# Properties

 Label 3856.2.a.j Level $3856$ Weight $2$ Character orbit 3856.a Self dual yes Analytic conductor $30.790$ Analytic rank $0$ Dimension $7$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3856 = 2^{4} \cdot 241$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3856.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$30.7903150194$$ Analytic rank: $$0$$ Dimension: $$7$$ Coefficient field: 7.7.31056073.1 Defining polynomial: $$x^{7} - 3 x^{6} - 3 x^{5} + 11 x^{4} + x^{3} - 9 x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 241) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{6}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\beta_{6} q^{3} + ( -1 - \beta_{1} - \beta_{2} - \beta_{6} ) q^{5} + ( 2 - \beta_{2} - \beta_{3} - \beta_{5} + \beta_{6} ) q^{7} + ( \beta_{4} - \beta_{5} ) q^{9} +O(q^{10})$$ $$q -\beta_{6} q^{3} + ( -1 - \beta_{1} - \beta_{2} - \beta_{6} ) q^{5} + ( 2 - \beta_{2} - \beta_{3} - \beta_{5} + \beta_{6} ) q^{7} + ( \beta_{4} - \beta_{5} ) q^{9} + ( 3 + \beta_{1} + \beta_{2} + 2 \beta_{4} + \beta_{5} + \beta_{6} ) q^{11} + ( 1 + \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} + \beta_{5} + \beta_{6} ) q^{13} + ( 3 - 2 \beta_{1} - 2 \beta_{2} + \beta_{3} + \beta_{4} - \beta_{5} + \beta_{6} ) q^{15} + ( 1 - \beta_{1} - 2 \beta_{2} - \beta_{3} - \beta_{4} - 3 \beta_{5} + \beta_{6} ) q^{17} + ( 3 - 2 \beta_{1} - \beta_{2} - 2 \beta_{3} + \beta_{4} + \beta_{5} ) q^{19} + ( -1 - \beta_{3} - \beta_{4} - 2 \beta_{6} ) q^{21} + ( 2 - \beta_{1} + \beta_{3} - \beta_{4} - 2 \beta_{5} - 2 \beta_{6} ) q^{23} + ( 1 + \beta_{3} + \beta_{4} - 2 \beta_{5} + \beta_{6} ) q^{25} + ( 1 - \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} + \beta_{6} ) q^{27} + ( -2 + 3 \beta_{1} + \beta_{2} + 3 \beta_{4} + 4 \beta_{5} + 2 \beta_{6} ) q^{29} + ( 3 - 2 \beta_{1} - \beta_{2} - \beta_{3} - 2 \beta_{4} - 2 \beta_{5} - \beta_{6} ) q^{31} + ( -1 + \beta_{2} + \beta_{4} + \beta_{5} - 4 \beta_{6} ) q^{33} + ( -3 - 2 \beta_{1} - \beta_{2} + \beta_{3} - 3 \beta_{4} + \beta_{5} - 4 \beta_{6} ) q^{35} + ( -2 + \beta_{1} - 3 \beta_{2} + 4 \beta_{3} - 2 \beta_{4} - 2 \beta_{6} ) q^{37} + ( 3 \beta_{1} + 2 \beta_{2} + \beta_{4} - \beta_{5} ) q^{39} + ( -2 + 3 \beta_{1} - 3 \beta_{3} - \beta_{4} + 3 \beta_{5} + \beta_{6} ) q^{41} + ( -5 + 5 \beta_{1} + 4 \beta_{3} + 3 \beta_{5} + 2 \beta_{6} ) q^{43} + ( -3 \beta_{1} + \beta_{3} + 2 \beta_{5} - 3 \beta_{6} ) q^{45} + ( 2 + 5 \beta_{1} + 2 \beta_{2} - \beta_{3} + 3 \beta_{4} + \beta_{5} + 4 \beta_{6} ) q^{47} + ( -\beta_{1} - 4 \beta_{2} + \beta_{3} - 5 \beta_{4} - 4 \beta_{5} ) q^{49} + ( -2 - \beta_{1} - 2 \beta_{3} - 2 \beta_{4} - 2 \beta_{6} ) q^{51} + ( 1 - \beta_{1} + \beta_{2} - \beta_{3} - 5 \beta_{4} - 4 \beta_{5} - \beta_{6} ) q^{53} + ( -5 - 5 \beta_{1} - 2 \beta_{2} + \beta_{3} - \beta_{4} - 6 \beta_{6} ) q^{55} + ( 2 - 2 \beta_{1} - 4 \beta_{2} + 3 \beta_{3} + \beta_{4} - 2 \beta_{5} - \beta_{6} ) q^{57} + ( 4 - 3 \beta_{2} - \beta_{3} + 2 \beta_{4} + 4 \beta_{5} ) q^{59} + ( 2 + 3 \beta_{1} + 4 \beta_{2} - \beta_{3} + 7 \beta_{4} + 5 \beta_{5} + 2 \beta_{6} ) q^{61} + ( 2 \beta_{1} + 3 \beta_{2} + 3 \beta_{3} + \beta_{4} ) q^{63} + ( -3 - 2 \beta_{1} - 2 \beta_{2} + 5 \beta_{3} - 2 \beta_{4} - \beta_{5} - \beta_{6} ) q^{65} + ( -6 - \beta_{2} - 5 \beta_{4} - 4 \beta_{5} - 5 \beta_{6} ) q^{67} + ( 3 - \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} - \beta_{5} - 4 \beta_{6} ) q^{69} + ( 8 - 4 \beta_{1} - 2 \beta_{2} - \beta_{3} - 4 \beta_{4} - 3 \beta_{5} - \beta_{6} ) q^{71} + ( -1 + \beta_{1} + 4 \beta_{2} - 2 \beta_{3} - 3 \beta_{4} + 4 \beta_{5} ) q^{73} + ( -3 - 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{5} - 5 \beta_{6} ) q^{75} + ( 4 + 2 \beta_{2} + 2 \beta_{4} - 3 \beta_{5} + 3 \beta_{6} ) q^{77} + ( 5 \beta_{1} + 3 \beta_{2} - \beta_{3} + 4 \beta_{5} ) q^{79} + ( -3 + \beta_{3} - 3 \beta_{4} + 3 \beta_{5} - \beta_{6} ) q^{81} + ( 3 + 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + \beta_{4} - \beta_{6} ) q^{83} + ( -3 + \beta_{2} - 3 \beta_{4} + 4 \beta_{5} - 4 \beta_{6} ) q^{85} + ( -1 + \beta_{1} + \beta_{3} + \beta_{4} + 2 \beta_{5} + 3 \beta_{6} ) q^{87} + ( 4 - 9 \beta_{1} - 3 \beta_{2} - 4 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} + \beta_{6} ) q^{89} + ( -1 + 7 \beta_{2} + \beta_{3} + \beta_{5} - 3 \beta_{6} ) q^{91} + ( 1 - \beta_{2} - \beta_{4} - 2 \beta_{5} - 2 \beta_{6} ) q^{93} + ( 3 - \beta_{1} - 3 \beta_{2} + 5 \beta_{3} - \beta_{4} - 5 \beta_{5} - 3 \beta_{6} ) q^{95} + ( 2 - 4 \beta_{2} + 3 \beta_{4} - 2 \beta_{5} + \beta_{6} ) q^{97} + ( 3 - 3 \beta_{1} - 3 \beta_{2} + \beta_{3} - \beta_{4} - 7 \beta_{5} - 2 \beta_{6} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$7q + 3q^{3} - 8q^{5} + 7q^{7} - 2q^{9} + O(q^{10})$$ $$7q + 3q^{3} - 8q^{5} + 7q^{7} - 2q^{9} + 18q^{11} - q^{13} + 11q^{15} - 2q^{17} + 6q^{19} - 2q^{21} + 22q^{23} + 5q^{25} - 3q^{27} - 16q^{29} + 18q^{31} + 4q^{33} - 7q^{35} + 8q^{37} + 9q^{39} - 15q^{41} - 14q^{43} + 3q^{45} + 10q^{47} + 6q^{49} - 13q^{51} + 15q^{53} - 29q^{55} + 14q^{57} + 18q^{59} + 4q^{61} + 16q^{63} - 7q^{65} - 18q^{67} + 26q^{69} + 50q^{71} - 16q^{75} + 17q^{77} + 15q^{79} - 9q^{81} + 24q^{83} - 2q^{85} - 12q^{87} - 13q^{89} + 12q^{91} + 14q^{93} + 41q^{95} + q^{97} + 20q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{7} - 3 x^{6} - 3 x^{5} + 11 x^{4} + x^{3} - 9 x^{2} + 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$\nu^{5} - 2 \nu^{4} - 4 \nu^{3} + 5 \nu^{2} + 2 \nu - 1$$ $$\beta_{3}$$ $$=$$ $$\nu^{5} - 2 \nu^{4} - 4 \nu^{3} + 4 \nu^{2} + 3 \nu + 1$$ $$\beta_{4}$$ $$=$$ $$\nu^{6} - 3 \nu^{5} - 2 \nu^{4} + 9 \nu^{3} - 3 \nu^{2} - 4 \nu + 2$$ $$\beta_{5}$$ $$=$$ $$\nu^{6} - 2 \nu^{5} - 5 \nu^{4} + 6 \nu^{3} + 7 \nu^{2} - 3 \nu - 2$$ $$\beta_{6}$$ $$=$$ $$-\nu^{6} + 3 \nu^{5} + 3 \nu^{4} - 11 \nu^{3} - \nu^{2} + 8 \nu$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$-\beta_{3} + \beta_{2} + \beta_{1} + 2$$ $$\nu^{3}$$ $$=$$ $$-\beta_{6} - \beta_{5} - \beta_{3} + 2 \beta_{2} + 4 \beta_{1} + 1$$ $$\nu^{4}$$ $$=$$ $$-\beta_{6} - 2 \beta_{5} + \beta_{4} - 6 \beta_{3} + 8 \beta_{2} + 8 \beta_{1} + 8$$ $$\nu^{5}$$ $$=$$ $$-6 \beta_{6} - 8 \beta_{5} + 2 \beta_{4} - 11 \beta_{3} + 20 \beta_{2} + 25 \beta_{1} + 11$$ $$\nu^{6}$$ $$=$$ $$-11 \beta_{6} - 19 \beta_{5} + 9 \beta_{4} - 39 \beta_{3} + 61 \beta_{2} + 62 \beta_{1} + 44$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0.369356 −1.60363 −0.911223 1.27758 1.48734 2.73684 −0.356270
0 −2.33806 0 −3.89634 0 3.68231 0 2.46654 0
1.2 0 −0.980039 0 −1.69135 0 1.30586 0 −2.03952 0
1.3 0 0.186202 0 −2.25110 0 −3.52970 0 −2.96533 0
1.4 0 0.494846 0 −1.23324 0 −1.36627 0 −2.75513 0
1.5 0 0.815004 0 0.961999 0 4.61392 0 −2.33577 0
1.6 0 2.37146 0 −2.63180 0 2.01025 0 2.62382 0
1.7 0 2.45059 0 2.74184 0 0.283608 0 3.00540 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 1.7 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$241$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3856.2.a.j 7
4.b odd 2 1 241.2.a.a 7
12.b even 2 1 2169.2.a.e 7
20.d odd 2 1 6025.2.a.f 7

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
241.2.a.a 7 4.b odd 2 1
2169.2.a.e 7 12.b even 2 1
3856.2.a.j 7 1.a even 1 1 trivial
6025.2.a.f 7 20.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3856))$$:

 $$T_{3}^{7} - 3 T_{3}^{6} - 5 T_{3}^{5} + 19 T_{3}^{4} - 4 T_{3}^{3} - 14 T_{3}^{2} + 8 T_{3} - 1$$ $$T_{5}^{7} + 8 T_{5}^{6} + 12 T_{5}^{5} - 50 T_{5}^{4} - 165 T_{5}^{3} - 93 T_{5}^{2} + 137 T_{5} + 127$$