Properties

Label 3850.2.a.u.1.1
Level $3850$
Weight $2$
Character 3850.1
Self dual yes
Analytic conductor $30.742$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3850 = 2 \cdot 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3850.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(30.7424047782\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 154)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3850.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{7} +1.00000 q^{8} -3.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{7} +1.00000 q^{8} -3.00000 q^{9} -1.00000 q^{11} -2.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} +4.00000 q^{17} -3.00000 q^{18} -6.00000 q^{19} -1.00000 q^{22} -4.00000 q^{23} -2.00000 q^{26} +1.00000 q^{28} -2.00000 q^{29} -2.00000 q^{31} +1.00000 q^{32} +4.00000 q^{34} -3.00000 q^{36} -10.0000 q^{37} -6.00000 q^{38} +4.00000 q^{41} +8.00000 q^{43} -1.00000 q^{44} -4.00000 q^{46} -2.00000 q^{47} +1.00000 q^{49} -2.00000 q^{52} -6.00000 q^{53} +1.00000 q^{56} -2.00000 q^{58} -12.0000 q^{59} -14.0000 q^{61} -2.00000 q^{62} -3.00000 q^{63} +1.00000 q^{64} +12.0000 q^{67} +4.00000 q^{68} -8.00000 q^{71} -3.00000 q^{72} -4.00000 q^{73} -10.0000 q^{74} -6.00000 q^{76} -1.00000 q^{77} +9.00000 q^{81} +4.00000 q^{82} +6.00000 q^{83} +8.00000 q^{86} -1.00000 q^{88} -6.00000 q^{89} -2.00000 q^{91} -4.00000 q^{92} -2.00000 q^{94} +14.0000 q^{97} +1.00000 q^{98} +3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 1.00000 0.353553
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) −3.00000 −0.707107
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) 0 0
\(36\) −3.00000 −0.500000
\(37\) −10.0000 −1.64399 −0.821995 0.569495i \(-0.807139\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000 0.624695 0.312348 0.949968i \(-0.398885\pi\)
0.312348 + 0.949968i \(0.398885\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) −2.00000 −0.262613
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) −2.00000 −0.254000
\(63\) −3.00000 −0.377964
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 4.00000 0.485071
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) −3.00000 −0.353553
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) −10.0000 −1.16248
\(75\) 0 0
\(76\) −6.00000 −0.688247
\(77\) −1.00000 −0.113961
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 4.00000 0.441726
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 8.00000 0.862662
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) −4.00000 −0.417029
\(93\) 0 0
\(94\) −2.00000 −0.206284
\(95\) 0 0
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 1.00000 0.101015
\(99\) 3.00000 0.301511
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) −18.0000 −1.77359 −0.886796 0.462160i \(-0.847074\pi\)
−0.886796 + 0.462160i \(0.847074\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 16.0000 1.54678 0.773389 0.633932i \(-0.218560\pi\)
0.773389 + 0.633932i \(0.218560\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.00000 −0.185695
\(117\) 6.00000 0.554700
\(118\) −12.0000 −1.10469
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −14.0000 −1.26750
\(123\) 0 0
\(124\) −2.00000 −0.179605
\(125\) 0 0
\(126\) −3.00000 −0.267261
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 0 0
\(133\) −6.00000 −0.520266
\(134\) 12.0000 1.03664
\(135\) 0 0
\(136\) 4.00000 0.342997
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) 14.0000 1.18746 0.593732 0.804663i \(-0.297654\pi\)
0.593732 + 0.804663i \(0.297654\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.00000 −0.671345
\(143\) 2.00000 0.167248
\(144\) −3.00000 −0.250000
\(145\) 0 0
\(146\) −4.00000 −0.331042
\(147\) 0 0
\(148\) −10.0000 −0.821995
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) −24.0000 −1.95309 −0.976546 0.215308i \(-0.930924\pi\)
−0.976546 + 0.215308i \(0.930924\pi\)
\(152\) −6.00000 −0.486664
\(153\) −12.0000 −0.970143
\(154\) −1.00000 −0.0805823
\(155\) 0 0
\(156\) 0 0
\(157\) 8.00000 0.638470 0.319235 0.947676i \(-0.396574\pi\)
0.319235 + 0.947676i \(0.396574\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.00000 −0.315244
\(162\) 9.00000 0.707107
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 4.00000 0.312348
\(165\) 0 0
\(166\) 6.00000 0.465690
\(167\) −4.00000 −0.309529 −0.154765 0.987951i \(-0.549462\pi\)
−0.154765 + 0.987951i \(0.549462\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 18.0000 1.37649
\(172\) 8.00000 0.609994
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) 20.0000 1.48659 0.743294 0.668965i \(-0.233262\pi\)
0.743294 + 0.668965i \(0.233262\pi\)
\(182\) −2.00000 −0.148250
\(183\) 0 0
\(184\) −4.00000 −0.294884
\(185\) 0 0
\(186\) 0 0
\(187\) −4.00000 −0.292509
\(188\) −2.00000 −0.145865
\(189\) 0 0
\(190\) 0 0
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 14.0000 1.00514
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 3.00000 0.213201
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 6.00000 0.422159
\(203\) −2.00000 −0.140372
\(204\) 0 0
\(205\) 0 0
\(206\) −18.0000 −1.25412
\(207\) 12.0000 0.834058
\(208\) −2.00000 −0.138675
\(209\) 6.00000 0.415029
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) 16.0000 1.09374
\(215\) 0 0
\(216\) 0 0
\(217\) −2.00000 −0.135769
\(218\) −14.0000 −0.948200
\(219\) 0 0
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) 2.00000 0.132745 0.0663723 0.997795i \(-0.478857\pi\)
0.0663723 + 0.997795i \(0.478857\pi\)
\(228\) 0 0
\(229\) 20.0000 1.32164 0.660819 0.750546i \(-0.270209\pi\)
0.660819 + 0.750546i \(0.270209\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.00000 −0.131306
\(233\) −30.0000 −1.96537 −0.982683 0.185296i \(-0.940675\pi\)
−0.982683 + 0.185296i \(0.940675\pi\)
\(234\) 6.00000 0.392232
\(235\) 0 0
\(236\) −12.0000 −0.781133
\(237\) 0 0
\(238\) 4.00000 0.259281
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) 12.0000 0.772988 0.386494 0.922292i \(-0.373686\pi\)
0.386494 + 0.922292i \(0.373686\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) −14.0000 −0.896258
\(245\) 0 0
\(246\) 0 0
\(247\) 12.0000 0.763542
\(248\) −2.00000 −0.127000
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) −3.00000 −0.188982
\(253\) 4.00000 0.251478
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) −10.0000 −0.621370
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 6.00000 0.370681
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −6.00000 −0.367884
\(267\) 0 0
\(268\) 12.0000 0.733017
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 4.00000 0.242536
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) 30.0000 1.80253 0.901263 0.433273i \(-0.142641\pi\)
0.901263 + 0.433273i \(0.142641\pi\)
\(278\) 14.0000 0.839664
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) −6.00000 −0.356663 −0.178331 0.983970i \(-0.557070\pi\)
−0.178331 + 0.983970i \(0.557070\pi\)
\(284\) −8.00000 −0.474713
\(285\) 0 0
\(286\) 2.00000 0.118262
\(287\) 4.00000 0.236113
\(288\) −3.00000 −0.176777
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) −4.00000 −0.234082
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −10.0000 −0.581238
\(297\) 0 0
\(298\) 2.00000 0.115857
\(299\) 8.00000 0.462652
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) −24.0000 −1.38104
\(303\) 0 0
\(304\) −6.00000 −0.344124
\(305\) 0 0
\(306\) −12.0000 −0.685994
\(307\) 10.0000 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(308\) −1.00000 −0.0569803
\(309\) 0 0
\(310\) 0 0
\(311\) 14.0000 0.793867 0.396934 0.917847i \(-0.370074\pi\)
0.396934 + 0.917847i \(0.370074\pi\)
\(312\) 0 0
\(313\) 2.00000 0.113047 0.0565233 0.998401i \(-0.481998\pi\)
0.0565233 + 0.998401i \(0.481998\pi\)
\(314\) 8.00000 0.451466
\(315\) 0 0
\(316\) 0 0
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) 2.00000 0.111979
\(320\) 0 0
\(321\) 0 0
\(322\) −4.00000 −0.222911
\(323\) −24.0000 −1.33540
\(324\) 9.00000 0.500000
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) 0 0
\(328\) 4.00000 0.220863
\(329\) −2.00000 −0.110264
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 6.00000 0.329293
\(333\) 30.0000 1.64399
\(334\) −4.00000 −0.218870
\(335\) 0 0
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) −9.00000 −0.489535
\(339\) 0 0
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) 18.0000 0.973329
\(343\) 1.00000 0.0539949
\(344\) 8.00000 0.431331
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) −8.00000 −0.429463 −0.214731 0.976673i \(-0.568888\pi\)
−0.214731 + 0.976673i \(0.568888\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 4.00000 0.211407
\(359\) −16.0000 −0.844448 −0.422224 0.906492i \(-0.638750\pi\)
−0.422224 + 0.906492i \(0.638750\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 20.0000 1.05118
\(363\) 0 0
\(364\) −2.00000 −0.104828
\(365\) 0 0
\(366\) 0 0
\(367\) −22.0000 −1.14839 −0.574195 0.818718i \(-0.694685\pi\)
−0.574195 + 0.818718i \(0.694685\pi\)
\(368\) −4.00000 −0.208514
\(369\) −12.0000 −0.624695
\(370\) 0 0
\(371\) −6.00000 −0.311504
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) −4.00000 −0.206835
\(375\) 0 0
\(376\) −2.00000 −0.103142
\(377\) 4.00000 0.206010
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −4.00000 −0.204658
\(383\) 10.0000 0.510976 0.255488 0.966812i \(-0.417764\pi\)
0.255488 + 0.966812i \(0.417764\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.00000 −0.101797
\(387\) −24.0000 −1.21999
\(388\) 14.0000 0.710742
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 1.00000 0.0505076
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) 0 0
\(396\) 3.00000 0.150756
\(397\) −24.0000 −1.20453 −0.602263 0.798298i \(-0.705734\pi\)
−0.602263 + 0.798298i \(0.705734\pi\)
\(398\) −14.0000 −0.701757
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) −2.00000 −0.0992583
\(407\) 10.0000 0.495682
\(408\) 0 0
\(409\) 16.0000 0.791149 0.395575 0.918434i \(-0.370545\pi\)
0.395575 + 0.918434i \(0.370545\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −18.0000 −0.886796
\(413\) −12.0000 −0.590481
\(414\) 12.0000 0.589768
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) 0 0
\(418\) 6.00000 0.293470
\(419\) −32.0000 −1.56330 −0.781651 0.623716i \(-0.785622\pi\)
−0.781651 + 0.623716i \(0.785622\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) −8.00000 −0.389434
\(423\) 6.00000 0.291730
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) −14.0000 −0.677507
\(428\) 16.0000 0.773389
\(429\) 0 0
\(430\) 0 0
\(431\) 16.0000 0.770693 0.385346 0.922772i \(-0.374082\pi\)
0.385346 + 0.922772i \(0.374082\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) −2.00000 −0.0960031
\(435\) 0 0
\(436\) −14.0000 −0.670478
\(437\) 24.0000 1.14808
\(438\) 0 0
\(439\) 28.0000 1.33637 0.668184 0.743996i \(-0.267072\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) −8.00000 −0.380521
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 2.00000 0.0947027
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) −4.00000 −0.188353
\(452\) −14.0000 −0.658505
\(453\) 0 0
\(454\) 2.00000 0.0938647
\(455\) 0 0
\(456\) 0 0
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) 20.0000 0.934539
\(459\) 0 0
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 0 0
\(466\) −30.0000 −1.38972
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 6.00000 0.277350
\(469\) 12.0000 0.554109
\(470\) 0 0
\(471\) 0 0
\(472\) −12.0000 −0.552345
\(473\) −8.00000 −0.367840
\(474\) 0 0
\(475\) 0 0
\(476\) 4.00000 0.183340
\(477\) 18.0000 0.824163
\(478\) 16.0000 0.731823
\(479\) −16.0000 −0.731059 −0.365529 0.930800i \(-0.619112\pi\)
−0.365529 + 0.930800i \(0.619112\pi\)
\(480\) 0 0
\(481\) 20.0000 0.911922
\(482\) 12.0000 0.546585
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 0 0
\(486\) 0 0
\(487\) 28.0000 1.26880 0.634401 0.773004i \(-0.281247\pi\)
0.634401 + 0.773004i \(0.281247\pi\)
\(488\) −14.0000 −0.633750
\(489\) 0 0
\(490\) 0 0
\(491\) −36.0000 −1.62466 −0.812329 0.583200i \(-0.801800\pi\)
−0.812329 + 0.583200i \(0.801800\pi\)
\(492\) 0 0
\(493\) −8.00000 −0.360302
\(494\) 12.0000 0.539906
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) −8.00000 −0.358849
\(498\) 0 0
\(499\) 44.0000 1.96971 0.984855 0.173379i \(-0.0554684\pi\)
0.984855 + 0.173379i \(0.0554684\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 12.0000 0.535586
\(503\) 36.0000 1.60516 0.802580 0.596544i \(-0.203460\pi\)
0.802580 + 0.596544i \(0.203460\pi\)
\(504\) −3.00000 −0.133631
\(505\) 0 0
\(506\) 4.00000 0.177822
\(507\) 0 0
\(508\) −8.00000 −0.354943
\(509\) −28.0000 −1.24108 −0.620539 0.784176i \(-0.713086\pi\)
−0.620539 + 0.784176i \(0.713086\pi\)
\(510\) 0 0
\(511\) −4.00000 −0.176950
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) 0 0
\(516\) 0 0
\(517\) 2.00000 0.0879599
\(518\) −10.0000 −0.439375
\(519\) 0 0
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 6.00000 0.262613
\(523\) 34.0000 1.48672 0.743358 0.668894i \(-0.233232\pi\)
0.743358 + 0.668894i \(0.233232\pi\)
\(524\) 6.00000 0.262111
\(525\) 0 0
\(526\) 0 0
\(527\) −8.00000 −0.348485
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 36.0000 1.56227
\(532\) −6.00000 −0.260133
\(533\) −8.00000 −0.346518
\(534\) 0 0
\(535\) 0 0
\(536\) 12.0000 0.518321
\(537\) 0 0
\(538\) 12.0000 0.517357
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) −20.0000 −0.859074
\(543\) 0 0
\(544\) 4.00000 0.171499
\(545\) 0 0
\(546\) 0 0
\(547\) 12.0000 0.513083 0.256541 0.966533i \(-0.417417\pi\)
0.256541 + 0.966533i \(0.417417\pi\)
\(548\) −6.00000 −0.256307
\(549\) 42.0000 1.79252
\(550\) 0 0
\(551\) 12.0000 0.511217
\(552\) 0 0
\(553\) 0 0
\(554\) 30.0000 1.27458
\(555\) 0 0
\(556\) 14.0000 0.593732
\(557\) −14.0000 −0.593199 −0.296600 0.955002i \(-0.595853\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(558\) 6.00000 0.254000
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) −10.0000 −0.421825
\(563\) 34.0000 1.43293 0.716465 0.697623i \(-0.245759\pi\)
0.716465 + 0.697623i \(0.245759\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −6.00000 −0.252199
\(567\) 9.00000 0.377964
\(568\) −8.00000 −0.335673
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 2.00000 0.0836242
\(573\) 0 0
\(574\) 4.00000 0.166957
\(575\) 0 0
\(576\) −3.00000 −0.125000
\(577\) −14.0000 −0.582828 −0.291414 0.956597i \(-0.594126\pi\)
−0.291414 + 0.956597i \(0.594126\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 0 0
\(580\) 0 0
\(581\) 6.00000 0.248922
\(582\) 0 0
\(583\) 6.00000 0.248495
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 12.0000 0.494451
\(590\) 0 0
\(591\) 0 0
\(592\) −10.0000 −0.410997
\(593\) 12.0000 0.492781 0.246390 0.969171i \(-0.420755\pi\)
0.246390 + 0.969171i \(0.420755\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.00000 0.0819232
\(597\) 0 0
\(598\) 8.00000 0.327144
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) 8.00000 0.326056
\(603\) −36.0000 −1.46603
\(604\) −24.0000 −0.976546
\(605\) 0 0
\(606\) 0 0
\(607\) −8.00000 −0.324710 −0.162355 0.986732i \(-0.551909\pi\)
−0.162355 + 0.986732i \(0.551909\pi\)
\(608\) −6.00000 −0.243332
\(609\) 0 0
\(610\) 0 0
\(611\) 4.00000 0.161823
\(612\) −12.0000 −0.485071
\(613\) −46.0000 −1.85792 −0.928961 0.370177i \(-0.879297\pi\)
−0.928961 + 0.370177i \(0.879297\pi\)
\(614\) 10.0000 0.403567
\(615\) 0 0
\(616\) −1.00000 −0.0402911
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) 0 0
\(619\) 8.00000 0.321547 0.160774 0.986991i \(-0.448601\pi\)
0.160774 + 0.986991i \(0.448601\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 14.0000 0.561349
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 0 0
\(626\) 2.00000 0.0799361
\(627\) 0 0
\(628\) 8.00000 0.319235
\(629\) −40.0000 −1.59490
\(630\) 0 0
\(631\) −12.0000 −0.477712 −0.238856 0.971055i \(-0.576772\pi\)
−0.238856 + 0.971055i \(0.576772\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −6.00000 −0.238290
\(635\) 0 0
\(636\) 0 0
\(637\) −2.00000 −0.0792429
\(638\) 2.00000 0.0791808
\(639\) 24.0000 0.949425
\(640\) 0 0
\(641\) −6.00000 −0.236986 −0.118493 0.992955i \(-0.537806\pi\)
−0.118493 + 0.992955i \(0.537806\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) −4.00000 −0.157622
\(645\) 0 0
\(646\) −24.0000 −0.944267
\(647\) −6.00000 −0.235884 −0.117942 0.993020i \(-0.537630\pi\)
−0.117942 + 0.993020i \(0.537630\pi\)
\(648\) 9.00000 0.353553
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) −10.0000 −0.391330 −0.195665 0.980671i \(-0.562687\pi\)
−0.195665 + 0.980671i \(0.562687\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 4.00000 0.156174
\(657\) 12.0000 0.468165
\(658\) −2.00000 −0.0779681
\(659\) −8.00000 −0.311636 −0.155818 0.987786i \(-0.549801\pi\)
−0.155818 + 0.987786i \(0.549801\pi\)
\(660\) 0 0
\(661\) 20.0000 0.777910 0.388955 0.921257i \(-0.372836\pi\)
0.388955 + 0.921257i \(0.372836\pi\)
\(662\) −20.0000 −0.777322
\(663\) 0 0
\(664\) 6.00000 0.232845
\(665\) 0 0
\(666\) 30.0000 1.16248
\(667\) 8.00000 0.309761
\(668\) −4.00000 −0.154765
\(669\) 0 0
\(670\) 0 0
\(671\) 14.0000 0.540464
\(672\) 0 0
\(673\) −22.0000 −0.848038 −0.424019 0.905653i \(-0.639381\pi\)
−0.424019 + 0.905653i \(0.639381\pi\)
\(674\) 18.0000 0.693334
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −26.0000 −0.999261 −0.499631 0.866239i \(-0.666531\pi\)
−0.499631 + 0.866239i \(0.666531\pi\)
\(678\) 0 0
\(679\) 14.0000 0.537271
\(680\) 0 0
\(681\) 0 0
\(682\) 2.00000 0.0765840
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 18.0000 0.688247
\(685\) 0 0
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) 8.00000 0.304997
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) 36.0000 1.36950 0.684752 0.728776i \(-0.259910\pi\)
0.684752 + 0.728776i \(0.259910\pi\)
\(692\) 14.0000 0.532200
\(693\) 3.00000 0.113961
\(694\) −8.00000 −0.303676
\(695\) 0 0
\(696\) 0 0
\(697\) 16.0000 0.606043
\(698\) −10.0000 −0.378506
\(699\) 0 0
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) 60.0000 2.26294
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) 6.00000 0.225653
\(708\) 0 0
\(709\) 18.0000 0.676004 0.338002 0.941145i \(-0.390249\pi\)
0.338002 + 0.941145i \(0.390249\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −6.00000 −0.224860
\(713\) 8.00000 0.299602
\(714\) 0 0
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) 0 0
\(718\) −16.0000 −0.597115
\(719\) −26.0000 −0.969636 −0.484818 0.874615i \(-0.661114\pi\)
−0.484818 + 0.874615i \(0.661114\pi\)
\(720\) 0 0
\(721\) −18.0000 −0.670355
\(722\) 17.0000 0.632674
\(723\) 0 0
\(724\) 20.0000 0.743294
\(725\) 0 0
\(726\) 0 0
\(727\) 10.0000 0.370879 0.185440 0.982656i \(-0.440629\pi\)
0.185440 + 0.982656i \(0.440629\pi\)
\(728\) −2.00000 −0.0741249
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 32.0000 1.18356
\(732\) 0 0
\(733\) 22.0000 0.812589 0.406294 0.913742i \(-0.366821\pi\)
0.406294 + 0.913742i \(0.366821\pi\)
\(734\) −22.0000 −0.812035
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) −12.0000 −0.442026
\(738\) −12.0000 −0.441726
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −6.00000 −0.220267
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 10.0000 0.366126
\(747\) −18.0000 −0.658586
\(748\) −4.00000 −0.146254
\(749\) 16.0000 0.584627
\(750\) 0 0
\(751\) 28.0000 1.02173 0.510867 0.859660i \(-0.329324\pi\)
0.510867 + 0.859660i \(0.329324\pi\)
\(752\) −2.00000 −0.0729325
\(753\) 0 0
\(754\) 4.00000 0.145671
\(755\) 0 0
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 4.00000 0.145287
\(759\) 0 0
\(760\) 0 0
\(761\) −48.0000 −1.74000 −0.869999 0.493053i \(-0.835881\pi\)
−0.869999 + 0.493053i \(0.835881\pi\)
\(762\) 0 0
\(763\) −14.0000 −0.506834
\(764\) −4.00000 −0.144715
\(765\) 0 0
\(766\) 10.0000 0.361315
\(767\) 24.0000 0.866590
\(768\) 0 0
\(769\) 16.0000 0.576975 0.288487 0.957484i \(-0.406848\pi\)
0.288487 + 0.957484i \(0.406848\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.00000 −0.0719816
\(773\) 48.0000 1.72644 0.863220 0.504828i \(-0.168444\pi\)
0.863220 + 0.504828i \(0.168444\pi\)
\(774\) −24.0000 −0.862662
\(775\) 0 0
\(776\) 14.0000 0.502571
\(777\) 0 0
\(778\) −30.0000 −1.07555
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) 8.00000 0.286263
\(782\) −16.0000 −0.572159
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 0 0
\(786\) 0 0
\(787\) 22.0000 0.784215 0.392108 0.919919i \(-0.371746\pi\)
0.392108 + 0.919919i \(0.371746\pi\)
\(788\) −6.00000 −0.213741
\(789\) 0 0
\(790\) 0 0
\(791\) −14.0000 −0.497783
\(792\) 3.00000 0.106600
\(793\) 28.0000 0.994309
\(794\) −24.0000 −0.851728
\(795\) 0 0
\(796\) −14.0000 −0.496217
\(797\) 16.0000 0.566749 0.283375 0.959009i \(-0.408546\pi\)
0.283375 + 0.959009i \(0.408546\pi\)
\(798\) 0 0
\(799\) −8.00000 −0.283020
\(800\) 0 0
\(801\) 18.0000 0.635999
\(802\) −18.0000 −0.635602
\(803\) 4.00000 0.141157
\(804\) 0 0
\(805\) 0 0
\(806\) 4.00000 0.140894
\(807\) 0 0
\(808\) 6.00000 0.211079
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) 38.0000 1.33436 0.667180 0.744896i \(-0.267501\pi\)
0.667180 + 0.744896i \(0.267501\pi\)
\(812\) −2.00000 −0.0701862
\(813\) 0 0
\(814\) 10.0000 0.350500
\(815\) 0 0
\(816\) 0 0
\(817\) −48.0000 −1.67931
\(818\) 16.0000 0.559427
\(819\) 6.00000 0.209657
\(820\) 0 0
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) 4.00000 0.139431 0.0697156 0.997567i \(-0.477791\pi\)
0.0697156 + 0.997567i \(0.477791\pi\)
\(824\) −18.0000 −0.627060
\(825\) 0 0
\(826\) −12.0000 −0.417533
\(827\) −20.0000 −0.695468 −0.347734 0.937593i \(-0.613049\pi\)
−0.347734 + 0.937593i \(0.613049\pi\)
\(828\) 12.0000 0.417029
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −2.00000 −0.0693375
\(833\) 4.00000 0.138592
\(834\) 0 0
\(835\) 0 0
\(836\) 6.00000 0.207514
\(837\) 0 0
\(838\) −32.0000 −1.10542
\(839\) 30.0000 1.03572 0.517858 0.855467i \(-0.326730\pi\)
0.517858 + 0.855467i \(0.326730\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −2.00000 −0.0689246
\(843\) 0 0
\(844\) −8.00000 −0.275371
\(845\) 0 0
\(846\) 6.00000 0.206284
\(847\) 1.00000 0.0343604
\(848\) −6.00000 −0.206041
\(849\) 0 0
\(850\) 0 0
\(851\) 40.0000 1.37118
\(852\) 0 0
\(853\) −2.00000 −0.0684787 −0.0342393 0.999414i \(-0.510901\pi\)
−0.0342393 + 0.999414i \(0.510901\pi\)
\(854\) −14.0000 −0.479070
\(855\) 0 0
\(856\) 16.0000 0.546869
\(857\) −32.0000 −1.09310 −0.546550 0.837427i \(-0.684059\pi\)
−0.546550 + 0.837427i \(0.684059\pi\)
\(858\) 0 0
\(859\) 28.0000 0.955348 0.477674 0.878537i \(-0.341480\pi\)
0.477674 + 0.878537i \(0.341480\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 16.0000 0.544962
\(863\) 44.0000 1.49778 0.748889 0.662696i \(-0.230588\pi\)
0.748889 + 0.662696i \(0.230588\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −2.00000 −0.0679628
\(867\) 0 0
\(868\) −2.00000 −0.0678844
\(869\) 0 0
\(870\) 0 0
\(871\) −24.0000 −0.813209
\(872\) −14.0000 −0.474100
\(873\) −42.0000 −1.42148
\(874\) 24.0000 0.811812
\(875\) 0 0
\(876\) 0 0
\(877\) −34.0000 −1.14810 −0.574049 0.818821i \(-0.694628\pi\)
−0.574049 + 0.818821i \(0.694628\pi\)
\(878\) 28.0000 0.944954
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) −3.00000 −0.101015
\(883\) 44.0000 1.48072 0.740359 0.672212i \(-0.234656\pi\)
0.740359 + 0.672212i \(0.234656\pi\)
\(884\) −8.00000 −0.269069
\(885\) 0 0
\(886\) 36.0000 1.20944
\(887\) −16.0000 −0.537227 −0.268614 0.963248i \(-0.586566\pi\)
−0.268614 + 0.963248i \(0.586566\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) −9.00000 −0.301511
\(892\) 2.00000 0.0669650
\(893\) 12.0000 0.401565
\(894\) 0 0
\(895\) 0 0
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) −18.0000 −0.600668
\(899\) 4.00000 0.133407
\(900\) 0 0
\(901\) −24.0000 −0.799556
\(902\) −4.00000 −0.133185
\(903\) 0 0
\(904\) −14.0000 −0.465633
\(905\) 0 0
\(906\) 0 0
\(907\) 52.0000 1.72663 0.863316 0.504664i \(-0.168384\pi\)
0.863316 + 0.504664i \(0.168384\pi\)
\(908\) 2.00000 0.0663723
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) 0 0
\(913\) −6.00000 −0.198571
\(914\) −2.00000 −0.0661541
\(915\) 0 0
\(916\) 20.0000 0.660819
\(917\) 6.00000 0.198137
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 30.0000 0.987997
\(923\) 16.0000 0.526646
\(924\) 0 0
\(925\) 0 0
\(926\) 32.0000 1.05159
\(927\) 54.0000 1.77359
\(928\) −2.00000 −0.0656532
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) −30.0000 −0.982683
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 6.00000 0.196116
\(937\) −12.0000 −0.392023 −0.196011 0.980602i \(-0.562799\pi\)
−0.196011 + 0.980602i \(0.562799\pi\)
\(938\) 12.0000 0.391814
\(939\) 0 0
\(940\) 0 0
\(941\) −14.0000 −0.456387 −0.228193 0.973616i \(-0.573282\pi\)
−0.228193 + 0.973616i \(0.573282\pi\)
\(942\) 0 0
\(943\) −16.0000 −0.521032
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) −8.00000 −0.260102
\(947\) 4.00000 0.129983 0.0649913 0.997886i \(-0.479298\pi\)
0.0649913 + 0.997886i \(0.479298\pi\)
\(948\) 0 0
\(949\) 8.00000 0.259691
\(950\) 0 0
\(951\) 0 0
\(952\) 4.00000 0.129641
\(953\) 22.0000 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(954\) 18.0000 0.582772
\(955\) 0 0
\(956\) 16.0000 0.517477
\(957\) 0 0
\(958\) −16.0000 −0.516937
\(959\) −6.00000 −0.193750
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 20.0000 0.644826
\(963\) −48.0000 −1.54678
\(964\) 12.0000 0.386494
\(965\) 0 0
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) 0 0
\(971\) 56.0000 1.79713 0.898563 0.438845i \(-0.144612\pi\)
0.898563 + 0.438845i \(0.144612\pi\)
\(972\) 0 0
\(973\) 14.0000 0.448819
\(974\) 28.0000 0.897178
\(975\) 0 0
\(976\) −14.0000 −0.448129
\(977\) −2.00000 −0.0639857 −0.0319928 0.999488i \(-0.510185\pi\)
−0.0319928 + 0.999488i \(0.510185\pi\)
\(978\) 0 0
\(979\) 6.00000 0.191761
\(980\) 0 0
\(981\) 42.0000 1.34096
\(982\) −36.0000 −1.14881
\(983\) −18.0000 −0.574111 −0.287055 0.957914i \(-0.592676\pi\)
−0.287055 + 0.957914i \(0.592676\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −8.00000 −0.254772
\(987\) 0 0
\(988\) 12.0000 0.381771
\(989\) −32.0000 −1.01754
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) −2.00000 −0.0635001
\(993\) 0 0
\(994\) −8.00000 −0.253745
\(995\) 0 0
\(996\) 0 0
\(997\) 42.0000 1.33015 0.665077 0.746775i \(-0.268399\pi\)
0.665077 + 0.746775i \(0.268399\pi\)
\(998\) 44.0000 1.39280
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3850.2.a.u.1.1 1
5.2 odd 4 3850.2.c.j.1849.2 2
5.3 odd 4 3850.2.c.j.1849.1 2
5.4 even 2 154.2.a.a.1.1 1
15.14 odd 2 1386.2.a.l.1.1 1
20.19 odd 2 1232.2.a.e.1.1 1
35.4 even 6 1078.2.e.j.177.1 2
35.9 even 6 1078.2.e.j.67.1 2
35.19 odd 6 1078.2.e.i.67.1 2
35.24 odd 6 1078.2.e.i.177.1 2
35.34 odd 2 1078.2.a.d.1.1 1
40.19 odd 2 4928.2.a.w.1.1 1
40.29 even 2 4928.2.a.v.1.1 1
55.54 odd 2 1694.2.a.g.1.1 1
105.104 even 2 9702.2.a.ba.1.1 1
140.139 even 2 8624.2.a.r.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
154.2.a.a.1.1 1 5.4 even 2
1078.2.a.d.1.1 1 35.34 odd 2
1078.2.e.i.67.1 2 35.19 odd 6
1078.2.e.i.177.1 2 35.24 odd 6
1078.2.e.j.67.1 2 35.9 even 6
1078.2.e.j.177.1 2 35.4 even 6
1232.2.a.e.1.1 1 20.19 odd 2
1386.2.a.l.1.1 1 15.14 odd 2
1694.2.a.g.1.1 1 55.54 odd 2
3850.2.a.u.1.1 1 1.1 even 1 trivial
3850.2.c.j.1849.1 2 5.3 odd 4
3850.2.c.j.1849.2 2 5.2 odd 4
4928.2.a.v.1.1 1 40.29 even 2
4928.2.a.w.1.1 1 40.19 odd 2
8624.2.a.r.1.1 1 140.139 even 2
9702.2.a.ba.1.1 1 105.104 even 2