Defining parameters
Level: | \( N \) | \(=\) | \( 3864 = 2^{3} \cdot 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3864.cx (of order \(22\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3864 \) |
Character field: | \(\Q(\zeta_{22})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(768\) | ||
Trace bound: | \(14\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3864, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 160 | 160 | 0 |
Cusp forms | 80 | 80 | 0 |
Eisenstein series | 80 | 80 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 80 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3864, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3864.1.cx.a | $40$ | $1.928$ | \(\Q(\zeta_{88})\) | $D_{44}$ | \(\Q(\sqrt{-14}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{88}^{42}q^{2}-\zeta_{88}^{23}q^{3}-\zeta_{88}^{40}q^{4}+\cdots\) |
3864.1.cx.b | $40$ | $1.928$ | \(\Q(\zeta_{88})\) | $D_{44}$ | \(\Q(\sqrt{-14}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{88}^{6}q^{2}-\zeta_{88}^{11}q^{3}+\zeta_{88}^{12}q^{4}+\cdots\) |