Properties

Label 3888.2.a
Level $3888$
Weight $2$
Character orbit 3888.a
Rep. character $\chi_{3888}(1,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $39$
Sturm bound $1296$
Trace bound $29$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3888 = 2^{4} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3888.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 39 \)
Sturm bound: \(1296\)
Trace bound: \(29\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3888))\).

Total New Old
Modular forms 702 72 630
Cusp forms 595 72 523
Eisenstein series 107 0 107

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(+\)\(+\)\(+\)\(15\)
\(+\)\(-\)\(-\)\(21\)
\(-\)\(+\)\(-\)\(18\)
\(-\)\(-\)\(+\)\(18\)
Plus space\(+\)\(33\)
Minus space\(-\)\(39\)

Trace form

\( 72 q + O(q^{10}) \) \( 72 q + 72 q^{25} - 18 q^{31} - 18 q^{43} + 72 q^{49} - 18 q^{91} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3888))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
3888.2.a.a 3888.a 1.a $1$ $31.046$ \(\Q\) None 1944.2.a.a \(0\) \(0\) \(-4\) \(-3\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{5}-3q^{7}-2q^{11}-5q^{13}-2q^{17}+\cdots\)
3888.2.a.b 3888.a 1.a $1$ $31.046$ \(\Q\) None 486.2.a.a \(0\) \(0\) \(-3\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{5}-2q^{7}-4q^{13}+6q^{17}+7q^{19}+\cdots\)
3888.2.a.c 3888.a 1.a $1$ $31.046$ \(\Q\) None 486.2.a.c \(0\) \(0\) \(-3\) \(4\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{5}+4q^{7}+6q^{11}+2q^{13}+q^{19}+\cdots\)
3888.2.a.d 3888.a 1.a $1$ $31.046$ \(\Q\) None 1944.2.a.d \(0\) \(0\) \(-2\) \(-3\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}-3q^{7}+2q^{11}+q^{13}-4q^{17}+\cdots\)
3888.2.a.e 3888.a 1.a $1$ $31.046$ \(\Q\) None 1944.2.a.c \(0\) \(0\) \(-2\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}+2q^{11}+q^{13}+2q^{17}-5q^{19}+\cdots\)
3888.2.a.f 3888.a 1.a $1$ $31.046$ \(\Q\) None 1944.2.a.b \(0\) \(0\) \(-2\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{5}+3q^{7}+2q^{11}+q^{13}+8q^{17}+\cdots\)
3888.2.a.g 3888.a 1.a $1$ $31.046$ \(\Q\) None 1944.2.a.e \(0\) \(0\) \(-1\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-2q^{11}-2q^{13}+4q^{17}+q^{19}+\cdots\)
3888.2.a.h 3888.a 1.a $1$ $31.046$ \(\Q\) \(\Q(\sqrt{-3}) \) 243.2.a.b \(0\) \(0\) \(0\) \(-5\) $-$ $+$ $N(\mathrm{U}(1))$ \(q-5q^{7}+2q^{13}-8q^{19}-5q^{25}+7q^{31}+\cdots\)
3888.2.a.i 3888.a 1.a $1$ $31.046$ \(\Q\) \(\Q(\sqrt{-3}) \) 972.2.a.d \(0\) \(0\) \(0\) \(-5\) $-$ $-$ $N(\mathrm{U}(1))$ \(q-5q^{7}+5q^{13}+7q^{19}-5q^{25}-11q^{31}+\cdots\)
3888.2.a.j 3888.a 1.a $1$ $31.046$ \(\Q\) None 486.2.a.b \(0\) \(0\) \(0\) \(1\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{7}-6q^{11}-q^{13}+6q^{17}-5q^{19}+\cdots\)
3888.2.a.k 3888.a 1.a $1$ $31.046$ \(\Q\) \(\Q(\sqrt{-3}) \) 972.2.a.b \(0\) \(0\) \(0\) \(1\) $-$ $+$ $N(\mathrm{U}(1))$ \(q+q^{7}-7q^{13}+q^{19}-5q^{25}+7q^{31}+\cdots\)
3888.2.a.l 3888.a 1.a $1$ $31.046$ \(\Q\) \(\Q(\sqrt{-3}) \) 972.2.a.c \(0\) \(0\) \(0\) \(1\) $-$ $-$ $N(\mathrm{U}(1))$ \(q+q^{7}+2q^{13}-8q^{19}-5q^{25}-11q^{31}+\cdots\)
3888.2.a.m 3888.a 1.a $1$ $31.046$ \(\Q\) None 486.2.a.b \(0\) \(0\) \(0\) \(1\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{7}+6q^{11}-q^{13}-6q^{17}-5q^{19}+\cdots\)
3888.2.a.n 3888.a 1.a $1$ $31.046$ \(\Q\) \(\Q(\sqrt{-3}) \) 243.2.a.a \(0\) \(0\) \(0\) \(4\) $-$ $-$ $N(\mathrm{U}(1))$ \(q+4q^{7}-7q^{13}+q^{19}-5q^{25}-11q^{31}+\cdots\)
3888.2.a.o 3888.a 1.a $1$ $31.046$ \(\Q\) \(\Q(\sqrt{-3}) \) 972.2.a.a \(0\) \(0\) \(0\) \(4\) $-$ $+$ $N(\mathrm{U}(1))$ \(q+4q^{7}+5q^{13}+7q^{19}-5q^{25}+7q^{31}+\cdots\)
3888.2.a.p 3888.a 1.a $1$ $31.046$ \(\Q\) None 1944.2.a.e \(0\) \(0\) \(1\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}+2q^{11}-2q^{13}-4q^{17}+q^{19}+\cdots\)
3888.2.a.q 3888.a 1.a $1$ $31.046$ \(\Q\) None 1944.2.a.d \(0\) \(0\) \(2\) \(-3\) $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{5}-3q^{7}-2q^{11}+q^{13}+4q^{17}+\cdots\)
3888.2.a.r 3888.a 1.a $1$ $31.046$ \(\Q\) None 1944.2.a.c \(0\) \(0\) \(2\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{5}-2q^{11}+q^{13}-2q^{17}-5q^{19}+\cdots\)
3888.2.a.s 3888.a 1.a $1$ $31.046$ \(\Q\) None 1944.2.a.b \(0\) \(0\) \(2\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}+3q^{7}-2q^{11}+q^{13}-8q^{17}+\cdots\)
3888.2.a.t 3888.a 1.a $1$ $31.046$ \(\Q\) None 486.2.a.a \(0\) \(0\) \(3\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{5}-2q^{7}-4q^{13}-6q^{17}+7q^{19}+\cdots\)
3888.2.a.u 3888.a 1.a $1$ $31.046$ \(\Q\) None 486.2.a.c \(0\) \(0\) \(3\) \(4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{5}+4q^{7}-6q^{11}+2q^{13}+q^{19}+\cdots\)
3888.2.a.v 3888.a 1.a $1$ $31.046$ \(\Q\) None 1944.2.a.a \(0\) \(0\) \(4\) \(-3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{5}-3q^{7}+2q^{11}-5q^{13}+2q^{17}+\cdots\)
3888.2.a.w 3888.a 1.a $2$ $31.046$ \(\Q(\sqrt{3}) \) None 1944.2.a.k \(0\) \(0\) \(-2\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{5}-2\beta q^{7}+(1+3\beta )q^{11}+\cdots\)
3888.2.a.x 3888.a 1.a $2$ $31.046$ \(\Q(\sqrt{33}) \) None 1944.2.a.l \(0\) \(0\) \(-1\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{5}+(1+\beta )q^{7}-4q^{11}+(2-2\beta )q^{13}+\cdots\)
3888.2.a.y 3888.a 1.a $2$ $31.046$ \(\Q(\sqrt{2}) \) None 972.2.a.e \(0\) \(0\) \(0\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{5}-2q^{7}-\beta q^{11}-q^{13}-\beta q^{17}+\cdots\)
3888.2.a.z 3888.a 1.a $2$ $31.046$ \(\Q(\sqrt{6}) \) None 243.2.a.d \(0\) \(0\) \(0\) \(-4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{5}-2q^{7}+\beta q^{11}-q^{13}+3\beta q^{17}+\cdots\)
3888.2.a.ba 3888.a 1.a $2$ $31.046$ \(\Q(\sqrt{3}) \) None 243.2.a.c \(0\) \(0\) \(0\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+q^{7}+\beta q^{11}+5q^{13}+q^{19}+\cdots\)
3888.2.a.bb 3888.a 1.a $2$ $31.046$ \(\Q(\sqrt{33}) \) None 1944.2.a.l \(0\) \(0\) \(1\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+(1+\beta )q^{7}+4q^{11}+(2-2\beta )q^{13}+\cdots\)
3888.2.a.bc 3888.a 1.a $2$ $31.046$ \(\Q(\sqrt{3}) \) None 1944.2.a.k \(0\) \(0\) \(2\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{5}+2\beta q^{7}+(-1+3\beta )q^{11}+\cdots\)
3888.2.a.bd 3888.a 1.a $3$ $31.046$ \(\Q(\zeta_{18})^+\) None 243.2.a.e \(0\) \(0\) \(-6\) \(3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{5}+(1-\beta _{1}+2\beta _{2})q^{7}+\cdots\)
3888.2.a.be 3888.a 1.a $3$ $31.046$ \(\Q(\zeta_{18})^+\) None 486.2.a.g \(0\) \(0\) \(0\) \(-6\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{5}+(-2-\beta _{2})q^{7}+(-\beta _{1}+\beta _{2})q^{11}+\cdots\)
3888.2.a.bf 3888.a 1.a $3$ $31.046$ \(\Q(\zeta_{18})^+\) None 486.2.a.g \(0\) \(0\) \(0\) \(-6\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{5}+(-2-\beta _{1}+\beta _{2})q^{7}-\beta _{1}q^{11}+\cdots\)
3888.2.a.bg 3888.a 1.a $3$ $31.046$ \(\Q(\zeta_{18})^+\) None 972.2.a.f \(0\) \(0\) \(0\) \(3\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{5}+(1+\beta _{1})q^{7}+(-3-\beta _{1}+\beta _{2})q^{11}+\cdots\)
3888.2.a.bh 3888.a 1.a $3$ $31.046$ \(\Q(\zeta_{18})^+\) None 1944.2.a.o \(0\) \(0\) \(0\) \(3\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{5}+(1-\beta _{1})q^{7}+(-1+2\beta _{1}+\cdots)q^{11}+\cdots\)
3888.2.a.bi 3888.a 1.a $3$ $31.046$ \(\Q(\zeta_{18})^+\) None 1944.2.a.o \(0\) \(0\) \(0\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{5}+(1-\beta _{1})q^{7}+(1-2\beta _{1}+\beta _{2})q^{11}+\cdots\)
3888.2.a.bj 3888.a 1.a $3$ $31.046$ \(\Q(\zeta_{18})^+\) None 972.2.a.f \(0\) \(0\) \(0\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{5}+(1-\beta _{2})q^{7}+(3-\beta _{1})q^{11}+\cdots\)
3888.2.a.bk 3888.a 1.a $3$ $31.046$ \(\Q(\zeta_{18})^+\) None 243.2.a.e \(0\) \(0\) \(6\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(2+\beta _{1})q^{5}+(1-\beta _{1}+2\beta _{2})q^{7}+(-1+\cdots)q^{11}+\cdots\)
3888.2.a.bl 3888.a 1.a $6$ $31.046$ 6.6.9926793.1 None 1944.2.a.q \(0\) \(0\) \(0\) \(-3\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{5}+(-1+\beta _{4})q^{7}+(-\beta _{1}-\beta _{3}+\cdots)q^{11}+\cdots\)
3888.2.a.bm 3888.a 1.a $6$ $31.046$ 6.6.9926793.1 None 1944.2.a.q \(0\) \(0\) \(0\) \(-3\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{5}+(-1+\beta _{4})q^{7}+(\beta _{1}+\beta _{3}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3888))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(3888)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(216))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(243))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(324))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(432))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(486))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(648))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(972))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1296))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1944))\)\(^{\oplus 2}\)