Properties

Label 3888.2.a.bd.1.1
Level $3888$
Weight $2$
Character 3888.1
Self dual yes
Analytic conductor $31.046$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3888,2,Mod(1,3888)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3888, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3888.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3888 = 2^{4} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3888.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.0458363059\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.87939\) of defining polynomial
Character \(\chi\) \(=\) 3888.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.87939 q^{5} +2.18479 q^{7} +0.162504 q^{11} +2.41147 q^{13} -3.00000 q^{17} -3.59627 q^{19} +2.83750 q^{23} +10.0496 q^{25} -6.71688 q^{29} +5.18479 q^{31} -8.47565 q^{35} -6.63816 q^{37} +5.80066 q^{41} +6.22668 q^{43} +7.39693 q^{47} -2.22668 q^{49} -1.40373 q^{53} -0.630415 q^{55} -5.12061 q^{59} -3.78106 q^{61} -9.35504 q^{65} +5.86484 q^{67} -15.3182 q^{71} +8.68004 q^{73} +0.355037 q^{77} +1.26857 q^{79} -8.47565 q^{83} +11.6382 q^{85} -7.72193 q^{89} +5.26857 q^{91} +13.9513 q^{95} -3.90673 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{5} + 3 q^{7} + 3 q^{11} - 3 q^{13} - 9 q^{17} + 3 q^{19} + 6 q^{23} + 3 q^{25} - 12 q^{29} + 12 q^{31} - 6 q^{35} - 3 q^{37} + 3 q^{41} + 12 q^{43} - 6 q^{47} - 18 q^{53} - 9 q^{55} - 21 q^{59}+ \cdots + 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.87939 −1.73491 −0.867457 0.497512i \(-0.834247\pi\)
−0.867457 + 0.497512i \(0.834247\pi\)
\(6\) 0 0
\(7\) 2.18479 0.825774 0.412887 0.910782i \(-0.364520\pi\)
0.412887 + 0.910782i \(0.364520\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.162504 0.0489967 0.0244984 0.999700i \(-0.492201\pi\)
0.0244984 + 0.999700i \(0.492201\pi\)
\(12\) 0 0
\(13\) 2.41147 0.668823 0.334411 0.942427i \(-0.391463\pi\)
0.334411 + 0.942427i \(0.391463\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) −3.59627 −0.825040 −0.412520 0.910949i \(-0.635351\pi\)
−0.412520 + 0.910949i \(0.635351\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.83750 0.591659 0.295829 0.955241i \(-0.404404\pi\)
0.295829 + 0.955241i \(0.404404\pi\)
\(24\) 0 0
\(25\) 10.0496 2.00993
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.71688 −1.24729 −0.623647 0.781706i \(-0.714350\pi\)
−0.623647 + 0.781706i \(0.714350\pi\)
\(30\) 0 0
\(31\) 5.18479 0.931216 0.465608 0.884991i \(-0.345836\pi\)
0.465608 + 0.884991i \(0.345836\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −8.47565 −1.43265
\(36\) 0 0
\(37\) −6.63816 −1.09131 −0.545653 0.838011i \(-0.683718\pi\)
−0.545653 + 0.838011i \(0.683718\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.80066 0.905911 0.452955 0.891533i \(-0.350370\pi\)
0.452955 + 0.891533i \(0.350370\pi\)
\(42\) 0 0
\(43\) 6.22668 0.949560 0.474780 0.880105i \(-0.342528\pi\)
0.474780 + 0.880105i \(0.342528\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.39693 1.07895 0.539476 0.842001i \(-0.318622\pi\)
0.539476 + 0.842001i \(0.318622\pi\)
\(48\) 0 0
\(49\) −2.22668 −0.318097
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.40373 −0.192818 −0.0964088 0.995342i \(-0.530736\pi\)
−0.0964088 + 0.995342i \(0.530736\pi\)
\(54\) 0 0
\(55\) −0.630415 −0.0850051
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.12061 −0.666647 −0.333324 0.942812i \(-0.608170\pi\)
−0.333324 + 0.942812i \(0.608170\pi\)
\(60\) 0 0
\(61\) −3.78106 −0.484115 −0.242058 0.970262i \(-0.577822\pi\)
−0.242058 + 0.970262i \(0.577822\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −9.35504 −1.16035
\(66\) 0 0
\(67\) 5.86484 0.716504 0.358252 0.933625i \(-0.383373\pi\)
0.358252 + 0.933625i \(0.383373\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −15.3182 −1.81794 −0.908968 0.416866i \(-0.863128\pi\)
−0.908968 + 0.416866i \(0.863128\pi\)
\(72\) 0 0
\(73\) 8.68004 1.01592 0.507961 0.861380i \(-0.330399\pi\)
0.507961 + 0.861380i \(0.330399\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.355037 0.0404602
\(78\) 0 0
\(79\) 1.26857 0.142725 0.0713627 0.997450i \(-0.477265\pi\)
0.0713627 + 0.997450i \(0.477265\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.47565 −0.930324 −0.465162 0.885226i \(-0.654004\pi\)
−0.465162 + 0.885226i \(0.654004\pi\)
\(84\) 0 0
\(85\) 11.6382 1.26234
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7.72193 −0.818523 −0.409262 0.912417i \(-0.634214\pi\)
−0.409262 + 0.912417i \(0.634214\pi\)
\(90\) 0 0
\(91\) 5.26857 0.552296
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 13.9513 1.43137
\(96\) 0 0
\(97\) −3.90673 −0.396668 −0.198334 0.980134i \(-0.563553\pi\)
−0.198334 + 0.980134i \(0.563553\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.11381 0.807354 0.403677 0.914902i \(-0.367732\pi\)
0.403677 + 0.914902i \(0.367732\pi\)
\(102\) 0 0
\(103\) −18.6459 −1.83723 −0.918617 0.395148i \(-0.870693\pi\)
−0.918617 + 0.395148i \(0.870693\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.59627 0.734359 0.367179 0.930150i \(-0.380324\pi\)
0.367179 + 0.930150i \(0.380324\pi\)
\(108\) 0 0
\(109\) −15.6382 −1.49786 −0.748932 0.662647i \(-0.769433\pi\)
−0.748932 + 0.662647i \(0.769433\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.31315 0.217603 0.108801 0.994064i \(-0.465299\pi\)
0.108801 + 0.994064i \(0.465299\pi\)
\(114\) 0 0
\(115\) −11.0077 −1.02648
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.55438 −0.600839
\(120\) 0 0
\(121\) −10.9736 −0.997599
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −19.5895 −1.75213
\(126\) 0 0
\(127\) −0.0418891 −0.00371705 −0.00185853 0.999998i \(-0.500592\pi\)
−0.00185853 + 0.999998i \(0.500592\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 18.3482 1.60309 0.801546 0.597933i \(-0.204011\pi\)
0.801546 + 0.597933i \(0.204011\pi\)
\(132\) 0 0
\(133\) −7.85710 −0.681297
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.3131 −1.22285 −0.611427 0.791301i \(-0.709404\pi\)
−0.611427 + 0.791301i \(0.709404\pi\)
\(138\) 0 0
\(139\) −10.4953 −0.890196 −0.445098 0.895482i \(-0.646831\pi\)
−0.445098 + 0.895482i \(0.646831\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.391874 0.0327701
\(144\) 0 0
\(145\) 26.0574 2.16395
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.27126 0.104146 0.0520728 0.998643i \(-0.483417\pi\)
0.0520728 + 0.998643i \(0.483417\pi\)
\(150\) 0 0
\(151\) −7.85710 −0.639401 −0.319701 0.947519i \(-0.603582\pi\)
−0.319701 + 0.947519i \(0.603582\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −20.1138 −1.61558
\(156\) 0 0
\(157\) −12.3523 −0.985825 −0.492912 0.870079i \(-0.664068\pi\)
−0.492912 + 0.870079i \(0.664068\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.19934 0.488576
\(162\) 0 0
\(163\) 13.7469 1.07674 0.538371 0.842708i \(-0.319040\pi\)
0.538371 + 0.842708i \(0.319040\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.71688 −0.287621 −0.143810 0.989605i \(-0.545936\pi\)
−0.143810 + 0.989605i \(0.545936\pi\)
\(168\) 0 0
\(169\) −7.18479 −0.552676
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.55943 0.118561 0.0592806 0.998241i \(-0.481119\pi\)
0.0592806 + 0.998241i \(0.481119\pi\)
\(174\) 0 0
\(175\) 21.9564 1.65974
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.1925 −0.911313 −0.455656 0.890156i \(-0.650595\pi\)
−0.455656 + 0.890156i \(0.650595\pi\)
\(180\) 0 0
\(181\) −16.8726 −1.25413 −0.627064 0.778967i \(-0.715744\pi\)
−0.627064 + 0.778967i \(0.715744\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 25.7520 1.89332
\(186\) 0 0
\(187\) −0.487511 −0.0356504
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −17.4757 −1.26449 −0.632247 0.774767i \(-0.717867\pi\)
−0.632247 + 0.774767i \(0.717867\pi\)
\(192\) 0 0
\(193\) −1.99226 −0.143406 −0.0717030 0.997426i \(-0.522843\pi\)
−0.0717030 + 0.997426i \(0.522843\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.1925 −1.50991 −0.754953 0.655779i \(-0.772340\pi\)
−0.754953 + 0.655779i \(0.772340\pi\)
\(198\) 0 0
\(199\) 3.08378 0.218603 0.109302 0.994009i \(-0.465139\pi\)
0.109302 + 0.994009i \(0.465139\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −14.6750 −1.02998
\(204\) 0 0
\(205\) −22.5030 −1.57168
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.584407 −0.0404243
\(210\) 0 0
\(211\) −1.00774 −0.0693757 −0.0346879 0.999398i \(-0.511044\pi\)
−0.0346879 + 0.999398i \(0.511044\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −24.1557 −1.64740
\(216\) 0 0
\(217\) 11.3277 0.768974
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7.23442 −0.486640
\(222\) 0 0
\(223\) −18.2841 −1.22439 −0.612195 0.790707i \(-0.709713\pi\)
−0.612195 + 0.790707i \(0.709713\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.64496 −0.175552 −0.0877762 0.996140i \(-0.527976\pi\)
−0.0877762 + 0.996140i \(0.527976\pi\)
\(228\) 0 0
\(229\) −3.46286 −0.228832 −0.114416 0.993433i \(-0.536500\pi\)
−0.114416 + 0.993433i \(0.536500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.12567 −0.401306 −0.200653 0.979662i \(-0.564306\pi\)
−0.200653 + 0.979662i \(0.564306\pi\)
\(234\) 0 0
\(235\) −28.6955 −1.87189
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −28.9513 −1.87270 −0.936352 0.351062i \(-0.885821\pi\)
−0.936352 + 0.351062i \(0.885821\pi\)
\(240\) 0 0
\(241\) 22.3259 1.43814 0.719070 0.694937i \(-0.244568\pi\)
0.719070 + 0.694937i \(0.244568\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.63816 0.551872
\(246\) 0 0
\(247\) −8.67230 −0.551805
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −22.7219 −1.43420 −0.717098 0.696972i \(-0.754530\pi\)
−0.717098 + 0.696972i \(0.754530\pi\)
\(252\) 0 0
\(253\) 0.461104 0.0289894
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.5895 1.22196 0.610978 0.791647i \(-0.290776\pi\)
0.610978 + 0.791647i \(0.290776\pi\)
\(258\) 0 0
\(259\) −14.5030 −0.901172
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.8007 1.09764 0.548818 0.835942i \(-0.315078\pi\)
0.548818 + 0.835942i \(0.315078\pi\)
\(264\) 0 0
\(265\) 5.44562 0.334522
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −22.7888 −1.38946 −0.694729 0.719272i \(-0.744476\pi\)
−0.694729 + 0.719272i \(0.744476\pi\)
\(270\) 0 0
\(271\) 3.44562 0.209307 0.104653 0.994509i \(-0.466627\pi\)
0.104653 + 0.994509i \(0.466627\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.63310 0.0984798
\(276\) 0 0
\(277\) −2.61350 −0.157030 −0.0785151 0.996913i \(-0.525018\pi\)
−0.0785151 + 0.996913i \(0.525018\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 13.6851 0.816384 0.408192 0.912896i \(-0.366159\pi\)
0.408192 + 0.912896i \(0.366159\pi\)
\(282\) 0 0
\(283\) −22.8803 −1.36009 −0.680047 0.733169i \(-0.738041\pi\)
−0.680047 + 0.733169i \(0.738041\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.6732 0.748078
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −24.2814 −1.41853 −0.709266 0.704941i \(-0.750974\pi\)
−0.709266 + 0.704941i \(0.750974\pi\)
\(294\) 0 0
\(295\) 19.8648 1.15658
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.84255 0.395715
\(300\) 0 0
\(301\) 13.6040 0.784122
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 14.6682 0.839898
\(306\) 0 0
\(307\) 16.1489 0.921666 0.460833 0.887487i \(-0.347551\pi\)
0.460833 + 0.887487i \(0.347551\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 18.7101 1.06095 0.530475 0.847700i \(-0.322013\pi\)
0.530475 + 0.847700i \(0.322013\pi\)
\(312\) 0 0
\(313\) 2.77332 0.156757 0.0783786 0.996924i \(-0.475026\pi\)
0.0783786 + 0.996924i \(0.475026\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −17.4825 −0.981913 −0.490956 0.871184i \(-0.663353\pi\)
−0.490956 + 0.871184i \(0.663353\pi\)
\(318\) 0 0
\(319\) −1.09152 −0.0611133
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10.7888 0.600305
\(324\) 0 0
\(325\) 24.2344 1.34428
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 16.1607 0.890971
\(330\) 0 0
\(331\) 32.4593 1.78413 0.892064 0.451910i \(-0.149257\pi\)
0.892064 + 0.451910i \(0.149257\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −22.7520 −1.24307
\(336\) 0 0
\(337\) 8.28581 0.451357 0.225678 0.974202i \(-0.427540\pi\)
0.225678 + 0.974202i \(0.427540\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.842549 0.0456266
\(342\) 0 0
\(343\) −20.1584 −1.08845
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.9632 0.803265 0.401632 0.915801i \(-0.368443\pi\)
0.401632 + 0.915801i \(0.368443\pi\)
\(348\) 0 0
\(349\) 33.6459 1.80102 0.900512 0.434832i \(-0.143192\pi\)
0.900512 + 0.434832i \(0.143192\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 15.7537 0.838486 0.419243 0.907874i \(-0.362296\pi\)
0.419243 + 0.907874i \(0.362296\pi\)
\(354\) 0 0
\(355\) 59.4252 3.15396
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.1257 0.956636 0.478318 0.878187i \(-0.341247\pi\)
0.478318 + 0.878187i \(0.341247\pi\)
\(360\) 0 0
\(361\) −6.06687 −0.319309
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −33.6732 −1.76254
\(366\) 0 0
\(367\) 19.1429 0.999251 0.499626 0.866241i \(-0.333471\pi\)
0.499626 + 0.866241i \(0.333471\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.06687 −0.159224
\(372\) 0 0
\(373\) −15.2499 −0.789610 −0.394805 0.918765i \(-0.629188\pi\)
−0.394805 + 0.918765i \(0.629188\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −16.1976 −0.834218
\(378\) 0 0
\(379\) −9.84760 −0.505837 −0.252919 0.967488i \(-0.581390\pi\)
−0.252919 + 0.967488i \(0.581390\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 28.3901 1.45067 0.725334 0.688397i \(-0.241685\pi\)
0.725334 + 0.688397i \(0.241685\pi\)
\(384\) 0 0
\(385\) −1.37733 −0.0701950
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.8844 −0.551863 −0.275931 0.961177i \(-0.588986\pi\)
−0.275931 + 0.961177i \(0.588986\pi\)
\(390\) 0 0
\(391\) −8.51249 −0.430495
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.92127 −0.247616
\(396\) 0 0
\(397\) −18.1070 −0.908764 −0.454382 0.890807i \(-0.650140\pi\)
−0.454382 + 0.890807i \(0.650140\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.43376 −0.0715987 −0.0357993 0.999359i \(-0.511398\pi\)
−0.0357993 + 0.999359i \(0.511398\pi\)
\(402\) 0 0
\(403\) 12.5030 0.622818
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.07873 −0.0534704
\(408\) 0 0
\(409\) 8.60401 0.425441 0.212720 0.977113i \(-0.431768\pi\)
0.212720 + 0.977113i \(0.431768\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −11.1875 −0.550500
\(414\) 0 0
\(415\) 32.8803 1.61403
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.3114 −0.601451 −0.300725 0.953711i \(-0.597229\pi\)
−0.300725 + 0.953711i \(0.597229\pi\)
\(420\) 0 0
\(421\) 11.1165 0.541785 0.270892 0.962610i \(-0.412681\pi\)
0.270892 + 0.962610i \(0.412681\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −30.1489 −1.46244
\(426\) 0 0
\(427\) −8.26083 −0.399770
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −36.8958 −1.77721 −0.888604 0.458675i \(-0.848324\pi\)
−0.888604 + 0.458675i \(0.848324\pi\)
\(432\) 0 0
\(433\) −37.9982 −1.82608 −0.913040 0.407871i \(-0.866271\pi\)
−0.913040 + 0.407871i \(0.866271\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.2044 −0.488142
\(438\) 0 0
\(439\) −0.202029 −0.00964231 −0.00482115 0.999988i \(-0.501535\pi\)
−0.00482115 + 0.999988i \(0.501535\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 21.2294 1.00864 0.504319 0.863517i \(-0.331744\pi\)
0.504319 + 0.863517i \(0.331744\pi\)
\(444\) 0 0
\(445\) 29.9564 1.42007
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 33.2594 1.56961 0.784804 0.619744i \(-0.212764\pi\)
0.784804 + 0.619744i \(0.212764\pi\)
\(450\) 0 0
\(451\) 0.942629 0.0443867
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −20.4388 −0.958186
\(456\) 0 0
\(457\) −0.0341483 −0.00159739 −0.000798695 1.00000i \(-0.500254\pi\)
−0.000798695 1.00000i \(0.500254\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.9864 0.697986 0.348993 0.937125i \(-0.386524\pi\)
0.348993 + 0.937125i \(0.386524\pi\)
\(462\) 0 0
\(463\) 30.4424 1.41478 0.707390 0.706823i \(-0.249872\pi\)
0.707390 + 0.706823i \(0.249872\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.510734 −0.0236339 −0.0118170 0.999930i \(-0.503762\pi\)
−0.0118170 + 0.999930i \(0.503762\pi\)
\(468\) 0 0
\(469\) 12.8135 0.591670
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.01186 0.0465254
\(474\) 0 0
\(475\) −36.1411 −1.65827
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.4507 −0.705959 −0.352980 0.935631i \(-0.614832\pi\)
−0.352980 + 0.935631i \(0.614832\pi\)
\(480\) 0 0
\(481\) −16.0077 −0.729890
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 15.1557 0.688185
\(486\) 0 0
\(487\) −29.5107 −1.33726 −0.668629 0.743596i \(-0.733119\pi\)
−0.668629 + 0.743596i \(0.733119\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.15745 0.0973644 0.0486822 0.998814i \(-0.484498\pi\)
0.0486822 + 0.998814i \(0.484498\pi\)
\(492\) 0 0
\(493\) 20.1506 0.907539
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −33.4671 −1.50120
\(498\) 0 0
\(499\) −7.49525 −0.335534 −0.167767 0.985827i \(-0.553656\pi\)
−0.167767 + 0.985827i \(0.553656\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 28.5963 1.27504 0.637522 0.770432i \(-0.279959\pi\)
0.637522 + 0.770432i \(0.279959\pi\)
\(504\) 0 0
\(505\) −31.4766 −1.40069
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.69190 0.0749923 0.0374962 0.999297i \(-0.488062\pi\)
0.0374962 + 0.999297i \(0.488062\pi\)
\(510\) 0 0
\(511\) 18.9641 0.838922
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 72.3346 3.18744
\(516\) 0 0
\(517\) 1.20203 0.0528652
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 22.4037 0.981525 0.490763 0.871293i \(-0.336718\pi\)
0.490763 + 0.871293i \(0.336718\pi\)
\(522\) 0 0
\(523\) −2.42871 −0.106200 −0.0531000 0.998589i \(-0.516910\pi\)
−0.0531000 + 0.998589i \(0.516910\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15.5544 −0.677559
\(528\) 0 0
\(529\) −14.9486 −0.649940
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 13.9881 0.605894
\(534\) 0 0
\(535\) −29.4688 −1.27405
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.361844 −0.0155857
\(540\) 0 0
\(541\) 38.9394 1.67414 0.837069 0.547098i \(-0.184267\pi\)
0.837069 + 0.547098i \(0.184267\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 60.6664 2.59866
\(546\) 0 0
\(547\) 14.6723 0.627342 0.313671 0.949532i \(-0.398441\pi\)
0.313671 + 0.949532i \(0.398441\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 24.1557 1.02907
\(552\) 0 0
\(553\) 2.77156 0.117859
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.1070 0.470619 0.235309 0.971921i \(-0.424390\pi\)
0.235309 + 0.971921i \(0.424390\pi\)
\(558\) 0 0
\(559\) 15.0155 0.635087
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16.3081 0.687304 0.343652 0.939097i \(-0.388336\pi\)
0.343652 + 0.939097i \(0.388336\pi\)
\(564\) 0 0
\(565\) −8.97359 −0.377522
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −36.0164 −1.50989 −0.754943 0.655790i \(-0.772336\pi\)
−0.754943 + 0.655790i \(0.772336\pi\)
\(570\) 0 0
\(571\) −39.1584 −1.63873 −0.819364 0.573274i \(-0.805673\pi\)
−0.819364 + 0.573274i \(0.805673\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 28.5158 1.18919
\(576\) 0 0
\(577\) 11.8057 0.491478 0.245739 0.969336i \(-0.420969\pi\)
0.245739 + 0.969336i \(0.420969\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −18.5175 −0.768237
\(582\) 0 0
\(583\) −0.228112 −0.00944744
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −39.9614 −1.64938 −0.824692 0.565582i \(-0.808651\pi\)
−0.824692 + 0.565582i \(0.808651\pi\)
\(588\) 0 0
\(589\) −18.6459 −0.768291
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 29.2995 1.20319 0.601594 0.798802i \(-0.294533\pi\)
0.601594 + 0.798802i \(0.294533\pi\)
\(594\) 0 0
\(595\) 25.4270 1.04240
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.0719 0.411527 0.205764 0.978602i \(-0.434032\pi\)
0.205764 + 0.978602i \(0.434032\pi\)
\(600\) 0 0
\(601\) −30.4192 −1.24083 −0.620413 0.784275i \(-0.713035\pi\)
−0.620413 + 0.784275i \(0.713035\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 42.5708 1.73075
\(606\) 0 0
\(607\) 23.0743 0.936556 0.468278 0.883581i \(-0.344875\pi\)
0.468278 + 0.883581i \(0.344875\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 17.8375 0.721628
\(612\) 0 0
\(613\) 0.765578 0.0309214 0.0154607 0.999880i \(-0.495079\pi\)
0.0154607 + 0.999880i \(0.495079\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.28817 0.373928 0.186964 0.982367i \(-0.440135\pi\)
0.186964 + 0.982367i \(0.440135\pi\)
\(618\) 0 0
\(619\) 35.0823 1.41008 0.705039 0.709168i \(-0.250929\pi\)
0.705039 + 0.709168i \(0.250929\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −16.8708 −0.675915
\(624\) 0 0
\(625\) 25.7469 1.02988
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 19.9145 0.794042
\(630\) 0 0
\(631\) −35.7621 −1.42367 −0.711833 0.702349i \(-0.752135\pi\)
−0.711833 + 0.702349i \(0.752135\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.162504 0.00644877
\(636\) 0 0
\(637\) −5.36959 −0.212751
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.92633 −0.115583 −0.0577915 0.998329i \(-0.518406\pi\)
−0.0577915 + 0.998329i \(0.518406\pi\)
\(642\) 0 0
\(643\) 20.2517 0.798647 0.399324 0.916810i \(-0.369245\pi\)
0.399324 + 0.916810i \(0.369245\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.7219 0.421523 0.210761 0.977538i \(-0.432406\pi\)
0.210761 + 0.977538i \(0.432406\pi\)
\(648\) 0 0
\(649\) −0.832119 −0.0326635
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −35.7270 −1.39811 −0.699053 0.715070i \(-0.746395\pi\)
−0.699053 + 0.715070i \(0.746395\pi\)
\(654\) 0 0
\(655\) −71.1799 −2.78123
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 30.8658 1.20236 0.601180 0.799114i \(-0.294698\pi\)
0.601180 + 0.799114i \(0.294698\pi\)
\(660\) 0 0
\(661\) −9.84793 −0.383040 −0.191520 0.981489i \(-0.561342\pi\)
−0.191520 + 0.981489i \(0.561342\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 30.4807 1.18199
\(666\) 0 0
\(667\) −19.0591 −0.737972
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.614437 −0.0237201
\(672\) 0 0
\(673\) −19.6973 −0.759274 −0.379637 0.925135i \(-0.623951\pi\)
−0.379637 + 0.925135i \(0.623951\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 28.4570 1.09369 0.546845 0.837234i \(-0.315829\pi\)
0.546845 + 0.837234i \(0.315829\pi\)
\(678\) 0 0
\(679\) −8.53539 −0.327558
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.5107 0.478710 0.239355 0.970932i \(-0.423064\pi\)
0.239355 + 0.970932i \(0.423064\pi\)
\(684\) 0 0
\(685\) 55.5262 2.12155
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.38507 −0.128961
\(690\) 0 0
\(691\) −42.6255 −1.62155 −0.810775 0.585358i \(-0.800954\pi\)
−0.810775 + 0.585358i \(0.800954\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 40.7151 1.54441
\(696\) 0 0
\(697\) −17.4020 −0.659147
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −51.7701 −1.95533 −0.977665 0.210167i \(-0.932599\pi\)
−0.977665 + 0.210167i \(0.932599\pi\)
\(702\) 0 0
\(703\) 23.8726 0.900371
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.7270 0.666692
\(708\) 0 0
\(709\) 15.1584 0.569285 0.284643 0.958634i \(-0.408125\pi\)
0.284643 + 0.958634i \(0.408125\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.7118 0.550962
\(714\) 0 0
\(715\) −1.52023 −0.0568534
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.61493 −0.0975206 −0.0487603 0.998811i \(-0.515527\pi\)
−0.0487603 + 0.998811i \(0.515527\pi\)
\(720\) 0 0
\(721\) −40.7374 −1.51714
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −67.5022 −2.50697
\(726\) 0 0
\(727\) 4.09926 0.152033 0.0760166 0.997107i \(-0.475780\pi\)
0.0760166 + 0.997107i \(0.475780\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −18.6800 −0.690906
\(732\) 0 0
\(733\) −38.2080 −1.41125 −0.705623 0.708588i \(-0.749333\pi\)
−0.705623 + 0.708588i \(0.749333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.953058 0.0351064
\(738\) 0 0
\(739\) 24.2094 0.890559 0.445279 0.895392i \(-0.353104\pi\)
0.445279 + 0.895392i \(0.353104\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.31139 −0.121483 −0.0607416 0.998154i \(-0.519347\pi\)
−0.0607416 + 0.998154i \(0.519347\pi\)
\(744\) 0 0
\(745\) −4.93170 −0.180684
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 16.5963 0.606414
\(750\) 0 0
\(751\) −13.7110 −0.500322 −0.250161 0.968204i \(-0.580484\pi\)
−0.250161 + 0.968204i \(0.580484\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 30.4807 1.10931
\(756\) 0 0
\(757\) 12.3833 0.450079 0.225040 0.974350i \(-0.427749\pi\)
0.225040 + 0.974350i \(0.427749\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.58265 −0.274871 −0.137435 0.990511i \(-0.543886\pi\)
−0.137435 + 0.990511i \(0.543886\pi\)
\(762\) 0 0
\(763\) −34.1661 −1.23690
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12.3482 −0.445869
\(768\) 0 0
\(769\) 3.21719 0.116015 0.0580073 0.998316i \(-0.481525\pi\)
0.0580073 + 0.998316i \(0.481525\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.184468 0.00663486 0.00331743 0.999994i \(-0.498944\pi\)
0.00331743 + 0.999994i \(0.498944\pi\)
\(774\) 0 0
\(775\) 52.1052 1.87168
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −20.8607 −0.747413
\(780\) 0 0
\(781\) −2.48927 −0.0890729
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 47.9195 1.71032
\(786\) 0 0
\(787\) 0.478016 0.0170394 0.00851971 0.999964i \(-0.497288\pi\)
0.00851971 + 0.999964i \(0.497288\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.05375 0.179691
\(792\) 0 0
\(793\) −9.11793 −0.323787
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.4989 −0.513576 −0.256788 0.966468i \(-0.582664\pi\)
−0.256788 + 0.966468i \(0.582664\pi\)
\(798\) 0 0
\(799\) −22.1908 −0.785053
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.41054 0.0497769
\(804\) 0 0
\(805\) −24.0496 −0.847638
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 14.8743 0.522954 0.261477 0.965210i \(-0.415790\pi\)
0.261477 + 0.965210i \(0.415790\pi\)
\(810\) 0 0
\(811\) −21.5963 −0.758347 −0.379174 0.925325i \(-0.623792\pi\)
−0.379174 + 0.925325i \(0.623792\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −53.3296 −1.86805
\(816\) 0 0
\(817\) −22.3928 −0.783425
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.28136 0.114520 0.0572602 0.998359i \(-0.481764\pi\)
0.0572602 + 0.998359i \(0.481764\pi\)
\(822\) 0 0
\(823\) −13.7314 −0.478648 −0.239324 0.970940i \(-0.576926\pi\)
−0.239324 + 0.970940i \(0.576926\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 20.2327 0.703559 0.351779 0.936083i \(-0.385577\pi\)
0.351779 + 0.936083i \(0.385577\pi\)
\(828\) 0 0
\(829\) 25.5276 0.886612 0.443306 0.896370i \(-0.353806\pi\)
0.443306 + 0.896370i \(0.353806\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.68004 0.231450
\(834\) 0 0
\(835\) 14.4192 0.498998
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 17.3800 0.600025 0.300012 0.953935i \(-0.403009\pi\)
0.300012 + 0.953935i \(0.403009\pi\)
\(840\) 0 0
\(841\) 16.1165 0.555741
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 27.8726 0.958846
\(846\) 0 0
\(847\) −23.9750 −0.823792
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −18.8357 −0.645681
\(852\) 0 0
\(853\) 13.3027 0.455476 0.227738 0.973722i \(-0.426867\pi\)
0.227738 + 0.973722i \(0.426867\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 19.9213 0.680498 0.340249 0.940335i \(-0.389489\pi\)
0.340249 + 0.940335i \(0.389489\pi\)
\(858\) 0 0
\(859\) −26.3446 −0.898866 −0.449433 0.893314i \(-0.648374\pi\)
−0.449433 + 0.893314i \(0.648374\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 38.2995 1.30373 0.651866 0.758334i \(-0.273987\pi\)
0.651866 + 0.758334i \(0.273987\pi\)
\(864\) 0 0
\(865\) −6.04963 −0.205694
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.206148 0.00699308
\(870\) 0 0
\(871\) 14.1429 0.479214
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −42.7989 −1.44687
\(876\) 0 0
\(877\) −27.0574 −0.913662 −0.456831 0.889553i \(-0.651016\pi\)
−0.456831 + 0.889553i \(0.651016\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −30.5776 −1.03019 −0.515093 0.857134i \(-0.672243\pi\)
−0.515093 + 0.857134i \(0.672243\pi\)
\(882\) 0 0
\(883\) −44.1052 −1.48426 −0.742130 0.670256i \(-0.766184\pi\)
−0.742130 + 0.670256i \(0.766184\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7.88444 −0.264734 −0.132367 0.991201i \(-0.542258\pi\)
−0.132367 + 0.991201i \(0.542258\pi\)
\(888\) 0 0
\(889\) −0.0915189 −0.00306945
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −26.6013 −0.890179
\(894\) 0 0
\(895\) 47.2995 1.58105
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −34.8256 −1.16150
\(900\) 0 0
\(901\) 4.21120 0.140295
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 65.4552 2.17581
\(906\) 0 0
\(907\) 12.9067 0.428561 0.214280 0.976772i \(-0.431259\pi\)
0.214280 + 0.976772i \(0.431259\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 21.1857 0.701914 0.350957 0.936391i \(-0.385856\pi\)
0.350957 + 0.936391i \(0.385856\pi\)
\(912\) 0 0
\(913\) −1.37733 −0.0455828
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 40.0871 1.32379
\(918\) 0 0
\(919\) −31.4688 −1.03806 −0.519031 0.854756i \(-0.673707\pi\)
−0.519031 + 0.854756i \(0.673707\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −36.9394 −1.21588
\(924\) 0 0
\(925\) −66.7110 −2.19344
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2.32676 0.0763386 0.0381693 0.999271i \(-0.487847\pi\)
0.0381693 + 0.999271i \(0.487847\pi\)
\(930\) 0 0
\(931\) 8.00774 0.262443
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.89124 0.0618503
\(936\) 0 0
\(937\) −10.9982 −0.359297 −0.179649 0.983731i \(-0.557496\pi\)
−0.179649 + 0.983731i \(0.557496\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 24.1037 0.785758 0.392879 0.919590i \(-0.371479\pi\)
0.392879 + 0.919590i \(0.371479\pi\)
\(942\) 0 0
\(943\) 16.4593 0.535990
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −11.9195 −0.387332 −0.193666 0.981067i \(-0.562038\pi\)
−0.193666 + 0.981067i \(0.562038\pi\)
\(948\) 0 0
\(949\) 20.9317 0.679472
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 36.8289 1.19301 0.596503 0.802611i \(-0.296556\pi\)
0.596503 + 0.802611i \(0.296556\pi\)
\(954\) 0 0
\(955\) 67.7948 2.19379
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −31.2713 −1.00980
\(960\) 0 0
\(961\) −4.11793 −0.132836
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.72874 0.248797
\(966\) 0 0
\(967\) −53.5604 −1.72239 −0.861193 0.508279i \(-0.830282\pi\)
−0.861193 + 0.508279i \(0.830282\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 53.2327 1.70832 0.854159 0.520012i \(-0.174073\pi\)
0.854159 + 0.520012i \(0.174073\pi\)
\(972\) 0 0
\(973\) −22.9299 −0.735100
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −13.4570 −0.430527 −0.215264 0.976556i \(-0.569061\pi\)
−0.215264 + 0.976556i \(0.569061\pi\)
\(978\) 0 0
\(979\) −1.25484 −0.0401050
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −10.2412 −0.326644 −0.163322 0.986573i \(-0.552221\pi\)
−0.163322 + 0.986573i \(0.552221\pi\)
\(984\) 0 0
\(985\) 82.2140 2.61956
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 17.6682 0.561816
\(990\) 0 0
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −11.9632 −0.379258
\(996\) 0 0
\(997\) 38.5016 1.21936 0.609678 0.792649i \(-0.291299\pi\)
0.609678 + 0.792649i \(0.291299\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3888.2.a.bd.1.1 3
3.2 odd 2 3888.2.a.bk.1.3 3
4.3 odd 2 243.2.a.e.1.3 3
12.11 even 2 243.2.a.f.1.1 yes 3
20.19 odd 2 6075.2.a.bv.1.1 3
36.7 odd 6 243.2.c.f.82.1 6
36.11 even 6 243.2.c.e.82.3 6
36.23 even 6 243.2.c.e.163.3 6
36.31 odd 6 243.2.c.f.163.1 6
60.59 even 2 6075.2.a.bq.1.3 3
108.7 odd 18 729.2.e.g.325.1 6
108.11 even 18 729.2.e.c.82.1 6
108.23 even 18 729.2.e.b.406.1 6
108.31 odd 18 729.2.e.g.406.1 6
108.43 odd 18 729.2.e.h.82.1 6
108.47 even 18 729.2.e.b.325.1 6
108.59 even 18 729.2.e.c.649.1 6
108.67 odd 18 729.2.e.a.163.1 6
108.79 odd 18 729.2.e.a.568.1 6
108.83 even 18 729.2.e.i.568.1 6
108.95 even 18 729.2.e.i.163.1 6
108.103 odd 18 729.2.e.h.649.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
243.2.a.e.1.3 3 4.3 odd 2
243.2.a.f.1.1 yes 3 12.11 even 2
243.2.c.e.82.3 6 36.11 even 6
243.2.c.e.163.3 6 36.23 even 6
243.2.c.f.82.1 6 36.7 odd 6
243.2.c.f.163.1 6 36.31 odd 6
729.2.e.a.163.1 6 108.67 odd 18
729.2.e.a.568.1 6 108.79 odd 18
729.2.e.b.325.1 6 108.47 even 18
729.2.e.b.406.1 6 108.23 even 18
729.2.e.c.82.1 6 108.11 even 18
729.2.e.c.649.1 6 108.59 even 18
729.2.e.g.325.1 6 108.7 odd 18
729.2.e.g.406.1 6 108.31 odd 18
729.2.e.h.82.1 6 108.43 odd 18
729.2.e.h.649.1 6 108.103 odd 18
729.2.e.i.163.1 6 108.95 even 18
729.2.e.i.568.1 6 108.83 even 18
3888.2.a.bd.1.1 3 1.1 even 1 trivial
3888.2.a.bk.1.3 3 3.2 odd 2
6075.2.a.bq.1.3 3 60.59 even 2
6075.2.a.bv.1.1 3 20.19 odd 2