Properties

Label 3888.1.e.b
Level $3888$
Weight $1$
Character orbit 3888.e
Self dual yes
Analytic conductor $1.940$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3888 = 2^{4} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3888.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.243.1
Artin image: $D_6$
Artin field: Galois closure of 6.0.3779136.2

$q$-expansion

\(f(q)\) \(=\) \( q + q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{7} - q^{13} + q^{19} + q^{25} + q^{31} - q^{37} + q^{43} + 2 q^{61} - 2 q^{67} + 2 q^{73} + q^{79} - q^{91} - q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3888\mathbb{Z}\right)^\times\).

\(n\) \(1217\) \(2431\) \(2917\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1457.1
0
0 0 0 0 0 1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3888.1.e.b 1
3.b odd 2 1 CM 3888.1.e.b 1
4.b odd 2 1 243.1.b.a 1
9.c even 3 2 3888.1.q.b 2
9.d odd 6 2 3888.1.q.b 2
12.b even 2 1 243.1.b.a 1
36.f odd 6 2 243.1.d.a 2
36.h even 6 2 243.1.d.a 2
108.j odd 18 6 729.1.f.a 6
108.l even 18 6 729.1.f.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
243.1.b.a 1 4.b odd 2 1
243.1.b.a 1 12.b even 2 1
243.1.d.a 2 36.f odd 6 2
243.1.d.a 2 36.h even 6 2
729.1.f.a 6 108.j odd 18 6
729.1.f.a 6 108.l even 18 6
3888.1.e.b 1 1.a even 1 1 trivial
3888.1.e.b 1 3.b odd 2 1 CM
3888.1.q.b 2 9.c even 3 2
3888.1.q.b 2 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3888, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7} - 1 \) Copy content Toggle raw display
\( T_{13} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T - 1 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 1 \) Copy content Toggle raw display
$37$ \( T + 1 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T - 1 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T + 2 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T - 1 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T + 1 \) Copy content Toggle raw display
show more
show less