Properties

Label 3864.2.dp
Level $3864$
Weight $2$
Character orbit 3864.dp
Rep. character $\chi_{3864}(85,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $2880$
Sturm bound $1536$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3864 = 2^{3} \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3864.dp (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 184 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(1536\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3864, [\chi])\).

Total New Old
Modular forms 7760 2880 4880
Cusp forms 7600 2880 4720
Eisenstein series 160 0 160

Trace form

\( 2880 q - 4 q^{2} - 4 q^{4} - 8 q^{6} - 8 q^{7} - 4 q^{8} + 288 q^{9} + 8 q^{10} + 4 q^{14} + 16 q^{15} + 12 q^{16} + 4 q^{18} - 40 q^{20} - 40 q^{22} + 8 q^{23} + 8 q^{24} + 288 q^{25} + 40 q^{26} - 4 q^{28}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3864, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3864, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3864, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(552, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1288, [\chi])\)\(^{\oplus 2}\)