Properties

Label 3871.1.c.c
Level $3871$
Weight $1$
Character orbit 3871.c
Self dual yes
Analytic conductor $1.932$
Analytic rank $0$
Dimension $2$
Projective image $D_{5}$
CM discriminant -79
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3871,1,Mod(2843,3871)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3871.2843"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3871, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3871 = 7^{2} \cdot 79 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3871.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.93188066390\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 79)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.6241.1
Artin image: $D_{10}$
Artin field: Galois closure of 10.0.654634011367.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + \beta q^{4} + ( - \beta + 1) q^{5} - q^{8} + q^{9} + q^{10} - \beta q^{11} + \beta q^{13} - \beta q^{18} + ( - \beta + 1) q^{19} - q^{20} + (\beta + 1) q^{22} + (\beta - 1) q^{23} + \cdots - \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + q^{4} + q^{5} - 2 q^{8} + 2 q^{9} + 2 q^{10} - q^{11} + q^{13} - q^{18} + q^{19} - 2 q^{20} + 3 q^{22} - q^{23} + q^{25} - 3 q^{26} + q^{31} + 2 q^{32} + q^{36} + 2 q^{38} - q^{40}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3871\mathbb{Z}\right)^\times\).

\(n\) \(1030\) \(2845\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2843.1
1.61803
−0.618034
−1.61803 0 1.61803 −0.618034 0 0 −1.00000 1.00000 1.00000
2843.2 0.618034 0 −0.618034 1.61803 0 0 −1.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
79.b odd 2 1 CM by \(\Q(\sqrt{-79}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3871.1.c.c 2
7.b odd 2 1 79.1.b.a 2
7.c even 3 2 3871.1.m.b 4
7.d odd 6 2 3871.1.m.c 4
21.c even 2 1 711.1.d.b 2
28.d even 2 1 1264.1.e.a 2
35.c odd 2 1 1975.1.d.c 2
35.f even 4 2 1975.1.c.a 4
79.b odd 2 1 CM 3871.1.c.c 2
553.d even 2 1 79.1.b.a 2
553.l even 6 2 3871.1.m.c 4
553.m odd 6 2 3871.1.m.b 4
1659.d odd 2 1 711.1.d.b 2
2212.b odd 2 1 1264.1.e.a 2
2765.c even 2 1 1975.1.d.c 2
2765.p odd 4 2 1975.1.c.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
79.1.b.a 2 7.b odd 2 1
79.1.b.a 2 553.d even 2 1
711.1.d.b 2 21.c even 2 1
711.1.d.b 2 1659.d odd 2 1
1264.1.e.a 2 28.d even 2 1
1264.1.e.a 2 2212.b odd 2 1
1975.1.c.a 4 35.f even 4 2
1975.1.c.a 4 2765.p odd 4 2
1975.1.d.c 2 35.c odd 2 1
1975.1.d.c 2 2765.c even 2 1
3871.1.c.c 2 1.a even 1 1 trivial
3871.1.c.c 2 79.b odd 2 1 CM
3871.1.m.b 4 7.c even 3 2
3871.1.m.b 4 553.m odd 6 2
3871.1.m.c 4 7.d odd 6 2
3871.1.m.c 4 553.l even 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3871, [\chi])\):

\( T_{2}^{2} + T_{2} - 1 \) Copy content Toggle raw display
\( T_{5}^{2} - T_{5} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$13$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$23$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$79$ \( (T - 1)^{2} \) Copy content Toggle raw display
$83$ \( (T + 2)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$97$ \( T^{2} - T - 1 \) Copy content Toggle raw display
show more
show less