Properties

Label 3872.1.r.a
Level $3872$
Weight $1$
Character orbit 3872.r
Analytic conductor $1.932$
Analytic rank $0$
Dimension $8$
Projective image $D_{4}$
CM discriminant -4
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3872,1,Mod(161,3872)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3872.161"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3872, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 7])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3872 = 2^{5} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3872.r (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.93237972891\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.64000000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.21296.1
Artin image: $C_5\times \SD_{16}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{40} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{6} q^{9} - \beta_1 q^{13} + ( - \beta_{7} + \beta_{5} + \cdots + \beta_1) q^{17} + ( - \beta_{6} + \beta_{4} - \beta_{2} + 1) q^{25} - \beta_{7} q^{29} + 2 \beta_{2} q^{37} + \beta_{3} q^{41}+ \cdots + 2 q^{89}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{9} + 2 q^{25} + 4 q^{37} - 2 q^{49} + 4 q^{53} - 2 q^{81} + 16 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{4} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{5} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 8\beta_{6} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 8\beta_{7} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3872\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(1695\) \(2785\)
\(\chi(n)\) \(1\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
161.1
0.831254 1.14412i
−0.831254 + 1.14412i
0.831254 + 1.14412i
−0.831254 1.14412i
1.34500 + 0.437016i
−1.34500 0.437016i
1.34500 0.437016i
−1.34500 + 0.437016i
0 0 0 0 0 0 0 0.809017 + 0.587785i 0
161.2 0 0 0 0 0 0 0 0.809017 + 0.587785i 0
481.1 0 0 0 0 0 0 0 0.809017 0.587785i 0
481.2 0 0 0 0 0 0 0 0.809017 0.587785i 0
3137.1 0 0 0 0 0 0 0 −0.309017 + 0.951057i 0
3137.2 0 0 0 0 0 0 0 −0.309017 + 0.951057i 0
3361.1 0 0 0 0 0 0 0 −0.309017 0.951057i 0
3361.2 0 0 0 0 0 0 0 −0.309017 0.951057i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 161.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
11.b odd 2 1 inner
11.c even 5 3 inner
11.d odd 10 3 inner
44.c even 2 1 inner
44.g even 10 3 inner
44.h odd 10 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3872.1.r.a 8
4.b odd 2 1 CM 3872.1.r.a 8
11.b odd 2 1 inner 3872.1.r.a 8
11.c even 5 1 3872.1.h.a 2
11.c even 5 3 inner 3872.1.r.a 8
11.d odd 10 1 3872.1.h.a 2
11.d odd 10 3 inner 3872.1.r.a 8
44.c even 2 1 inner 3872.1.r.a 8
44.g even 10 1 3872.1.h.a 2
44.g even 10 3 inner 3872.1.r.a 8
44.h odd 10 1 3872.1.h.a 2
44.h odd 10 3 inner 3872.1.r.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3872.1.h.a 2 11.c even 5 1
3872.1.h.a 2 11.d odd 10 1
3872.1.h.a 2 44.g even 10 1
3872.1.h.a 2 44.h odd 10 1
3872.1.r.a 8 1.a even 1 1 trivial
3872.1.r.a 8 4.b odd 2 1 CM
3872.1.r.a 8 11.b odd 2 1 inner
3872.1.r.a 8 11.c even 5 3 inner
3872.1.r.a 8 11.d odd 10 3 inner
3872.1.r.a 8 44.c even 2 1 inner
3872.1.r.a 8 44.g even 10 3 inner
3872.1.r.a 8 44.h odd 10 3 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} \) acting on \(S_{1}^{\mathrm{new}}(3872, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} - 2 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$17$ \( T^{8} - 2 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} - 2 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( (T^{4} - 2 T^{3} + 4 T^{2} + \cdots + 16)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} - 2 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( (T^{4} - 2 T^{3} + 4 T^{2} + \cdots + 16)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} - 2 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} - 2 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( (T - 2)^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less