Properties

Label 3864.2.a.n
Level $3864$
Weight $2$
Character orbit 3864.a
Self dual yes
Analytic conductor $30.854$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3864 = 2^{3} \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3864.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(30.8541953410\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1229.1
Defining polynomial: \(x^{3} - x^{2} - 7 x + 6\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + \beta_{1} q^{5} + q^{7} + q^{9} +O(q^{10})\) \( q - q^{3} + \beta_{1} q^{5} + q^{7} + q^{9} + ( -1 + \beta_{1} + \beta_{2} ) q^{11} + ( -1 + \beta_{2} ) q^{13} -\beta_{1} q^{15} + ( 1 - \beta_{1} + \beta_{2} ) q^{17} + ( -3 + \beta_{1} - \beta_{2} ) q^{19} - q^{21} + q^{23} + \beta_{2} q^{25} - q^{27} + ( -1 + \beta_{1} - \beta_{2} ) q^{29} + ( 3 + \beta_{1} + \beta_{2} ) q^{31} + ( 1 - \beta_{1} - \beta_{2} ) q^{33} + \beta_{1} q^{35} + ( 3 + 3 \beta_{1} - \beta_{2} ) q^{37} + ( 1 - \beta_{2} ) q^{39} + ( 5 + \beta_{1} + \beta_{2} ) q^{41} + ( -3 + \beta_{2} ) q^{43} + \beta_{1} q^{45} + ( 6 - 4 \beta_{1} - 2 \beta_{2} ) q^{47} + q^{49} + ( -1 + \beta_{1} - \beta_{2} ) q^{51} + ( 6 - 3 \beta_{1} - 2 \beta_{2} ) q^{53} + ( 4 + \beta_{1} + 2 \beta_{2} ) q^{55} + ( 3 - \beta_{1} + \beta_{2} ) q^{57} + ( -4 + \beta_{1} - 2 \beta_{2} ) q^{59} + ( 5 + 4 \beta_{1} - \beta_{2} ) q^{61} + q^{63} + ( -1 + \beta_{1} + \beta_{2} ) q^{65} + ( -4 - \beta_{1} + 2 \beta_{2} ) q^{67} - q^{69} + ( -5 + 2 \beta_{1} - \beta_{2} ) q^{71} + ( -3 - \beta_{1} - 3 \beta_{2} ) q^{73} -\beta_{2} q^{75} + ( -1 + \beta_{1} + \beta_{2} ) q^{77} + ( -7 + \beta_{1} - \beta_{2} ) q^{79} + q^{81} + ( 1 - \beta_{1} - \beta_{2} ) q^{83} + ( -6 + 3 \beta_{1} ) q^{85} + ( 1 - \beta_{1} + \beta_{2} ) q^{87} + ( 5 + 2 \beta_{1} - \beta_{2} ) q^{89} + ( -1 + \beta_{2} ) q^{91} + ( -3 - \beta_{1} - \beta_{2} ) q^{93} + ( 6 - 5 \beta_{1} ) q^{95} + ( 7 - \beta_{1} - \beta_{2} ) q^{97} + ( -1 + \beta_{1} + \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 3q^{3} + q^{5} + 3q^{7} + 3q^{9} + O(q^{10}) \) \( 3q - 3q^{3} + q^{5} + 3q^{7} + 3q^{9} - 2q^{11} - 3q^{13} - q^{15} + 2q^{17} - 8q^{19} - 3q^{21} + 3q^{23} - 3q^{27} - 2q^{29} + 10q^{31} + 2q^{33} + q^{35} + 12q^{37} + 3q^{39} + 16q^{41} - 9q^{43} + q^{45} + 14q^{47} + 3q^{49} - 2q^{51} + 15q^{53} + 13q^{55} + 8q^{57} - 11q^{59} + 19q^{61} + 3q^{63} - 2q^{65} - 13q^{67} - 3q^{69} - 13q^{71} - 10q^{73} - 2q^{77} - 20q^{79} + 3q^{81} + 2q^{83} - 15q^{85} + 2q^{87} + 17q^{89} - 3q^{91} - 10q^{93} + 13q^{95} + 20q^{97} - 2q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - x^{2} - 7 x + 6\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 5 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 5\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.59261
0.841083
2.75153
0 −1.00000 0 −2.59261 0 1.00000 0 1.00000 0
1.2 0 −1.00000 0 0.841083 0 1.00000 0 1.00000 0
1.3 0 −1.00000 0 2.75153 0 1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(7\) \(-1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3864.2.a.n 3
4.b odd 2 1 7728.2.a.by 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3864.2.a.n 3 1.a even 1 1 trivial
7728.2.a.by 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3864))\):

\( T_{5}^{3} - T_{5}^{2} - 7 T_{5} + 6 \)
\( T_{11}^{3} + 2 T_{11}^{2} - 19 T_{11} - 36 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \)
$3$ \( ( 1 + T )^{3} \)
$5$ \( 6 - 7 T - T^{2} + T^{3} \)
$7$ \( ( -1 + T )^{3} \)
$11$ \( -36 - 19 T + 2 T^{2} + T^{3} \)
$13$ \( 6 - 11 T + 3 T^{2} + T^{3} \)
$17$ \( 18 - 21 T - 2 T^{2} + T^{3} \)
$19$ \( -44 - T + 8 T^{2} + T^{3} \)
$23$ \( ( -1 + T )^{3} \)
$29$ \( -18 - 21 T + 2 T^{2} + T^{3} \)
$31$ \( 8 + 13 T - 10 T^{2} + T^{3} \)
$37$ \( 554 - 35 T - 12 T^{2} + T^{3} \)
$41$ \( -66 + 65 T - 16 T^{2} + T^{3} \)
$43$ \( 4 + 13 T + 9 T^{2} + T^{3} \)
$47$ \( 1472 - 100 T - 14 T^{2} + T^{3} \)
$53$ \( 922 - 41 T - 15 T^{2} + T^{3} \)
$59$ \( -348 - 25 T + 11 T^{2} + T^{3} \)
$61$ \( 1206 - 15 T - 19 T^{2} + T^{3} \)
$67$ \( -44 - 9 T + 13 T^{2} + T^{3} \)
$71$ \( -24 + 11 T + 13 T^{2} + T^{3} \)
$73$ \( -678 - 97 T + 10 T^{2} + T^{3} \)
$79$ \( 144 + 111 T + 20 T^{2} + T^{3} \)
$83$ \( 36 - 19 T - 2 T^{2} + T^{3} \)
$89$ \( 166 + 51 T - 17 T^{2} + T^{3} \)
$97$ \( -138 + 113 T - 20 T^{2} + T^{3} \)
show more
show less