Properties

Label 3850.2.c.d
Level $3850$
Weight $2$
Character orbit 3850.c
Analytic conductor $30.742$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3850 = 2 \cdot 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3850.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(30.7424047782\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 154)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} + 2 i q^{3} - q^{4} -2 q^{6} + i q^{7} -i q^{8} - q^{9} +O(q^{10})\) \( q + i q^{2} + 2 i q^{3} - q^{4} -2 q^{6} + i q^{7} -i q^{8} - q^{9} + q^{11} -2 i q^{12} -4 i q^{13} - q^{14} + q^{16} -i q^{18} -4 q^{19} -2 q^{21} + i q^{22} + 4 i q^{23} + 2 q^{24} + 4 q^{26} + 4 i q^{27} -i q^{28} -2 q^{29} -10 q^{31} + i q^{32} + 2 i q^{33} + q^{36} + 6 i q^{37} -4 i q^{38} + 8 q^{39} -2 i q^{42} -4 i q^{43} - q^{44} -4 q^{46} -10 i q^{47} + 2 i q^{48} - q^{49} + 4 i q^{52} -14 i q^{53} -4 q^{54} + q^{56} -8 i q^{57} -2 i q^{58} -10 q^{59} -8 q^{61} -10 i q^{62} -i q^{63} - q^{64} -2 q^{66} -8 i q^{67} -8 q^{69} -4 q^{71} + i q^{72} + 4 i q^{73} -6 q^{74} + 4 q^{76} + i q^{77} + 8 i q^{78} -16 q^{79} -11 q^{81} + 4 i q^{83} + 2 q^{84} + 4 q^{86} -4 i q^{87} -i q^{88} -10 q^{89} + 4 q^{91} -4 i q^{92} -20 i q^{93} + 10 q^{94} -2 q^{96} -6 i q^{97} -i q^{98} - q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 4 q^{6} - 2 q^{9} + O(q^{10}) \) \( 2 q - 2 q^{4} - 4 q^{6} - 2 q^{9} + 2 q^{11} - 2 q^{14} + 2 q^{16} - 8 q^{19} - 4 q^{21} + 4 q^{24} + 8 q^{26} - 4 q^{29} - 20 q^{31} + 2 q^{36} + 16 q^{39} - 2 q^{44} - 8 q^{46} - 2 q^{49} - 8 q^{54} + 2 q^{56} - 20 q^{59} - 16 q^{61} - 2 q^{64} - 4 q^{66} - 16 q^{69} - 8 q^{71} - 12 q^{74} + 8 q^{76} - 32 q^{79} - 22 q^{81} + 4 q^{84} + 8 q^{86} - 20 q^{89} + 8 q^{91} + 20 q^{94} - 4 q^{96} - 2 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3850\mathbb{Z}\right)^\times\).

\(n\) \(1751\) \(2201\) \(2927\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1849.1
1.00000i
1.00000i
1.00000i 2.00000i −1.00000 0 −2.00000 1.00000i 1.00000i −1.00000 0
1849.2 1.00000i 2.00000i −1.00000 0 −2.00000 1.00000i 1.00000i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3850.2.c.d 2
5.b even 2 1 inner 3850.2.c.d 2
5.c odd 4 1 154.2.a.b 1
5.c odd 4 1 3850.2.a.o 1
15.e even 4 1 1386.2.a.f 1
20.e even 4 1 1232.2.a.c 1
35.f even 4 1 1078.2.a.b 1
35.k even 12 2 1078.2.e.l 2
35.l odd 12 2 1078.2.e.h 2
40.i odd 4 1 4928.2.a.d 1
40.k even 4 1 4928.2.a.bf 1
55.e even 4 1 1694.2.a.i 1
105.k odd 4 1 9702.2.a.bz 1
140.j odd 4 1 8624.2.a.z 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.2.a.b 1 5.c odd 4 1
1078.2.a.b 1 35.f even 4 1
1078.2.e.h 2 35.l odd 12 2
1078.2.e.l 2 35.k even 12 2
1232.2.a.c 1 20.e even 4 1
1386.2.a.f 1 15.e even 4 1
1694.2.a.i 1 55.e even 4 1
3850.2.a.o 1 5.c odd 4 1
3850.2.c.d 2 1.a even 1 1 trivial
3850.2.c.d 2 5.b even 2 1 inner
4928.2.a.d 1 40.i odd 4 1
4928.2.a.bf 1 40.k even 4 1
8624.2.a.z 1 140.j odd 4 1
9702.2.a.bz 1 105.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3850, [\chi])\):

\( T_{3}^{2} + 4 \)
\( T_{13}^{2} + 16 \)
\( T_{17} \)
\( T_{19} + 4 \)
\( T_{37}^{2} + 36 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ \( 4 + T^{2} \)
$5$ \( T^{2} \)
$7$ \( 1 + T^{2} \)
$11$ \( ( -1 + T )^{2} \)
$13$ \( 16 + T^{2} \)
$17$ \( T^{2} \)
$19$ \( ( 4 + T )^{2} \)
$23$ \( 16 + T^{2} \)
$29$ \( ( 2 + T )^{2} \)
$31$ \( ( 10 + T )^{2} \)
$37$ \( 36 + T^{2} \)
$41$ \( T^{2} \)
$43$ \( 16 + T^{2} \)
$47$ \( 100 + T^{2} \)
$53$ \( 196 + T^{2} \)
$59$ \( ( 10 + T )^{2} \)
$61$ \( ( 8 + T )^{2} \)
$67$ \( 64 + T^{2} \)
$71$ \( ( 4 + T )^{2} \)
$73$ \( 16 + T^{2} \)
$79$ \( ( 16 + T )^{2} \)
$83$ \( 16 + T^{2} \)
$89$ \( ( 10 + T )^{2} \)
$97$ \( 36 + T^{2} \)
show more
show less