \(-0.424769\pi\)
0.234152 + 0.972200i \(0.424769\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 25.0419 1.11656 0.558281 0.829652i \(-0.311461\pi\)
0.558281 + 0.829652i \(0.311461\pi\)
\(504\) 0 0
\(505\) 4.25166 0.189196
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −18.0624 −0.800603 −0.400301 0.916384i \(-0.631095\pi\)
−0.400301 + 0.916384i \(0.631095\pi\)
\(510\) 0 0
\(511\) −26.5699 −1.17538
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.122045 0.00537795
\(516\) 0 0
\(517\) 30.0060 1.31966
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 25.9581 1.13725 0.568623 0.822598i \(-0.307476\pi\)
0.568623 + 0.822598i \(0.307476\pi\)
\(522\) 0 0
\(523\) −25.5945 −1.11917 −0.559585 0.828773i \(-0.689039\pi\)
−0.559585 + 0.828773i \(0.689039\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −18.6800 −0.813716
\(528\) 0 0
\(529\) 14.2841 0.621046
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.8280 0.728902
\(534\) 0 0
\(535\) −1.89124 −0.0817656
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −10.5963 −0.456414
\(540\) 0 0
\(541\) 27.8476 1.19726 0.598631 0.801025i \(-0.295712\pi\)
0.598631 + 0.801025i \(0.295712\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.52847 0.108308
\(546\) 0 0
\(547\) 5.90848 0.252628 0.126314 0.991990i \(-0.459685\pi\)
0.126314 + 0.991990i \(0.459685\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.275378 0.0117315
\(552\) 0 0
\(553\) −35.6536 −1.51615
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −26.7050 −1.13153 −0.565764 0.824567i \(-0.691419\pi\)
−0.565764 + 0.824567i \(0.691419\pi\)
\(558\) 0 0
\(559\) −1.28581 −0.0543838
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.0624 1.51985 0.759925 0.650011i \(-0.225236\pi\)
0.759925 + 0.650011i \(0.225236\pi\)
\(564\) 0 0
\(565\) 0.647651 0.0272469
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.04727 0.379281 0.189641 0.981854i \(-0.439268\pi\)
0.189641 + 0.981854i \(0.439268\pi\)
\(570\) 0 0
\(571\) −30.5790 −1.27969 −0.639846 0.768503i \(-0.721002\pi\)
−0.639846 + 0.768503i \(0.721002\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −29.1935 −1.21745
\(576\) 0 0
\(577\) −25.1489 −1.04696 −0.523481 0.852037i \(-0.675367\pi\)
−0.523481 + 0.852037i \(0.675367\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.87164 −0.202110
\(582\) 0 0
\(583\) 15.4002 0.637812
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.8735 0.861542 0.430771 0.902461i \(-0.358242\pi\)
0.430771 + 0.902461i \(0.358242\pi\)
\(588\) 0 0
\(589\) −0.260830 −0.0107473
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −15.6212 −0.641488 −0.320744 0.947166i \(-0.603933\pi\)
−0.320744 + 0.947166i \(0.603933\pi\)
\(594\) 0 0
\(595\) 4.52940 0.185687
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −0.448311 −0.0183175 −0.00915874 0.999958i \(-0.502915\pi\)
−0.00915874 + 0.999958i \(0.502915\pi\)
\(600\) 0 0
\(601\) −17.6723 −0.720868 −0.360434 0.932785i \(-0.617371\pi\)
−0.360434 + 0.932785i \(0.617371\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.632779 0.0257261
\(606\) 0 0
\(607\) −26.1985 −1.06337 −0.531683 0.846944i \(-0.678440\pi\)
−0.531683 + 0.846944i \(0.678440\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 21.1061 0.853860
\(612\) 0 0
\(613\) 14.5544 0.587846 0.293923 0.955829i \(-0.405039\pi\)
0.293923 + 0.955829i \(0.405039\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −14.0205 −0.564445 −0.282223 0.959349i \(-0.591072\pi\)
−0.282223 + 0.959349i \(0.591072\pi\)
\(618\) 0 0
\(619\) 31.7124 1.27463 0.637315 0.770603i \(-0.280045\pi\)
0.637315 + 0.770603i \(0.280045\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 51.2158 2.05192
\(624\) 0 0
\(625\) 21.7638 0.870553
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −10.7888 −0.430178
\(630\) 0 0
\(631\) 38.5758 1.53568 0.767840 0.640642i \(-0.221332\pi\)
0.767840 + 0.640642i \(0.221332\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.10607 −0.123261
\(636\) 0 0
\(637\) −7.45336 −0.295313
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 30.6168 1.20929 0.604645 0.796495i \(-0.293315\pi\)
0.604645 + 0.796495i \(0.293315\pi\)
\(642\) 0 0
\(643\) 34.2249 1.34970 0.674850 0.737955i \(-0.264208\pi\)
0.674850 + 0.737955i \(0.264208\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12.8726 −0.506073 −0.253037 0.967457i \(-0.581429\pi\)
−0.253037 + 0.967457i \(0.581429\pi\)
\(648\) 0 0
\(649\) 26.5012 1.04026
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11.3191 0.442952 0.221476 0.975166i \(-0.428913\pi\)
0.221476 + 0.975166i \(0.428913\pi\)
\(654\) 0 0
\(655\) 5.91479 0.231110
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −13.7692 −0.536372 −0.268186 0.963367i \(-0.586424\pi\)
−0.268186 + 0.963367i \(0.586424\pi\)
\(660\) 0 0
\(661\) −20.2668 −0.788288 −0.394144 0.919049i \(-0.628959\pi\)
−0.394144 + 0.919049i \(0.628959\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.0632441 0.00245250
\(666\) 0 0
\(667\) −40.1411 −1.55427
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.94027 0.152112
\(672\) 0 0
\(673\) −30.5449 −1.17742 −0.588709 0.808345i \(-0.700364\pi\)
−0.588709 + 0.808345i \(0.700364\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.71925 0.142942 0.0714711 0.997443i \(-0.477231\pi\)
0.0714711 + 0.997443i \(0.477231\pi\)
\(678\) 0 0
\(679\) 60.1644 2.30890
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21.7469 −0.832122 −0.416061 0.909337i \(-0.636590\pi\)
−0.416061 + 0.909337i \(0.636590\pi\)
\(684\) 0 0
\(685\) 4.96728 0.189790
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 10.8324 0.412683
\(690\) 0 0
\(691\) 37.5948 1.43017 0.715087 0.699035i \(-0.246387\pi\)
0.715087 + 0.699035i \(0.246387\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.49113 −0.132426
\(696\) 0 0
\(697\) 23.1070 0.875240
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23.3351 −0.881355 −0.440678 0.897665i \(-0.645262\pi\)
−0.440678 + 0.897665i \(0.645262\pi\)
\(702\) 0 0
\(703\) −0.150644 −0.00568166
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −29.3191 −1.10266
\(708\) 0 0
\(709\) 6.57903 0.247081 0.123540 0.992340i \(-0.460575\pi\)
0.123540 + 0.992340i \(0.460575\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 38.0205 1.42388
\(714\) 0 0
\(715\) −3.17530 −0.118749
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16.8324 −0.627744 −0.313872 0.949465i \(-0.601626\pi\)
−0.313872 + 0.949465i \(0.601626\pi\)
\(720\) 0 0
\(721\) −0.841615 −0.0313434
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 31.4306 1.16730
\(726\) 0 0
\(727\) −25.5621 −0.948046 −0.474023 0.880512i \(-0.657199\pi\)
−0.474023 + 0.880512i \(0.657199\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.76558 −0.0653022
\(732\) 0 0
\(733\) −14.7980 −0.546576 −0.273288 0.961932i \(-0.588111\pi\)
−0.273288 + 0.961932i \(0.588111\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 31.0847 1.14502
\(738\) 0 0
\(739\) −9.19078 −0.338088 −0.169044 0.985608i \(-0.554068\pi\)
−0.169044 + 0.985608i \(0.554068\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 44.4492 1.63068 0.815342 0.578979i \(-0.196549\pi\)
0.815342 + 0.578979i \(0.196549\pi\)
\(744\) 0 0
\(745\) −1.99050 −0.0729264
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 13.0419 0.476540
\(750\) 0 0
\(751\) 35.8060 1.30658 0.653290 0.757107i \(-0.273388\pi\)
0.653290 + 0.757107i \(0.273388\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.0632441 0.00230169
\(756\) 0 0
\(757\) −45.8976 −1.66818 −0.834088 0.551632i \(-0.814005\pi\)
−0.834088 + 0.551632i \(0.814005\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 37.1952 1.34833 0.674163 0.738583i \(-0.264505\pi\)
0.674163 + 0.738583i \(0.264505\pi\)
\(762\) 0 0
\(763\) −17.4361 −0.631230
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.6408 0.673082
\(768\) 0 0
\(769\) −38.3337 −1.38235 −0.691174 0.722688i \(-0.742906\pi\)
−0.691174 + 0.722688i \(0.742906\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −52.8272 −1.90006 −0.950031 0.312156i \(-0.898949\pi\)
−0.950031 + 0.312156i \(0.898949\pi\)
\(774\) 0 0
\(775\) −29.7701 −1.06937
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.322644 0.0115599
\(780\) 0 0
\(781\) −36.7469 −1.31491
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.23536 −0.222549
\(786\) 0 0
\(787\) −45.2404 −1.61265 −0.806323 0.591475i \(-0.798546\pi\)
−0.806323 + 0.591475i \(0.798546\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −4.46616 −0.158798
\(792\) 0 0
\(793\) 2.77156 0.0984211
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.9189 0.599299 0.299649 0.954049i \(-0.403130\pi\)
0.299649 + 0.954049i \(0.403130\pi\)
\(798\) 0 0
\(799\) 28.9813 1.02529
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 25.5767 0.902581
\(804\) 0 0
\(805\) −9.21894 −0.324925
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 34.9145 1.22753 0.613764 0.789490i \(-0.289655\pi\)
0.613764 + 0.789490i \(0.289655\pi\)
\(810\) 0 0
\(811\) −18.0419 −0.633536 −0.316768 0.948503i \(-0.602598\pi\)
−0.316768 + 0.948503i \(0.602598\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.56860 −0.160031
\(816\) 0 0
\(817\) −0.0246528 −0.000862492 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −40.6391 −1.41831 −0.709157 0.705051i \(-0.750924\pi\)
−0.709157 + 0.705051i \(0.750924\pi\)
\(822\) 0 0
\(823\) −26.0496 −0.908033 −0.454017 0.890993i \(-0.650009\pi\)
−0.454017 + 0.890993i \(0.650009\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −37.6195 −1.30816 −0.654079 0.756426i \(-0.726944\pi\)
−0.654079 + 0.756426i \(0.726944\pi\)
\(828\) 0 0
\(829\) −35.0215 −1.21635 −0.608173 0.793805i \(-0.708097\pi\)
−0.608173 + 0.793805i \(0.708097\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −10.2344 −0.354602
\(834\) 0 0
\(835\) 1.67230 0.0578725
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 26.6141 0.918821 0.459411 0.888224i \(-0.348061\pi\)
0.459411 + 0.888224i \(0.348061\pi\)
\(840\) 0 0
\(841\) 14.2172 0.490248
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.84936 0.132422
\(846\) 0 0
\(847\) −4.36360 −0.149935
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 21.9590 0.752746
\(852\) 0 0
\(853\) 2.45512 0.0840616 0.0420308 0.999116i \(-0.486617\pi\)
0.0420308 + 0.999116i \(0.486617\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.82976 0.335778 0.167889 0.985806i \(-0.446305\pi\)
0.167889 + 0.985806i \(0.446305\pi\)
\(858\) 0 0
\(859\) −8.81696 −0.300831 −0.150415 0.988623i \(-0.548061\pi\)
−0.150415 + 0.988623i \(0.548061\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −6.62124 −0.225390 −0.112695 0.993630i \(-0.535948\pi\)
−0.112695 + 0.993630i \(0.535948\pi\)
\(864\) 0 0
\(865\) 8.78106 0.298565
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 34.3209 1.16426
\(870\) 0 0
\(871\) 21.8648 0.740862
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 14.7674 0.499231
\(876\) 0 0
\(877\) −4.07604 −0.137638 −0.0688190 0.997629i \(-0.521923\pi\)
−0.0688190 + 0.997629i \(0.521923\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −9.25133 −0.311685 −0.155843 0.987782i \(-0.549809\pi\)
−0.155843 + 0.987782i \(0.549809\pi\)
\(882\) 0 0
\(883\) 37.7701 1.27107 0.635533 0.772074i \(-0.280780\pi\)
0.635533 + 0.772074i \(0.280780\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.9786 0.637241 0.318620 0.947882i \(-0.396781\pi\)
0.318620 + 0.947882i \(0.396781\pi\)
\(888\) 0 0
\(889\) 21.4192 0.718377
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.404667 0.0135417
\(894\) 0 0
\(895\) 2.37876 0.0795131
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −40.9341 −1.36523
\(900\) 0 0
\(901\) 14.8743 0.495536
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.34587 −0.111220
\(906\) 0 0
\(907\) −9.64590 −0.320287 −0.160143 0.987094i \(-0.551196\pi\)
−0.160143 + 0.987094i \(0.551196\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6.53478 −0.216507 −0.108253 0.994123i \(-0.534526\pi\)
−0.108253 + 0.994123i \(0.534526\pi\)
\(912\) 0 0
\(913\) 4.68954 0.155201
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −40.7880 −1.34694
\(918\) 0 0
\(919\) −3.89124 −0.128360 −0.0641802 0.997938i \(-0.520443\pi\)
−0.0641802 + 0.997938i \(0.520443\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −25.8476 −0.850784
\(924\) 0 0
\(925\) −17.1940 −0.565334
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 39.8530 1.30753 0.653767 0.756696i \(-0.273188\pi\)
0.653767 + 0.756696i \(0.273188\pi\)
\(930\) 0 0
\(931\) −0.142903 −0.00468347
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.36009 −0.142590
\(936\) 0 0
\(937\) 33.0651 1.08019 0.540095 0.841604i \(-0.318388\pi\)
0.540095 + 0.841604i \(0.318388\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 53.8066 1.75405 0.877023 0.480448i \(-0.159526\pi\)
0.877023 + 0.480448i \(0.159526\pi\)
\(942\) 0 0
\(943\) −47.0310 −1.53154
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 42.2354 1.37246 0.686232 0.727382i \(-0.259263\pi\)
0.686232 + 0.727382i \(0.259263\pi\)
\(948\) 0 0
\(949\) 17.9905 0.583996
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −24.5776 −0.796147 −0.398073 0.917354i \(-0.630321\pi\)
−0.398073 + 0.917354i \(0.630321\pi\)
\(954\) 0 0
\(955\) 4.91765 0.159131
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −34.2540 −1.10612
\(960\) 0 0
\(961\) 7.77156 0.250696
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.74598 0.152778
\(966\) 0 0
\(967\) −4.47203 −0.143811 −0.0719054 0.997411i \(-0.522908\pi\)
−0.0719054 + 0.997411i \(0.522908\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −4.61949 −0.148246 −0.0741232 0.997249i \(-0.523616\pi\)
−0.0741232 + 0.997249i \(0.523616\pi\)
\(972\) 0 0
\(973\) 24.0746 0.771796
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11.2808 0.360903 0.180452 0.983584i \(-0.442244\pi\)
0.180452 + 0.983584i \(0.442244\pi\)
\(978\) 0 0
\(979\) −49.3013 −1.57568
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −17.0642 −0.544263 −0.272131 0.962260i \(-0.587729\pi\)
−0.272131 + 0.962260i \(0.587729\pi\)
\(984\) 0 0
\(985\) 6.58996 0.209973
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3.59358 0.114269
\(990\) 0 0
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.80840 0.152437
\(996\) 0 0
\(997\) 22.3847 0.708932 0.354466 0.935069i \(-0.384663\pi\)
0.354466 + 0.935069i \(0.384663\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3888.2.a.bd.1.3 3
3.2 odd 2 3888.2.a.bk.1.1 3
4.3 odd 2 243.2.a.e.1.1 3
12.11 even 2 243.2.a.f.1.3 yes 3
20.19 odd 2 6075.2.a.bv.1.3 3
36.7 odd 6 243.2.c.f.82.3 6
36.11 even 6 243.2.c.e.82.1 6
36.23 even 6 243.2.c.e.163.1 6
36.31 odd 6 243.2.c.f.163.3 6
60.59 even 2 6075.2.a.bq.1.1 3
108.7 odd 18 729.2.e.a.325.1 6
108.11 even 18 729.2.e.b.82.1 6
108.23 even 18 729.2.e.i.406.1 6
108.31 odd 18 729.2.e.a.406.1 6
108.43 odd 18 729.2.e.g.82.1 6
108.47 even 18 729.2.e.i.325.1 6
108.59 even 18 729.2.e.b.649.1 6
108.67 odd 18 729.2.e.h.163.1 6
108.79 odd 18 729.2.e.h.568.1 6
108.83 even 18 729.2.e.c.568.1 6
108.95 even 18 729.2.e.c.163.1 6
108.103 odd 18 729.2.e.g.649.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
243.2.a.e.1.1 3 4.3 odd 2
243.2.a.f.1.3 yes 3 12.11 even 2
243.2.c.e.82.1 6 36.11 even 6
243.2.c.e.163.1 6 36.23 even 6
243.2.c.f.82.3 6 36.7 odd 6
243.2.c.f.163.3 6 36.31 odd 6
729.2.e.a.325.1 6 108.7 odd 18
729.2.e.a.406.1 6 108.31 odd 18
729.2.e.b.82.1 6 108.11 even 18
729.2.e.b.649.1 6 108.59 even 18
729.2.e.c.163.1 6 108.95 even 18
729.2.e.c.568.1 6 108.83 even 18
729.2.e.g.82.1 6 108.43 odd 18
729.2.e.g.649.1 6 108.103 odd 18
729.2.e.h.163.1 6 108.67 odd 18
729.2.e.h.568.1 6 108.79 odd 18
729.2.e.i.325.1 6 108.47 even 18
729.2.e.i.406.1 6 108.23 even 18
3888.2.a.bd.1.3 3 1.1 even 1 trivial
3888.2.a.bk.1.1 3 3.2 odd 2
6075.2.a.bq.1.1 3 60.59 even 2
6075.2.a.bv.1.3 3 20.19 odd 2