Properties

Label 3871.1.m.b.1500.1
Level $3871$
Weight $1$
Character 3871.1500
Analytic conductor $1.932$
Analytic rank $0$
Dimension $4$
Projective image $D_{5}$
CM discriminant -79
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3871,1,Mod(1500,3871)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3871, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3871.1500");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3871 = 7^{2} \cdot 79 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3871.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.93188066390\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 79)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.6241.1
Artin image: $C_6\times D_5$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{30} - \cdots)\)

Embedding invariants

Embedding label 1500.1
Root \(-0.309017 - 0.535233i\) of defining polynomial
Character \(\chi\) \(=\) 3871.1500
Dual form 3871.1.m.b.3791.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.535233i) q^{2} +(0.309017 + 0.535233i) q^{4} +(-0.809017 + 1.40126i) q^{5} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.309017 + 0.535233i) q^{2} +(0.309017 + 0.535233i) q^{4} +(-0.809017 + 1.40126i) q^{5} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.500000 - 0.866025i) q^{10} +(-0.309017 - 0.535233i) q^{11} -0.618034 q^{13} +(-0.309017 - 0.535233i) q^{18} +(-0.809017 + 1.40126i) q^{19} -1.00000 q^{20} +0.381966 q^{22} +(0.809017 - 1.40126i) q^{23} +(-0.809017 - 1.40126i) q^{25} +(0.190983 - 0.330792i) q^{26} +(0.309017 + 0.535233i) q^{31} +(-0.500000 - 0.866025i) q^{32} -0.618034 q^{36} +(-0.500000 - 0.866025i) q^{38} +(0.809017 - 1.40126i) q^{40} +(0.190983 - 0.330792i) q^{44} +(-0.809017 - 1.40126i) q^{45} +(0.500000 + 0.866025i) q^{46} +1.00000 q^{50} +(-0.190983 - 0.330792i) q^{52} +1.00000 q^{55} -0.381966 q^{62} +0.618034 q^{64} +(0.500000 - 0.866025i) q^{65} +(0.809017 + 1.40126i) q^{67} +(0.500000 - 0.866025i) q^{72} +(-0.809017 - 1.40126i) q^{73} -1.00000 q^{76} +(-0.500000 + 0.866025i) q^{79} +(-0.500000 - 0.866025i) q^{81} -2.00000 q^{83} +(0.309017 + 0.535233i) q^{88} +(0.309017 - 0.535233i) q^{89} +1.00000 q^{90} +1.00000 q^{92} +(-1.30902 - 2.26728i) q^{95} +1.61803 q^{97} +0.618034 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - q^{4} - q^{5} - 4 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + q^{2} - q^{4} - q^{5} - 4 q^{8} - 2 q^{9} - 2 q^{10} + q^{11} + 2 q^{13} + q^{18} - q^{19} - 4 q^{20} + 6 q^{22} + q^{23} - q^{25} + 3 q^{26} - q^{31} - 2 q^{32} + 2 q^{36} - 2 q^{38} + q^{40} + 3 q^{44} - q^{45} + 2 q^{46} + 4 q^{50} - 3 q^{52} + 4 q^{55} - 6 q^{62} - 2 q^{64} + 2 q^{65} + q^{67} + 2 q^{72} - q^{73} - 4 q^{76} - 2 q^{79} - 2 q^{81} - 8 q^{83} - q^{88} - q^{89} + 4 q^{90} + 4 q^{92} - 3 q^{95} + 2 q^{97} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3871\mathbb{Z}\right)^\times\).

\(n\) \(1030\) \(2845\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(3\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(4\) 0.309017 + 0.535233i 0.309017 + 0.535233i
\(5\) −0.809017 + 1.40126i −0.809017 + 1.40126i 0.104528 + 0.994522i \(0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −1.00000
\(9\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(10\) −0.500000 0.866025i −0.500000 0.866025i
\(11\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(12\) 0 0
\(13\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) −0.309017 0.535233i −0.309017 0.535233i
\(19\) −0.809017 + 1.40126i −0.809017 + 1.40126i 0.104528 + 0.994522i \(0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(20\) −1.00000 −1.00000
\(21\) 0 0
\(22\) 0.381966 0.381966
\(23\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(24\) 0 0
\(25\) −0.809017 1.40126i −0.809017 1.40126i
\(26\) 0.190983 0.330792i 0.190983 0.330792i
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0.309017 + 0.535233i 0.309017 + 0.535233i 0.978148 0.207912i \(-0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(32\) −0.500000 0.866025i −0.500000 0.866025i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −0.618034 −0.618034
\(37\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) −0.500000 0.866025i −0.500000 0.866025i
\(39\) 0 0
\(40\) 0.809017 1.40126i 0.809017 1.40126i
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0.190983 0.330792i 0.190983 0.330792i
\(45\) −0.809017 1.40126i −0.809017 1.40126i
\(46\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.00000 1.00000
\(51\) 0 0
\(52\) −0.190983 0.330792i −0.190983 0.330792i
\(53\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(54\) 0 0
\(55\) 1.00000 1.00000
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(60\) 0 0
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) −0.381966 −0.381966
\(63\) 0 0
\(64\) 0.618034 0.618034
\(65\) 0.500000 0.866025i 0.500000 0.866025i
\(66\) 0 0
\(67\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0.500000 0.866025i 0.500000 0.866025i
\(73\) −0.809017 1.40126i −0.809017 1.40126i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 0.994522i \(-0.466667\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −1.00000 −1.00000
\(77\) 0 0
\(78\) 0 0
\(79\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.500000 0.866025i
\(82\) 0 0
\(83\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0.309017 + 0.535233i 0.309017 + 0.535233i
\(89\) 0.309017 0.535233i 0.309017 0.535233i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(90\) 1.00000 1.00000
\(91\) 0 0
\(92\) 1.00000 1.00000
\(93\) 0 0
\(94\) 0 0
\(95\) −1.30902 2.26728i −1.30902 2.26728i
\(96\) 0 0
\(97\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(98\) 0 0
\(99\) 0.618034 0.618034
\(100\) 0.500000 0.866025i 0.500000 0.866025i
\(101\) 0.309017 + 0.535233i 0.309017 + 0.535233i 0.978148 0.207912i \(-0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(102\) 0 0
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 0.618034 0.618034
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 0 0
\(109\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(110\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 1.30902 + 2.26728i 1.30902 + 2.26728i
\(116\) 0 0
\(117\) 0.309017 0.535233i 0.309017 0.535233i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.309017 0.535233i 0.309017 0.535233i
\(122\) 0 0
\(123\) 0 0
\(124\) −0.190983 + 0.330792i −0.190983 + 0.330792i
\(125\) 1.00000 1.00000
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0.309017 0.535233i 0.309017 0.535233i
\(129\) 0 0
\(130\) 0.309017 + 0.535233i 0.309017 + 0.535233i
\(131\) −0.809017 + 1.40126i −0.809017 + 1.40126i 0.104528 + 0.994522i \(0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1.00000 −1.00000
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.190983 + 0.330792i 0.190983 + 0.330792i
\(144\) 0 0
\(145\) 0 0
\(146\) 1.00000 1.00000
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(150\) 0 0
\(151\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(152\) 0.809017 1.40126i 0.809017 1.40126i
\(153\) 0 0
\(154\) 0 0
\(155\) −1.00000 −1.00000
\(156\) 0 0
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) −0.309017 0.535233i −0.309017 0.535233i
\(159\) 0 0
\(160\) 1.61803 1.61803
\(161\) 0 0
\(162\) 0.618034 0.618034
\(163\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.618034 1.07047i 0.618034 1.07047i
\(167\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(168\) 0 0
\(169\) −0.618034 −0.618034
\(170\) 0 0
\(171\) −0.809017 1.40126i −0.809017 1.40126i
\(172\) 0 0
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0.190983 + 0.330792i 0.190983 + 0.330792i
\(179\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(180\) 0.500000 0.866025i 0.500000 0.866025i
\(181\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.809017 + 1.40126i −0.809017 + 1.40126i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 1.61803 1.61803
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −0.190983 + 0.330792i −0.190983 + 0.330792i
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(201\) 0 0
\(202\) −0.381966 −0.381966
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(208\) 0 0
\(209\) 1.00000 1.00000
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0.309017 + 0.535233i 0.309017 + 0.535233i
\(221\) 0 0
\(222\) 0 0
\(223\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 1.61803 1.61803
\(226\) 0 0
\(227\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(228\) 0 0
\(229\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(230\) −1.61803 −1.61803
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(234\) 0.190983 + 0.330792i 0.190983 + 0.330792i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(240\) 0 0
\(241\) 0.309017 + 0.535233i 0.309017 + 0.535233i 0.978148 0.207912i \(-0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(242\) 0.190983 + 0.330792i 0.190983 + 0.330792i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.500000 0.866025i 0.500000 0.866025i
\(248\) −0.309017 0.535233i −0.309017 0.535233i
\(249\) 0 0
\(250\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) −1.00000 −1.00000
\(254\) 0 0
\(255\) 0 0
\(256\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(257\) 0.309017 0.535233i 0.309017 0.535233i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.618034 0.618034
\(261\) 0 0
\(262\) −0.500000 0.866025i −0.500000 0.866025i
\(263\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(269\) −0.809017 1.40126i −0.809017 1.40126i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 0.994522i \(-0.466667\pi\)
\(270\) 0 0
\(271\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(276\) 0 0
\(277\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(278\) 0 0
\(279\) −0.618034 −0.618034
\(280\) 0 0
\(281\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(282\) 0 0
\(283\) 0.309017 + 0.535233i 0.309017 + 0.535233i 0.978148 0.207912i \(-0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −0.236068 −0.236068
\(287\) 0 0
\(288\) 1.00000 1.00000
\(289\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0.500000 0.866025i 0.500000 0.866025i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(300\) 0 0
\(301\) 0 0
\(302\) −1.00000 −1.00000
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0.309017 0.535233i 0.309017 0.535233i
\(311\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) 0 0
\(313\) 0.309017 0.535233i 0.309017 0.535233i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.618034 −0.618034
\(317\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.309017 0.535233i 0.309017 0.535233i
\(325\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(326\) −0.190983 0.330792i −0.190983 0.330792i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) −0.618034 1.07047i −0.618034 1.07047i
\(333\) 0 0
\(334\) 0.190983 0.330792i 0.190983 0.330792i
\(335\) −2.61803 −2.61803
\(336\) 0 0
\(337\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(338\) 0.190983 0.330792i 0.190983 0.330792i
\(339\) 0 0
\(340\) 0 0
\(341\) 0.190983 0.330792i 0.190983 0.330792i
\(342\) 1.00000 1.00000
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(353\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0.381966 0.381966
\(357\) 0 0
\(358\) 1.23607 1.23607
\(359\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(360\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(361\) −0.809017 1.40126i −0.809017 1.40126i
\(362\) 0.190983 0.330792i 0.190983 0.330792i
\(363\) 0 0
\(364\) 0 0
\(365\) 2.61803 2.61803
\(366\) 0 0
\(367\) 0.309017 + 0.535233i 0.309017 + 0.535233i 0.978148 0.207912i \(-0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0.809017 1.40126i 0.809017 1.40126i
\(381\) 0 0
\(382\) 0 0
\(383\) 0.309017 0.535233i 0.309017 0.535233i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(389\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.809017 1.40126i −0.809017 1.40126i
\(396\) 0.190983 + 0.330792i 0.190983 + 0.330792i
\(397\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) 0 0
\(403\) −0.190983 0.330792i −0.190983 0.330792i
\(404\) −0.190983 + 0.330792i −0.190983 + 0.330792i
\(405\) 1.61803 1.61803
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −1.00000 −1.00000
\(415\) 1.61803 2.80252i 1.61803 2.80252i
\(416\) 0.309017 + 0.535233i 0.309017 + 0.535233i
\(417\) 0 0
\(418\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(432\) 0 0
\(433\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.30902 + 2.26728i 1.30902 + 2.26728i
\(438\) 0 0
\(439\) −0.809017 + 1.40126i −0.809017 + 1.40126i 0.104528 + 0.994522i \(0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(440\) −1.00000 −1.00000
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) 0 0
\(445\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(446\) 0.618034 1.07047i 0.618034 1.07047i
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −0.809017 + 1.40126i −0.809017 + 1.40126i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.309017 0.535233i 0.309017 0.535233i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(468\) 0.381966 0.381966
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 2.61803 2.61803
\(476\) 0 0
\(477\) 0 0
\(478\) 0.500000 0.866025i 0.500000 0.866025i
\(479\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.381966 −0.381966
\(483\) 0 0
\(484\) 0.381966 0.381966
\(485\) −1.30902 + 2.26728i −1.30902 + 2.26728i
\(486\) 0 0
\(487\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0.309017 + 0.535233i 0.309017 + 0.535233i
\(495\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(500\) 0.309017 + 0.535233i 0.309017 + 0.535233i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) −1.00000 −1.00000
\(506\) 0.309017 0.535233i 0.309017 0.535233i
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0.190983 + 0.330792i 0.190983 + 0.330792i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) 0.309017 0.535233i 0.309017 0.535233i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(524\) −1.00000 −1.00000
\(525\) 0 0
\(526\) 0.381966 0.381966
\(527\) 0 0
\(528\) 0 0
\(529\) −0.809017 1.40126i −0.809017 1.40126i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −0.809017 1.40126i −0.809017 1.40126i
\(537\) 0 0
\(538\) 1.00000 1.00000
\(539\) 0 0
\(540\) 0 0
\(541\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −0.309017 0.535233i −0.309017 0.535233i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −1.00000 −1.00000
\(555\) 0 0
\(556\) 0 0
\(557\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(558\) 0.190983 0.330792i 0.190983 0.330792i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0.500000 0.866025i 0.500000 0.866025i
\(563\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.381966 −0.381966
\(567\) 0 0
\(568\) 0 0
\(569\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(570\) 0 0
\(571\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(572\) −0.118034 + 0.204441i −0.118034 + 0.204441i
\(573\) 0 0
\(574\) 0 0
\(575\) −2.61803 −2.61803
\(576\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(577\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) −0.309017 0.535233i −0.309017 0.535233i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(585\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) −1.00000 −1.00000
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.809017 + 1.40126i −0.809017 + 1.40126i 0.104528 + 0.994522i \(0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −0.309017 0.535233i −0.309017 0.535233i
\(599\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) −1.61803 −1.61803
\(604\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(605\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(606\) 0 0
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) 1.61803 1.61803
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(618\) 0 0
\(619\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(620\) −0.309017 0.535233i −0.309017 0.535233i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0.190983 + 0.330792i 0.190983 + 0.330792i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0.500000 0.866025i 0.500000 0.866025i
\(633\) 0 0
\(634\) −0.618034 1.07047i −0.618034 1.07047i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(641\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(642\) 0 0
\(643\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(648\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(649\) 0 0
\(650\) −0.618034 −0.618034
\(651\) 0 0
\(652\) −0.381966 −0.381966
\(653\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(654\) 0 0
\(655\) −1.30902 2.26728i −1.30902 2.26728i
\(656\) 0 0
\(657\) 1.61803 1.61803
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 2.00000 2.00000
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −0.190983 0.330792i −0.190983 0.330792i
\(669\) 0 0
\(670\) 0.809017 1.40126i 0.809017 1.40126i
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0.500000 0.866025i 0.500000 0.866025i
\(675\) 0 0
\(676\) −0.190983 0.330792i −0.190983 0.330792i
\(677\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0.118034 + 0.204441i 0.118034 + 0.204441i
\(683\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(684\) 0.500000 0.866025i 0.500000 0.866025i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1.00000 −1.00000
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.190983 0.330792i −0.190983 0.330792i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) −0.500000 0.866025i −0.500000 0.866025i
\(712\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(713\) 1.00000 1.00000
\(714\) 0 0
\(715\) −0.618034 −0.618034
\(716\) 0.618034 1.07047i 0.618034 1.07047i
\(717\) 0 0
\(718\) 0 0
\(719\) 0.309017 0.535233i 0.309017 0.535233i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.00000 1.00000
\(723\) 0 0
\(724\) −0.190983 0.330792i −0.190983 0.330792i
\(725\) 0 0
\(726\) 0 0
\(727\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) −0.809017 + 1.40126i −0.809017 + 1.40126i
\(731\) 0 0
\(732\) 0 0
\(733\) −0.809017 + 1.40126i −0.809017 + 1.40126i 0.104528 + 0.994522i \(0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(734\) −0.381966 −0.381966
\(735\) 0 0
\(736\) −1.61803 −1.61803
\(737\) 0.500000 0.866025i 0.500000 0.866025i
\(738\) 0 0
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.00000 1.73205i 1.00000 1.73205i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.61803 −2.61803
\(756\) 0 0
\(757\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(758\) 0 0
\(759\) 0 0
\(760\) 1.30902 + 2.26728i 1.30902 + 2.26728i
\(761\) −0.809017 + 1.40126i −0.809017 + 1.40126i 0.104528 + 0.994522i \(0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0.190983 + 0.330792i 0.190983 + 0.330792i
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.809017 1.40126i −0.809017 1.40126i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 0.994522i \(-0.466667\pi\)
\(774\) 0 0
\(775\) 0.500000 0.866025i 0.500000 0.866025i
\(776\) −1.61803 −1.61803
\(777\) 0 0
\(778\) 0.381966 0.381966
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −0.809017 1.40126i −0.809017 1.40126i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 0.994522i \(-0.466667\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 1.00000 1.00000
\(791\) 0 0
\(792\) −0.618034 −0.618034
\(793\) 0 0
\(794\) 0.618034 + 1.07047i 0.618034 + 1.07047i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0