Properties

Label 3888.1.o
Level $3888$
Weight $1$
Character orbit 3888.o
Rep. character $\chi_{3888}(1135,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $12$
Newform subspaces $6$
Sturm bound $648$
Trace bound $31$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3888 = 2^{4} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3888.o (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 36 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 6 \)
Sturm bound: \(648\)
Trace bound: \(31\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3888, [\chi])\).

Total New Old
Modular forms 164 12 152
Cusp forms 56 12 44
Eisenstein series 108 0 108

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 12 0 0 0

Trace form

\( 12 q + 6 q^{25} + 6 q^{49}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3888, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3888.1.o.a 3888.o 36.f $2$ $1.940$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-3}) \) None 3888.1.g.b \(0\) \(0\) \(0\) \(-3\) \(q+(-1+\zeta_{6}^{2})q^{7}+\zeta_{6}^{2}q^{13}+(-\zeta_{6}+\cdots)q^{19}+\cdots\)
3888.1.o.b 3888.o 36.f $2$ $1.940$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-3}) \) None 3888.1.g.a \(0\) \(0\) \(0\) \(-3\) \(q+(-1+\zeta_{6}^{2})q^{7}-\zeta_{6}^{2}q^{13}+\zeta_{6}q^{25}+\cdots\)
3888.1.o.c 3888.o 36.f $2$ $1.940$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-3}) \) None 3888.1.g.c \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{6}^{2}q^{13}+(\zeta_{6}+\zeta_{6}^{2})q^{19}+\zeta_{6}q^{25}+\cdots\)
3888.1.o.d 3888.o 36.f $2$ $1.940$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-3}) \) None 3888.1.g.c \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{6}^{2}q^{13}+(-\zeta_{6}-\zeta_{6}^{2})q^{19}+\zeta_{6}q^{25}+\cdots\)
3888.1.o.e 3888.o 36.f $2$ $1.940$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-3}) \) None 3888.1.g.b \(0\) \(0\) \(0\) \(3\) \(q+(1-\zeta_{6}^{2})q^{7}+\zeta_{6}^{2}q^{13}+(\zeta_{6}+\zeta_{6}^{2}+\cdots)q^{19}+\cdots\)
3888.1.o.f 3888.o 36.f $2$ $1.940$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-3}) \) None 3888.1.g.a \(0\) \(0\) \(0\) \(3\) \(q+(1-\zeta_{6}^{2})q^{7}-\zeta_{6}^{2}q^{13}+\zeta_{6}q^{25}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3888, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3888, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(324, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1296, [\chi])\)\(^{\oplus 2}\)