Properties

Label 3888.2.a.bd.1.2
Level $3888$
Weight $2$
Character 3888.1
Self dual yes
Analytic conductor $31.046$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3888,2,Mod(1,3888)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3888, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3888.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3888 = 2^{4} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3888.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.0458363059\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.347296\) of defining polynomial
Character \(\chi\) \(=\) 3888.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.65270 q^{5} -2.41147 q^{7} +5.94356 q^{11} -3.22668 q^{13} -3.00000 q^{17} +6.63816 q^{19} -2.94356 q^{23} -2.26857 q^{25} +1.29086 q^{29} +0.588526 q^{31} +3.98545 q^{35} +0.0418891 q^{37} +4.90167 q^{41} +5.18479 q^{43} -3.73648 q^{47} -1.18479 q^{49} -11.6382 q^{53} -9.82295 q^{55} -7.34730 q^{59} +11.0496 q^{61} +5.33275 q^{65} -1.85710 q^{67} -5.51249 q^{71} +5.55438 q^{73} -14.3327 q^{77} +3.78106 q^{79} +3.98545 q^{83} +4.95811 q^{85} -8.15064 q^{89} +7.78106 q^{91} -10.9709 q^{95} +0.260830 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{5} + 3 q^{7} + 3 q^{11} - 3 q^{13} - 9 q^{17} + 3 q^{19} + 6 q^{23} + 3 q^{25} - 12 q^{29} + 12 q^{31} - 6 q^{35} - 3 q^{37} + 3 q^{41} + 12 q^{43} - 6 q^{47} - 18 q^{53} - 9 q^{55} - 21 q^{59}+ \cdots + 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.65270 −0.739112 −0.369556 0.929209i \(-0.620490\pi\)
−0.369556 + 0.929209i \(0.620490\pi\)
\(6\) 0 0
\(7\) −2.41147 −0.911452 −0.455726 0.890120i \(-0.650620\pi\)
−0.455726 + 0.890120i \(0.650620\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.94356 1.79205 0.896026 0.444002i \(-0.146442\pi\)
0.896026 + 0.444002i \(0.146442\pi\)
\(12\) 0 0
\(13\) −3.22668 −0.894920 −0.447460 0.894304i \(-0.647671\pi\)
−0.447460 + 0.894304i \(0.647671\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 6.63816 1.52290 0.761449 0.648225i \(-0.224488\pi\)
0.761449 + 0.648225i \(0.224488\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.94356 −0.613775 −0.306888 0.951746i \(-0.599288\pi\)
−0.306888 + 0.951746i \(0.599288\pi\)
\(24\) 0 0
\(25\) −2.26857 −0.453714
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.29086 0.239707 0.119853 0.992792i \(-0.461758\pi\)
0.119853 + 0.992792i \(0.461758\pi\)
\(30\) 0 0
\(31\) 0.588526 0.105702 0.0528512 0.998602i \(-0.483169\pi\)
0.0528512 + 0.998602i \(0.483169\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.98545 0.673664
\(36\) 0 0
\(37\) 0.0418891 0.00688652 0.00344326 0.999994i \(-0.498904\pi\)
0.00344326 + 0.999994i \(0.498904\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.90167 0.765513 0.382756 0.923849i \(-0.374975\pi\)
0.382756 + 0.923849i \(0.374975\pi\)
\(42\) 0 0
\(43\) 5.18479 0.790673 0.395337 0.918536i \(-0.370628\pi\)
0.395337 + 0.918536i \(0.370628\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.73648 −0.545022 −0.272511 0.962153i \(-0.587854\pi\)
−0.272511 + 0.962153i \(0.587854\pi\)
\(48\) 0 0
\(49\) −1.18479 −0.169256
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −11.6382 −1.59862 −0.799312 0.600916i \(-0.794802\pi\)
−0.799312 + 0.600916i \(0.794802\pi\)
\(54\) 0 0
\(55\) −9.82295 −1.32453
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.34730 −0.956537 −0.478268 0.878214i \(-0.658735\pi\)
−0.478268 + 0.878214i \(0.658735\pi\)
\(60\) 0 0
\(61\) 11.0496 1.41476 0.707380 0.706833i \(-0.249877\pi\)
0.707380 + 0.706833i \(0.249877\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.33275 0.661446
\(66\) 0 0
\(67\) −1.85710 −0.226880 −0.113440 0.993545i \(-0.536187\pi\)
−0.113440 + 0.993545i \(0.536187\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.51249 −0.654212 −0.327106 0.944988i \(-0.606073\pi\)
−0.327106 + 0.944988i \(0.606073\pi\)
\(72\) 0 0
\(73\) 5.55438 0.650091 0.325045 0.945698i \(-0.394620\pi\)
0.325045 + 0.945698i \(0.394620\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −14.3327 −1.63337
\(78\) 0 0
\(79\) 3.78106 0.425402 0.212701 0.977117i \(-0.431774\pi\)
0.212701 + 0.977117i \(0.431774\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.98545 0.437460 0.218730 0.975785i \(-0.429809\pi\)
0.218730 + 0.975785i \(0.429809\pi\)
\(84\) 0 0
\(85\) 4.95811 0.537783
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −8.15064 −0.863967 −0.431983 0.901882i \(-0.642186\pi\)
−0.431983 + 0.901882i \(0.642186\pi\)
\(90\) 0 0
\(91\) 7.78106 0.815677
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −10.9709 −1.12559
\(96\) 0 0
\(97\) 0.260830 0.0264833 0.0132416 0.999912i \(-0.495785\pi\)
0.0132416 + 0.999912i \(0.495785\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11.0273 −1.09726 −0.548631 0.836065i \(-0.684851\pi\)
−0.548631 + 0.836065i \(0.684851\pi\)
\(102\) 0 0
\(103\) 3.90673 0.384941 0.192471 0.981303i \(-0.438350\pi\)
0.192471 + 0.981303i \(0.438350\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.63816 −0.255040 −0.127520 0.991836i \(-0.540702\pi\)
−0.127520 + 0.991836i \(0.540702\pi\)
\(108\) 0 0
\(109\) −8.95811 −0.858031 −0.429016 0.903297i \(-0.641140\pi\)
−0.429016 + 0.903297i \(0.641140\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −15.9290 −1.49848 −0.749238 0.662301i \(-0.769580\pi\)
−0.749238 + 0.662301i \(0.769580\pi\)
\(114\) 0 0
\(115\) 4.86484 0.453648
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.23442 0.663178
\(120\) 0 0
\(121\) 24.3259 2.21145
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0128 1.07446
\(126\) 0 0
\(127\) −3.59627 −0.319117 −0.159559 0.987188i \(-0.551007\pi\)
−0.159559 + 0.987188i \(0.551007\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −17.7074 −1.54710 −0.773551 0.633734i \(-0.781521\pi\)
−0.773551 + 0.633734i \(0.781521\pi\)
\(132\) 0 0
\(133\) −16.0077 −1.38805
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.92902 0.335678 0.167839 0.985814i \(-0.446321\pi\)
0.167839 + 0.985814i \(0.446321\pi\)
\(138\) 0 0
\(139\) −11.9659 −1.01493 −0.507465 0.861672i \(-0.669417\pi\)
−0.507465 + 0.861672i \(0.669417\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −19.1780 −1.60374
\(144\) 0 0
\(145\) −2.13341 −0.177170
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −20.5253 −1.68150 −0.840748 0.541426i \(-0.817885\pi\)
−0.840748 + 0.541426i \(0.817885\pi\)
\(150\) 0 0
\(151\) −16.0077 −1.30269 −0.651346 0.758781i \(-0.725795\pi\)
−0.651346 + 0.758781i \(0.725795\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.972659 −0.0781258
\(156\) 0 0
\(157\) −21.9736 −1.75368 −0.876842 0.480779i \(-0.840354\pi\)
−0.876842 + 0.480779i \(0.840354\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.09833 0.559426
\(162\) 0 0
\(163\) −20.5107 −1.60652 −0.803262 0.595625i \(-0.796904\pi\)
−0.803262 + 0.595625i \(0.796904\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.29086 0.332037 0.166018 0.986123i \(-0.446909\pi\)
0.166018 + 0.986123i \(0.446909\pi\)
\(168\) 0 0
\(169\) −2.58853 −0.199117
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.79292 −0.288370 −0.144185 0.989551i \(-0.546056\pi\)
−0.144185 + 0.989551i \(0.546056\pi\)
\(174\) 0 0
\(175\) 5.47060 0.413538
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.27631 0.618601 0.309300 0.950964i \(-0.399905\pi\)
0.309300 + 0.950964i \(0.399905\pi\)
\(180\) 0 0
\(181\) 6.72193 0.499637 0.249819 0.968293i \(-0.419629\pi\)
0.249819 + 0.968293i \(0.419629\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.0692302 −0.00508991
\(186\) 0 0
\(187\) −17.8307 −1.30391
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.01455 −0.362840 −0.181420 0.983406i \(-0.558069\pi\)
−0.181420 + 0.983406i \(0.558069\pi\)
\(192\) 0 0
\(193\) −17.8648 −1.28594 −0.642970 0.765892i \(-0.722298\pi\)
−0.642970 + 0.765892i \(0.722298\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −0.723689 −0.0515607 −0.0257803 0.999668i \(-0.508207\pi\)
−0.0257803 + 0.999668i \(0.508207\pi\)
\(198\) 0 0
\(199\) 10.1925 0.722530 0.361265 0.932463i \(-0.382345\pi\)
0.361265 + 0.932463i \(0.382345\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.11287 −0.218481
\(204\) 0 0
\(205\) −8.10101 −0.565799
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 39.4543 2.72911
\(210\) 0 0
\(211\) 14.8648 1.02334 0.511669 0.859183i \(-0.329027\pi\)
0.511669 + 0.859183i \(0.329027\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.56893 −0.584396
\(216\) 0 0
\(217\) −1.41921 −0.0963426
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.68004 0.651150
\(222\) 0 0
\(223\) 10.9486 0.733174 0.366587 0.930384i \(-0.380526\pi\)
0.366587 + 0.930384i \(0.380526\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −17.3327 −1.15041 −0.575207 0.818008i \(-0.695079\pi\)
−0.575207 + 0.818008i \(0.695079\pi\)
\(228\) 0 0
\(229\) 1.56212 0.103228 0.0516138 0.998667i \(-0.483563\pi\)
0.0516138 + 0.998667i \(0.483563\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.7888 −1.09987 −0.549935 0.835207i \(-0.685348\pi\)
−0.549935 + 0.835207i \(0.685348\pi\)
\(234\) 0 0
\(235\) 6.17530 0.402832
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4.02910 −0.260621 −0.130310 0.991473i \(-0.541597\pi\)
−0.130310 + 0.991473i \(0.541597\pi\)
\(240\) 0 0
\(241\) −3.35235 −0.215944 −0.107972 0.994154i \(-0.534436\pi\)
−0.107972 + 0.994154i \(0.534436\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.95811 0.125099
\(246\) 0 0
\(247\) −21.4192 −1.36287
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −23.1506 −1.46126 −0.730628 0.682776i \(-0.760773\pi\)
−0.730628 + 0.682776i \(0.760773\pi\)
\(252\) 0 0
\(253\) −17.4953 −1.09992
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.0128 −0.749337 −0.374669 0.927159i \(-0.622244\pi\)
−0.374669 + 0.927159i \(0.622244\pi\)
\(258\) 0 0
\(259\) −0.101014 −0.00627673
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.9017 1.04220 0.521101 0.853495i \(-0.325522\pi\)
0.521101 + 0.853495i \(0.325522\pi\)
\(264\) 0 0
\(265\) 19.2344 1.18156
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.91447 0.482554 0.241277 0.970456i \(-0.422434\pi\)
0.241277 + 0.970456i \(0.422434\pi\)
\(270\) 0 0
\(271\) 17.2344 1.04692 0.523458 0.852051i \(-0.324642\pi\)
0.523458 + 0.852051i \(0.324642\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −13.4834 −0.813079
\(276\) 0 0
\(277\) 26.4347 1.58831 0.794153 0.607717i \(-0.207915\pi\)
0.794153 + 0.607717i \(0.207915\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.9959 1.13320 0.566600 0.823993i \(-0.308259\pi\)
0.566600 + 0.823993i \(0.308259\pi\)
\(282\) 0 0
\(283\) 16.5868 0.985981 0.492991 0.870035i \(-0.335904\pi\)
0.492991 + 0.870035i \(0.335904\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.8203 −0.697728
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −19.3577 −1.13089 −0.565445 0.824786i \(-0.691296\pi\)
−0.565445 + 0.824786i \(0.691296\pi\)
\(294\) 0 0
\(295\) 12.1429 0.706987
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.49794 0.549280
\(300\) 0 0
\(301\) −12.5030 −0.720661
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −18.2618 −1.04567
\(306\) 0 0
\(307\) −20.8057 −1.18744 −0.593722 0.804670i \(-0.702342\pi\)
−0.593722 + 0.804670i \(0.702342\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10.6655 −0.604785 −0.302392 0.953184i \(-0.597785\pi\)
−0.302392 + 0.953184i \(0.597785\pi\)
\(312\) 0 0
\(313\) 3.81521 0.215648 0.107824 0.994170i \(-0.465612\pi\)
0.107824 + 0.994170i \(0.465612\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −26.3892 −1.48216 −0.741082 0.671414i \(-0.765687\pi\)
−0.741082 + 0.671414i \(0.765687\pi\)
\(318\) 0 0
\(319\) 7.67230 0.429567
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −19.9145 −1.10807
\(324\) 0 0
\(325\) 7.31996 0.406038
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.01043 0.496761
\(330\) 0 0
\(331\) 1.57161 0.0863837 0.0431919 0.999067i \(-0.486247\pi\)
0.0431919 + 0.999067i \(0.486247\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.06923 0.167690
\(336\) 0 0
\(337\) −8.01548 −0.436631 −0.218316 0.975878i \(-0.570056\pi\)
−0.218316 + 0.975878i \(0.570056\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.49794 0.189424
\(342\) 0 0
\(343\) 19.7374 1.06572
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 19.8452 1.06535 0.532674 0.846320i \(-0.321187\pi\)
0.532674 + 0.846320i \(0.321187\pi\)
\(348\) 0 0
\(349\) 11.0933 0.593809 0.296905 0.954907i \(-0.404046\pi\)
0.296905 + 0.954907i \(0.404046\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.86390 0.152430 0.0762151 0.997091i \(-0.475716\pi\)
0.0762151 + 0.997091i \(0.475716\pi\)
\(354\) 0 0
\(355\) 9.11051 0.483536
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 28.7888 1.51941 0.759707 0.650265i \(-0.225342\pi\)
0.759707 + 0.650265i \(0.225342\pi\)
\(360\) 0 0
\(361\) 25.0651 1.31922
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.17974 −0.480490
\(366\) 0 0
\(367\) 10.9923 0.573791 0.286896 0.957962i \(-0.407377\pi\)
0.286896 + 0.957962i \(0.407377\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 28.0651 1.45707
\(372\) 0 0
\(373\) 33.4097 1.72989 0.864945 0.501867i \(-0.167353\pi\)
0.864945 + 0.501867i \(0.167353\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.16519 −0.214518
\(378\) 0 0
\(379\) −20.9394 −1.07559 −0.537794 0.843077i \(-0.680742\pi\)
−0.537794 + 0.843077i \(0.680742\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.11112 −0.210068 −0.105034 0.994469i \(-0.533495\pi\)
−0.105034 + 0.994469i \(0.533495\pi\)
\(384\) 0 0
\(385\) 23.6878 1.20724
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −17.0942 −0.866711 −0.433355 0.901223i \(-0.642670\pi\)
−0.433355 + 0.901223i \(0.642670\pi\)
\(390\) 0 0
\(391\) 8.83069 0.446587
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6.24897 −0.314420
\(396\) 0 0
\(397\) 22.4020 1.12432 0.562162 0.827027i \(-0.309970\pi\)
0.562162 + 0.827027i \(0.309970\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.5817 0.728176 0.364088 0.931364i \(-0.381381\pi\)
0.364088 + 0.931364i \(0.381381\pi\)
\(402\) 0 0
\(403\) −1.89899 −0.0945952
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.248970 0.0123410
\(408\) 0 0
\(409\) −17.5030 −0.865467 −0.432734 0.901522i \(-0.642451\pi\)
−0.432734 + 0.901522i \(0.642451\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 17.7178 0.871837
\(414\) 0 0
\(415\) −6.58677 −0.323332
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 18.8621 0.921476 0.460738 0.887536i \(-0.347585\pi\)
0.460738 + 0.887536i \(0.347585\pi\)
\(420\) 0 0
\(421\) −32.3337 −1.57585 −0.787924 0.615773i \(-0.788844\pi\)
−0.787924 + 0.615773i \(0.788844\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.80571 0.330126
\(426\) 0 0
\(427\) −26.6459 −1.28949
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 34.3164 1.65297 0.826483 0.562962i \(-0.190338\pi\)
0.826483 + 0.562962i \(0.190338\pi\)
\(432\) 0 0
\(433\) −25.0669 −1.20464 −0.602318 0.798256i \(-0.705756\pi\)
−0.602318 + 0.798256i \(0.705756\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −19.5398 −0.934717
\(438\) 0 0
\(439\) 23.2080 1.10766 0.553829 0.832630i \(-0.313166\pi\)
0.553829 + 0.832630i \(0.313166\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.12155 −0.195821 −0.0979103 0.995195i \(-0.531216\pi\)
−0.0979103 + 0.995195i \(0.531216\pi\)
\(444\) 0 0
\(445\) 13.4706 0.638568
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −18.3414 −0.865585 −0.432793 0.901494i \(-0.642472\pi\)
−0.432793 + 0.901494i \(0.642472\pi\)
\(450\) 0 0
\(451\) 29.1334 1.37184
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −12.8598 −0.602876
\(456\) 0 0
\(457\) −19.4611 −0.910352 −0.455176 0.890401i \(-0.650424\pi\)
−0.455176 + 0.890401i \(0.650424\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −27.7493 −1.29241 −0.646206 0.763163i \(-0.723645\pi\)
−0.646206 + 0.763163i \(0.723645\pi\)
\(462\) 0 0
\(463\) −38.6860 −1.79789 −0.898946 0.438059i \(-0.855666\pi\)
−0.898946 + 0.438059i \(0.855666\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 29.7638 1.37731 0.688653 0.725091i \(-0.258202\pi\)
0.688653 + 0.725091i \(0.258202\pi\)
\(468\) 0 0
\(469\) 4.47834 0.206791
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 30.8161 1.41693
\(474\) 0 0
\(475\) −15.0591 −0.690960
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −37.6759 −1.72146 −0.860728 0.509064i \(-0.829992\pi\)
−0.860728 + 0.509064i \(0.829992\pi\)
\(480\) 0 0
\(481\) −0.135163 −0.00616289
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.431074 −0.0195741
\(486\) 0 0
\(487\) 0.763823 0.0346121 0.0173061 0.999850i \(-0.494491\pi\)
0.0173061 + 0.999850i \(0.494491\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.497941 −0.0224717 −0.0112359 0.999937i \(-0.503577\pi\)
−0.0112359 + 0.999937i \(0.503577\pi\)
\(492\) 0 0
\(493\) −3.87258 −0.174412
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13.2932 0.596283
\(498\) 0 0
\(499\) −8.96585 −0.401367 −0.200683 0.979656i \(-0.564316\pi\)
−0.200683 + 0.979656i \(0.564316\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.3618 0.818714 0.409357 0.912374i \(-0.365753\pi\)
0.409357 + 0.912374i \(0.365753\pi\)
\(504\) 0 0
\(505\) 18.2249 0.810999
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.3705 1.25750 0.628751 0.777607i \(-0.283567\pi\)
0.628751 + 0.777607i \(0.283567\pi\)
\(510\) 0 0
\(511\) −13.3942 −0.592526
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.45666 −0.284514
\(516\) 0 0
\(517\) −22.2080 −0.976707
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 32.6382 1.42990 0.714952 0.699174i \(-0.246449\pi\)
0.714952 + 0.699174i \(0.246449\pi\)
\(522\) 0 0
\(523\) 22.0232 0.963008 0.481504 0.876444i \(-0.340091\pi\)
0.481504 + 0.876444i \(0.340091\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.76558 −0.0769098
\(528\) 0 0
\(529\) −14.3354 −0.623280
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −15.8161 −0.685073
\(534\) 0 0
\(535\) 4.36009 0.188503
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.04189 −0.303316
\(540\) 0 0
\(541\) −15.7870 −0.678738 −0.339369 0.940653i \(-0.610214\pi\)
−0.339369 + 0.940653i \(0.610214\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.8051 0.634181
\(546\) 0 0
\(547\) 27.4192 1.17236 0.586180 0.810180i \(-0.300631\pi\)
0.586180 + 0.810180i \(0.300631\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.56893 0.365048
\(552\) 0 0
\(553\) −9.11793 −0.387734
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −29.4020 −1.24580 −0.622901 0.782301i \(-0.714046\pi\)
−0.622901 + 0.782301i \(0.714046\pi\)
\(558\) 0 0
\(559\) −16.7297 −0.707590
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10.3705 −0.437065 −0.218533 0.975830i \(-0.570127\pi\)
−0.218533 + 0.975830i \(0.570127\pi\)
\(564\) 0 0
\(565\) 26.3259 1.10754
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 32.9691 1.38214 0.691069 0.722788i \(-0.257140\pi\)
0.691069 + 0.722788i \(0.257140\pi\)
\(570\) 0 0
\(571\) 0.737415 0.0308599 0.0154299 0.999881i \(-0.495088\pi\)
0.0154299 + 0.999881i \(0.495088\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.67768 0.278479
\(576\) 0 0
\(577\) 19.3432 0.805267 0.402634 0.915361i \(-0.368095\pi\)
0.402634 + 0.915361i \(0.368095\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −9.61081 −0.398724
\(582\) 0 0
\(583\) −69.1721 −2.86482
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −31.9121 −1.31715 −0.658577 0.752514i \(-0.728841\pi\)
−0.658577 + 0.752514i \(0.728841\pi\)
\(588\) 0 0
\(589\) 3.90673 0.160974
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −31.6783 −1.30087 −0.650436 0.759561i \(-0.725414\pi\)
−0.650436 + 0.759561i \(0.725414\pi\)
\(594\) 0 0
\(595\) −11.9564 −0.490163
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.6236 −0.515787 −0.257893 0.966173i \(-0.583028\pi\)
−0.257893 + 0.966173i \(0.583028\pi\)
\(600\) 0 0
\(601\) −8.90848 −0.363385 −0.181692 0.983355i \(-0.558157\pi\)
−0.181692 + 0.983355i \(0.558157\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −40.2036 −1.63451
\(606\) 0 0
\(607\) 33.1242 1.34447 0.672236 0.740337i \(-0.265334\pi\)
0.672236 + 0.740337i \(0.265334\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0564 0.487751
\(612\) 0 0
\(613\) 17.6800 0.714090 0.357045 0.934087i \(-0.383784\pi\)
0.357045 + 0.934087i \(0.383784\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 25.7324 1.03595 0.517973 0.855397i \(-0.326687\pi\)
0.517973 + 0.855397i \(0.326687\pi\)
\(618\) 0 0
\(619\) −27.7948 −1.11717 −0.558583 0.829448i \(-0.688655\pi\)
−0.558583 + 0.829448i \(0.688655\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 19.6551 0.787464
\(624\) 0 0
\(625\) −8.51073 −0.340429
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.125667 −0.00501068
\(630\) 0 0
\(631\) −26.8138 −1.06744 −0.533720 0.845661i \(-0.679206\pi\)
−0.533720 + 0.845661i \(0.679206\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.94356 0.235863
\(636\) 0 0
\(637\) 3.82295 0.151471
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.6905 −0.501244 −0.250622 0.968085i \(-0.580635\pi\)
−0.250622 + 0.968085i \(0.580635\pi\)
\(642\) 0 0
\(643\) −15.4766 −0.610337 −0.305168 0.952298i \(-0.598713\pi\)
−0.305168 + 0.952298i \(0.598713\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.1506 0.438377 0.219189 0.975683i \(-0.429659\pi\)
0.219189 + 0.975683i \(0.429659\pi\)
\(648\) 0 0
\(649\) −43.6691 −1.71416
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −44.5921 −1.74503 −0.872513 0.488591i \(-0.837511\pi\)
−0.872513 + 0.488591i \(0.837511\pi\)
\(654\) 0 0
\(655\) 29.2651 1.14348
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −14.0966 −0.549124 −0.274562 0.961569i \(-0.588533\pi\)
−0.274562 + 0.961569i \(0.588533\pi\)
\(660\) 0 0
\(661\) 36.1147 1.40470 0.702350 0.711831i \(-0.252134\pi\)
0.702350 + 0.711831i \(0.252134\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 26.4561 1.02592
\(666\) 0 0
\(667\) −3.79973 −0.147126
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 65.6742 2.53532
\(672\) 0 0
\(673\) 2.24216 0.0864290 0.0432145 0.999066i \(-0.486240\pi\)
0.0432145 + 0.999066i \(0.486240\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −35.1762 −1.35193 −0.675966 0.736933i \(-0.736273\pi\)
−0.675966 + 0.736933i \(0.736273\pi\)
\(678\) 0 0
\(679\) −0.628984 −0.0241382
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −17.7638 −0.679714 −0.339857 0.940477i \(-0.610379\pi\)
−0.339857 + 0.940477i \(0.610379\pi\)
\(684\) 0 0
\(685\) −6.49350 −0.248104
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 37.5526 1.43064
\(690\) 0 0
\(691\) 44.0306 1.67500 0.837502 0.546434i \(-0.184015\pi\)
0.837502 + 0.546434i \(0.184015\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 19.7760 0.750147
\(696\) 0 0
\(697\) −14.7050 −0.556992
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 30.1052 1.13706 0.568530 0.822663i \(-0.307512\pi\)
0.568530 + 0.822663i \(0.307512\pi\)
\(702\) 0 0
\(703\) 0.278066 0.0104875
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 26.5921 1.00010
\(708\) 0 0
\(709\) −24.7374 −0.929033 −0.464517 0.885564i \(-0.653772\pi\)
−0.464517 + 0.885564i \(0.653772\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.73236 −0.0648775
\(714\) 0 0
\(715\) 31.6955 1.18535
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −43.5526 −1.62424 −0.812119 0.583491i \(-0.801686\pi\)
−0.812119 + 0.583491i \(0.801686\pi\)
\(720\) 0 0
\(721\) −9.42097 −0.350855
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.92841 −0.108758
\(726\) 0 0
\(727\) −20.5371 −0.761680 −0.380840 0.924641i \(-0.624365\pi\)
−0.380840 + 0.924641i \(0.624365\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −15.5544 −0.575299
\(732\) 0 0
\(733\) 14.0060 0.517323 0.258661 0.965968i \(-0.416719\pi\)
0.258661 + 0.965968i \(0.416719\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.0378 −0.406581
\(738\) 0 0
\(739\) 41.9813 1.54431 0.772154 0.635435i \(-0.219179\pi\)
0.772154 + 0.635435i \(0.219179\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27.8621 1.02216 0.511082 0.859532i \(-0.329245\pi\)
0.511082 + 0.859532i \(0.329245\pi\)
\(744\) 0 0
\(745\) 33.9222 1.24281
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.36184 0.232457
\(750\) 0 0
\(751\) 52.9050 1.93053 0.965265 0.261273i \(-0.0841423\pi\)
0.965265 + 0.261273i \(0.0841423\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 26.4561 0.962834
\(756\) 0 0
\(757\) −41.4858 −1.50783 −0.753913 0.656975i \(-0.771836\pi\)
−0.753913 + 0.656975i \(0.771836\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 45.3874 1.64529 0.822647 0.568553i \(-0.192497\pi\)
0.822647 + 0.568553i \(0.192497\pi\)
\(762\) 0 0
\(763\) 21.6023 0.782054
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 23.7074 0.856024
\(768\) 0 0
\(769\) 5.11650 0.184506 0.0922528 0.995736i \(-0.470593\pi\)
0.0922528 + 0.995736i \(0.470593\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 52.6427 1.89343 0.946713 0.322077i \(-0.104381\pi\)
0.946713 + 0.322077i \(0.104381\pi\)
\(774\) 0 0
\(775\) −1.33511 −0.0479587
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 32.5381 1.16580
\(780\) 0 0
\(781\) −32.7638 −1.17238
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 36.3158 1.29617
\(786\) 0 0
\(787\) 20.7624 0.740099 0.370050 0.929012i \(-0.379341\pi\)
0.370050 + 0.929012i \(0.379341\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 38.4124 1.36579
\(792\) 0 0
\(793\) −35.6536 −1.26610
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 45.5800 1.61453 0.807263 0.590192i \(-0.200948\pi\)
0.807263 + 0.590192i \(0.200948\pi\)
\(798\) 0 0
\(799\) 11.2094 0.396562
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 33.0128 1.16500
\(804\) 0 0
\(805\) −11.7314 −0.413479
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 4.21120 0.148058 0.0740290 0.997256i \(-0.476414\pi\)
0.0740290 + 0.997256i \(0.476414\pi\)
\(810\) 0 0
\(811\) −11.3618 −0.398968 −0.199484 0.979901i \(-0.563927\pi\)
−0.199484 + 0.979901i \(0.563927\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 33.8982 1.18740
\(816\) 0 0
\(817\) 34.4175 1.20411
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.64227 −0.0573158 −0.0286579 0.999589i \(-0.509123\pi\)
−0.0286579 + 0.999589i \(0.509123\pi\)
\(822\) 0 0
\(823\) −11.2189 −0.391068 −0.195534 0.980697i \(-0.562644\pi\)
−0.195534 + 0.980697i \(0.562644\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −9.61318 −0.334283 −0.167141 0.985933i \(-0.553454\pi\)
−0.167141 + 0.985933i \(0.553454\pi\)
\(828\) 0 0
\(829\) 33.4938 1.16329 0.581644 0.813443i \(-0.302410\pi\)
0.581644 + 0.813443i \(0.302410\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.55438 0.123152
\(834\) 0 0
\(835\) −7.09152 −0.245412
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −31.9941 −1.10456 −0.552280 0.833659i \(-0.686242\pi\)
−0.552280 + 0.833659i \(0.686242\pi\)
\(840\) 0 0
\(841\) −27.3337 −0.942541
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.27807 0.147170
\(846\) 0 0
\(847\) −58.6614 −2.01563
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.123303 −0.00422678
\(852\) 0 0
\(853\) 35.2422 1.20667 0.603334 0.797488i \(-0.293838\pi\)
0.603334 + 0.797488i \(0.293838\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.2490 0.725851 0.362925 0.931818i \(-0.381778\pi\)
0.362925 + 0.931818i \(0.381778\pi\)
\(858\) 0 0
\(859\) −51.8384 −1.76870 −0.884352 0.466820i \(-0.845399\pi\)
−0.884352 + 0.466820i \(0.845399\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −22.6783 −0.771978 −0.385989 0.922503i \(-0.626140\pi\)
−0.385989 + 0.922503i \(0.626140\pi\)
\(864\) 0 0
\(865\) 6.26857 0.213138
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 22.4730 0.762343
\(870\) 0 0
\(871\) 5.99226 0.203040
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −28.9685 −0.979315
\(876\) 0 0
\(877\) 1.13341 0.0382725 0.0191362 0.999817i \(-0.493908\pi\)
0.0191362 + 0.999817i \(0.493908\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.8289 1.03865 0.519327 0.854576i \(-0.326183\pi\)
0.519327 + 0.854576i \(0.326183\pi\)
\(882\) 0 0
\(883\) 9.33511 0.314152 0.157076 0.987587i \(-0.449793\pi\)
0.157076 + 0.987587i \(0.449793\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14.0942 −0.473237 −0.236619 0.971603i \(-0.576039\pi\)
−0.236619 + 0.971603i \(0.576039\pi\)
\(888\) 0 0
\(889\) 8.67230 0.290860
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −24.8033 −0.830012
\(894\) 0 0
\(895\) −13.6783 −0.457215
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.759704 0.0253376
\(900\) 0 0
\(901\) 34.9145 1.16317
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −11.1094 −0.369288
\(906\) 0 0
\(907\) 8.73917 0.290179 0.145090 0.989419i \(-0.453653\pi\)
0.145090 + 0.989419i \(0.453653\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −20.6509 −0.684196 −0.342098 0.939664i \(-0.611138\pi\)
−0.342098 + 0.939664i \(0.611138\pi\)
\(912\) 0 0
\(913\) 23.6878 0.783951
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 42.7009 1.41011
\(918\) 0 0
\(919\) 2.36009 0.0778522 0.0389261 0.999242i \(-0.487606\pi\)
0.0389261 + 0.999242i \(0.487606\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 17.7870 0.585468
\(924\) 0 0
\(925\) −0.0950283 −0.00312451
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 26.8203 0.879944 0.439972 0.898011i \(-0.354988\pi\)
0.439972 + 0.898011i \(0.354988\pi\)
\(930\) 0 0
\(931\) −7.86484 −0.257760
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 29.4688 0.963734
\(936\) 0 0
\(937\) 1.93313 0.0631527 0.0315764 0.999501i \(-0.489947\pi\)
0.0315764 + 0.999501i \(0.489947\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −11.9103 −0.388266 −0.194133 0.980975i \(-0.562189\pi\)
−0.194133 + 0.980975i \(0.562189\pi\)
\(942\) 0 0
\(943\) −14.4284 −0.469853
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.315836 −0.0102633 −0.00513165 0.999987i \(-0.501633\pi\)
−0.00513165 + 0.999987i \(0.501633\pi\)
\(948\) 0 0
\(949\) −17.9222 −0.581779
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −3.25133 −0.105321 −0.0526605 0.998612i \(-0.516770\pi\)
−0.0526605 + 0.998612i \(0.516770\pi\)
\(954\) 0 0
\(955\) 8.28756 0.268179
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.47472 −0.305955
\(960\) 0 0
\(961\) −30.6536 −0.988827
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 29.5253 0.950452
\(966\) 0 0
\(967\) −10.9676 −0.352694 −0.176347 0.984328i \(-0.556428\pi\)
−0.176347 + 0.984328i \(0.556428\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23.3868 0.750519 0.375259 0.926920i \(-0.377554\pi\)
0.375259 + 0.926920i \(0.377554\pi\)
\(972\) 0 0
\(973\) 28.8553 0.925060
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 50.1762 1.60528 0.802640 0.596464i \(-0.203428\pi\)
0.802640 + 0.596464i \(0.203428\pi\)
\(978\) 0 0
\(979\) −48.4439 −1.54827
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −14.6946 −0.468685 −0.234342 0.972154i \(-0.575294\pi\)
−0.234342 + 0.972154i \(0.575294\pi\)
\(984\) 0 0
\(985\) 1.19604 0.0381091
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −15.2618 −0.485296
\(990\) 0 0
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −16.8452 −0.534030
\(996\) 0 0
\(997\) −45.8863 −1.45323 −0.726617 0.687043i \(-0.758908\pi\)
−0.726617 + 0.687043i \(0.758908\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3888.2.a.bd.1.2 3
3.2 odd 2 3888.2.a.bk.1.2 3
4.3 odd 2 243.2.a.e.1.2 3
12.11 even 2 243.2.a.f.1.2 yes 3
20.19 odd 2 6075.2.a.bv.1.2 3
36.7 odd 6 243.2.c.f.82.2 6
36.11 even 6 243.2.c.e.82.2 6
36.23 even 6 243.2.c.e.163.2 6
36.31 odd 6 243.2.c.f.163.2 6
60.59 even 2 6075.2.a.bq.1.2 3
108.7 odd 18 729.2.e.h.325.1 6
108.11 even 18 729.2.e.i.82.1 6
108.23 even 18 729.2.e.c.406.1 6
108.31 odd 18 729.2.e.h.406.1 6
108.43 odd 18 729.2.e.a.82.1 6
108.47 even 18 729.2.e.c.325.1 6
108.59 even 18 729.2.e.i.649.1 6
108.67 odd 18 729.2.e.g.163.1 6
108.79 odd 18 729.2.e.g.568.1 6
108.83 even 18 729.2.e.b.568.1 6
108.95 even 18 729.2.e.b.163.1 6
108.103 odd 18 729.2.e.a.649.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
243.2.a.e.1.2 3 4.3 odd 2
243.2.a.f.1.2 yes 3 12.11 even 2
243.2.c.e.82.2 6 36.11 even 6
243.2.c.e.163.2 6 36.23 even 6
243.2.c.f.82.2 6 36.7 odd 6
243.2.c.f.163.2 6 36.31 odd 6
729.2.e.a.82.1 6 108.43 odd 18
729.2.e.a.649.1 6 108.103 odd 18
729.2.e.b.163.1 6 108.95 even 18
729.2.e.b.568.1 6 108.83 even 18
729.2.e.c.325.1 6 108.47 even 18
729.2.e.c.406.1 6 108.23 even 18
729.2.e.g.163.1 6 108.67 odd 18
729.2.e.g.568.1 6 108.79 odd 18
729.2.e.h.325.1 6 108.7 odd 18
729.2.e.h.406.1 6 108.31 odd 18
729.2.e.i.82.1 6 108.11 even 18
729.2.e.i.649.1 6 108.59 even 18
3888.2.a.bd.1.2 3 1.1 even 1 trivial
3888.2.a.bk.1.2 3 3.2 odd 2
6075.2.a.bq.1.2 3 60.59 even 2
6075.2.a.bv.1.2 3 20.19 odd 2