Properties

Label 3850.2.a.k.1.1
Level $3850$
Weight $2$
Character 3850.1
Self dual yes
Analytic conductor $30.742$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3850 = 2 \cdot 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3850.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(30.7424047782\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 770)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3850.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.00000 q^{3} +1.00000 q^{4} -2.00000 q^{6} -1.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +2.00000 q^{3} +1.00000 q^{4} -2.00000 q^{6} -1.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{11} +2.00000 q^{12} +4.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} -1.00000 q^{18} -4.00000 q^{19} -2.00000 q^{21} +1.00000 q^{22} -2.00000 q^{24} -4.00000 q^{26} -4.00000 q^{27} -1.00000 q^{28} -6.00000 q^{29} -10.0000 q^{31} -1.00000 q^{32} -2.00000 q^{33} +1.00000 q^{36} -2.00000 q^{37} +4.00000 q^{38} +8.00000 q^{39} -12.0000 q^{41} +2.00000 q^{42} +4.00000 q^{43} -1.00000 q^{44} -6.00000 q^{47} +2.00000 q^{48} +1.00000 q^{49} +4.00000 q^{52} +6.00000 q^{53} +4.00000 q^{54} +1.00000 q^{56} -8.00000 q^{57} +6.00000 q^{58} -6.00000 q^{59} -4.00000 q^{61} +10.0000 q^{62} -1.00000 q^{63} +1.00000 q^{64} +2.00000 q^{66} +4.00000 q^{67} +12.0000 q^{71} -1.00000 q^{72} +4.00000 q^{73} +2.00000 q^{74} -4.00000 q^{76} +1.00000 q^{77} -8.00000 q^{78} +8.00000 q^{79} -11.0000 q^{81} +12.0000 q^{82} -12.0000 q^{83} -2.00000 q^{84} -4.00000 q^{86} -12.0000 q^{87} +1.00000 q^{88} +18.0000 q^{89} -4.00000 q^{91} -20.0000 q^{93} +6.00000 q^{94} -2.00000 q^{96} +10.0000 q^{97} -1.00000 q^{98} -1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.00000 1.15470 0.577350 0.816497i \(-0.304087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −2.00000 −0.816497
\(7\) −1.00000 −0.377964
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 2.00000 0.577350
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −1.00000 −0.235702
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 1.00000 0.213201
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −2.00000 −0.408248
\(25\) 0 0
\(26\) −4.00000 −0.784465
\(27\) −4.00000 −0.769800
\(28\) −1.00000 −0.188982
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −10.0000 −1.79605 −0.898027 0.439941i \(-0.854999\pi\)
−0.898027 + 0.439941i \(0.854999\pi\)
\(32\) −1.00000 −0.176777
\(33\) −2.00000 −0.348155
\(34\) 0 0
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 4.00000 0.648886
\(39\) 8.00000 1.28103
\(40\) 0 0
\(41\) −12.0000 −1.87409 −0.937043 0.349215i \(-0.886448\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 2.00000 0.308607
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 2.00000 0.288675
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 4.00000 0.554700
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 4.00000 0.544331
\(55\) 0 0
\(56\) 1.00000 0.133631
\(57\) −8.00000 −1.05963
\(58\) 6.00000 0.787839
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 10.0000 1.27000
\(63\) −1.00000 −0.125988
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 2.00000 0.246183
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) −1.00000 −0.117851
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 1.00000 0.113961
\(78\) −8.00000 −0.905822
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 12.0000 1.32518
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) −2.00000 −0.218218
\(85\) 0 0
\(86\) −4.00000 −0.431331
\(87\) −12.0000 −1.28654
\(88\) 1.00000 0.106600
\(89\) 18.0000 1.90800 0.953998 0.299813i \(-0.0969242\pi\)
0.953998 + 0.299813i \(0.0969242\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) −20.0000 −2.07390
\(94\) 6.00000 0.618853
\(95\) 0 0
\(96\) −2.00000 −0.204124
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) −1.00000 −0.101015
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) −4.00000 −0.384900
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) −1.00000 −0.0944911
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 8.00000 0.749269
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 4.00000 0.369800
\(118\) 6.00000 0.552345
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 4.00000 0.362143
\(123\) −24.0000 −2.16401
\(124\) −10.0000 −0.898027
\(125\) 0 0
\(126\) 1.00000 0.0890871
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) −2.00000 −0.174078
\(133\) 4.00000 0.346844
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) −12.0000 −1.01058
\(142\) −12.0000 −1.00702
\(143\) −4.00000 −0.334497
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −4.00000 −0.331042
\(147\) 2.00000 0.164957
\(148\) −2.00000 −0.164399
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 4.00000 0.324443
\(153\) 0 0
\(154\) −1.00000 −0.0805823
\(155\) 0 0
\(156\) 8.00000 0.640513
\(157\) 22.0000 1.75579 0.877896 0.478852i \(-0.158947\pi\)
0.877896 + 0.478852i \(0.158947\pi\)
\(158\) −8.00000 −0.636446
\(159\) 12.0000 0.951662
\(160\) 0 0
\(161\) 0 0
\(162\) 11.0000 0.864242
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) −12.0000 −0.937043
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) −24.0000 −1.85718 −0.928588 0.371113i \(-0.878976\pi\)
−0.928588 + 0.371113i \(0.878976\pi\)
\(168\) 2.00000 0.154303
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 4.00000 0.304997
\(173\) −12.0000 −0.912343 −0.456172 0.889892i \(-0.650780\pi\)
−0.456172 + 0.889892i \(0.650780\pi\)
\(174\) 12.0000 0.909718
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) −12.0000 −0.901975
\(178\) −18.0000 −1.34916
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 4.00000 0.296500
\(183\) −8.00000 −0.591377
\(184\) 0 0
\(185\) 0 0
\(186\) 20.0000 1.46647
\(187\) 0 0
\(188\) −6.00000 −0.437595
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 2.00000 0.144338
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 1.00000 0.0710669
\(199\) 2.00000 0.141776 0.0708881 0.997484i \(-0.477417\pi\)
0.0708881 + 0.997484i \(0.477417\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0 0
\(203\) 6.00000 0.421117
\(204\) 0 0
\(205\) 0 0
\(206\) 14.0000 0.975426
\(207\) 0 0
\(208\) 4.00000 0.277350
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 6.00000 0.412082
\(213\) 24.0000 1.64445
\(214\) 12.0000 0.820303
\(215\) 0 0
\(216\) 4.00000 0.272166
\(217\) 10.0000 0.678844
\(218\) −2.00000 −0.135457
\(219\) 8.00000 0.540590
\(220\) 0 0
\(221\) 0 0
\(222\) 4.00000 0.268462
\(223\) 10.0000 0.669650 0.334825 0.942280i \(-0.391323\pi\)
0.334825 + 0.942280i \(0.391323\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) 24.0000 1.59294 0.796468 0.604681i \(-0.206699\pi\)
0.796468 + 0.604681i \(0.206699\pi\)
\(228\) −8.00000 −0.529813
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 2.00000 0.131590
\(232\) 6.00000 0.393919
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) −4.00000 −0.261488
\(235\) 0 0
\(236\) −6.00000 −0.390567
\(237\) 16.0000 1.03931
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −4.00000 −0.257663 −0.128831 0.991667i \(-0.541123\pi\)
−0.128831 + 0.991667i \(0.541123\pi\)
\(242\) −1.00000 −0.0642824
\(243\) −10.0000 −0.641500
\(244\) −4.00000 −0.256074
\(245\) 0 0
\(246\) 24.0000 1.53018
\(247\) −16.0000 −1.01806
\(248\) 10.0000 0.635001
\(249\) −24.0000 −1.52094
\(250\) 0 0
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) −1.00000 −0.0629941
\(253\) 0 0
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) −8.00000 −0.498058
\(259\) 2.00000 0.124274
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 2.00000 0.123091
\(265\) 0 0
\(266\) −4.00000 −0.245256
\(267\) 36.0000 2.20316
\(268\) 4.00000 0.244339
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 0 0
\(273\) −8.00000 −0.484182
\(274\) 6.00000 0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 4.00000 0.239904
\(279\) −10.0000 −0.598684
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 12.0000 0.714590
\(283\) 16.0000 0.951101 0.475551 0.879688i \(-0.342249\pi\)
0.475551 + 0.879688i \(0.342249\pi\)
\(284\) 12.0000 0.712069
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) 12.0000 0.708338
\(288\) −1.00000 −0.0589256
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 20.0000 1.17242
\(292\) 4.00000 0.234082
\(293\) −24.0000 −1.40209 −0.701047 0.713115i \(-0.747284\pi\)
−0.701047 + 0.713115i \(0.747284\pi\)
\(294\) −2.00000 −0.116642
\(295\) 0 0
\(296\) 2.00000 0.116248
\(297\) 4.00000 0.232104
\(298\) 18.0000 1.04271
\(299\) 0 0
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 16.0000 0.920697
\(303\) 0 0
\(304\) −4.00000 −0.229416
\(305\) 0 0
\(306\) 0 0
\(307\) −32.0000 −1.82634 −0.913168 0.407583i \(-0.866372\pi\)
−0.913168 + 0.407583i \(0.866372\pi\)
\(308\) 1.00000 0.0569803
\(309\) −28.0000 −1.59286
\(310\) 0 0
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) −8.00000 −0.452911
\(313\) −2.00000 −0.113047 −0.0565233 0.998401i \(-0.518002\pi\)
−0.0565233 + 0.998401i \(0.518002\pi\)
\(314\) −22.0000 −1.24153
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) −12.0000 −0.672927
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) −24.0000 −1.33955
\(322\) 0 0
\(323\) 0 0
\(324\) −11.0000 −0.611111
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) 4.00000 0.221201
\(328\) 12.0000 0.662589
\(329\) 6.00000 0.330791
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) −12.0000 −0.658586
\(333\) −2.00000 −0.109599
\(334\) 24.0000 1.31322
\(335\) 0 0
\(336\) −2.00000 −0.109109
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) −3.00000 −0.163178
\(339\) 12.0000 0.651751
\(340\) 0 0
\(341\) 10.0000 0.541530
\(342\) 4.00000 0.216295
\(343\) −1.00000 −0.0539949
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 12.0000 0.645124
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) −12.0000 −0.643268
\(349\) 20.0000 1.07058 0.535288 0.844670i \(-0.320203\pi\)
0.535288 + 0.844670i \(0.320203\pi\)
\(350\) 0 0
\(351\) −16.0000 −0.854017
\(352\) 1.00000 0.0533002
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 12.0000 0.637793
\(355\) 0 0
\(356\) 18.0000 0.953998
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 10.0000 0.525588
\(363\) 2.00000 0.104973
\(364\) −4.00000 −0.209657
\(365\) 0 0
\(366\) 8.00000 0.418167
\(367\) 34.0000 1.77479 0.887393 0.461014i \(-0.152514\pi\)
0.887393 + 0.461014i \(0.152514\pi\)
\(368\) 0 0
\(369\) −12.0000 −0.624695
\(370\) 0 0
\(371\) −6.00000 −0.311504
\(372\) −20.0000 −1.03695
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 6.00000 0.309426
\(377\) −24.0000 −1.23606
\(378\) −4.00000 −0.205738
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) −16.0000 −0.819705
\(382\) 0 0
\(383\) 6.00000 0.306586 0.153293 0.988181i \(-0.451012\pi\)
0.153293 + 0.988181i \(0.451012\pi\)
\(384\) −2.00000 −0.102062
\(385\) 0 0
\(386\) 14.0000 0.712581
\(387\) 4.00000 0.203331
\(388\) 10.0000 0.507673
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) 0 0
\(396\) −1.00000 −0.0502519
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) −2.00000 −0.100251
\(399\) 8.00000 0.400501
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) −8.00000 −0.399004
\(403\) −40.0000 −1.99254
\(404\) 0 0
\(405\) 0 0
\(406\) −6.00000 −0.297775
\(407\) 2.00000 0.0991363
\(408\) 0 0
\(409\) 32.0000 1.58230 0.791149 0.611623i \(-0.209483\pi\)
0.791149 + 0.611623i \(0.209483\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) −14.0000 −0.689730
\(413\) 6.00000 0.295241
\(414\) 0 0
\(415\) 0 0
\(416\) −4.00000 −0.196116
\(417\) −8.00000 −0.391762
\(418\) −4.00000 −0.195646
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 4.00000 0.194717
\(423\) −6.00000 −0.291730
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) −24.0000 −1.16280
\(427\) 4.00000 0.193574
\(428\) −12.0000 −0.580042
\(429\) −8.00000 −0.386244
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) −4.00000 −0.192450
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) −10.0000 −0.480015
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) 0 0
\(438\) −8.00000 −0.382255
\(439\) −28.0000 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) −4.00000 −0.189832
\(445\) 0 0
\(446\) −10.0000 −0.473514
\(447\) −36.0000 −1.70274
\(448\) −1.00000 −0.0472456
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) 12.0000 0.565058
\(452\) 6.00000 0.282216
\(453\) −32.0000 −1.50349
\(454\) −24.0000 −1.12638
\(455\) 0 0
\(456\) 8.00000 0.374634
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 10.0000 0.467269
\(459\) 0 0
\(460\) 0 0
\(461\) −36.0000 −1.67669 −0.838344 0.545142i \(-0.816476\pi\)
−0.838344 + 0.545142i \(0.816476\pi\)
\(462\) −2.00000 −0.0930484
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) −6.00000 −0.277945
\(467\) −42.0000 −1.94353 −0.971764 0.235954i \(-0.924178\pi\)
−0.971764 + 0.235954i \(0.924178\pi\)
\(468\) 4.00000 0.184900
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) 44.0000 2.02741
\(472\) 6.00000 0.276172
\(473\) −4.00000 −0.183920
\(474\) −16.0000 −0.734904
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 24.0000 1.09773
\(479\) 12.0000 0.548294 0.274147 0.961688i \(-0.411605\pi\)
0.274147 + 0.961688i \(0.411605\pi\)
\(480\) 0 0
\(481\) −8.00000 −0.364769
\(482\) 4.00000 0.182195
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 0 0
\(486\) 10.0000 0.453609
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) 4.00000 0.181071
\(489\) 8.00000 0.361773
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) −24.0000 −1.08200
\(493\) 0 0
\(494\) 16.0000 0.719874
\(495\) 0 0
\(496\) −10.0000 −0.449013
\(497\) −12.0000 −0.538274
\(498\) 24.0000 1.07547
\(499\) −40.0000 −1.79065 −0.895323 0.445418i \(-0.853055\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(500\) 0 0
\(501\) −48.0000 −2.14448
\(502\) 18.0000 0.803379
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 1.00000 0.0445435
\(505\) 0 0
\(506\) 0 0
\(507\) 6.00000 0.266469
\(508\) −8.00000 −0.354943
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) −4.00000 −0.176950
\(512\) −1.00000 −0.0441942
\(513\) 16.0000 0.706417
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) 8.00000 0.352180
\(517\) 6.00000 0.263880
\(518\) −2.00000 −0.0878750
\(519\) −24.0000 −1.05348
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 6.00000 0.262613
\(523\) 16.0000 0.699631 0.349816 0.936819i \(-0.386244\pi\)
0.349816 + 0.936819i \(0.386244\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −2.00000 −0.0870388
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) 4.00000 0.173422
\(533\) −48.0000 −2.07911
\(534\) −36.0000 −1.55787
\(535\) 0 0
\(536\) −4.00000 −0.172774
\(537\) 24.0000 1.03568
\(538\) −6.00000 −0.258678
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) −20.0000 −0.859074
\(543\) −20.0000 −0.858282
\(544\) 0 0
\(545\) 0 0
\(546\) 8.00000 0.342368
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) −6.00000 −0.256307
\(549\) −4.00000 −0.170716
\(550\) 0 0
\(551\) 24.0000 1.02243
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) −22.0000 −0.934690
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) 6.00000 0.254228 0.127114 0.991888i \(-0.459429\pi\)
0.127114 + 0.991888i \(0.459429\pi\)
\(558\) 10.0000 0.423334
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 18.0000 0.759284
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) −12.0000 −0.505291
\(565\) 0 0
\(566\) −16.0000 −0.672530
\(567\) 11.0000 0.461957
\(568\) −12.0000 −0.503509
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) −4.00000 −0.167248
\(573\) 0 0
\(574\) −12.0000 −0.500870
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) 17.0000 0.707107
\(579\) −28.0000 −1.16364
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) −20.0000 −0.829027
\(583\) −6.00000 −0.248495
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) 24.0000 0.991431
\(587\) −18.0000 −0.742940 −0.371470 0.928445i \(-0.621146\pi\)
−0.371470 + 0.928445i \(0.621146\pi\)
\(588\) 2.00000 0.0824786
\(589\) 40.0000 1.64817
\(590\) 0 0
\(591\) 12.0000 0.493614
\(592\) −2.00000 −0.0821995
\(593\) 12.0000 0.492781 0.246390 0.969171i \(-0.420755\pi\)
0.246390 + 0.969171i \(0.420755\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) −18.0000 −0.737309
\(597\) 4.00000 0.163709
\(598\) 0 0
\(599\) 36.0000 1.47092 0.735460 0.677568i \(-0.236966\pi\)
0.735460 + 0.677568i \(0.236966\pi\)
\(600\) 0 0
\(601\) −4.00000 −0.163163 −0.0815817 0.996667i \(-0.525997\pi\)
−0.0815817 + 0.996667i \(0.525997\pi\)
\(602\) 4.00000 0.163028
\(603\) 4.00000 0.162893
\(604\) −16.0000 −0.651031
\(605\) 0 0
\(606\) 0 0
\(607\) 40.0000 1.62355 0.811775 0.583970i \(-0.198502\pi\)
0.811775 + 0.583970i \(0.198502\pi\)
\(608\) 4.00000 0.162221
\(609\) 12.0000 0.486265
\(610\) 0 0
\(611\) −24.0000 −0.970936
\(612\) 0 0
\(613\) 10.0000 0.403896 0.201948 0.979396i \(-0.435273\pi\)
0.201948 + 0.979396i \(0.435273\pi\)
\(614\) 32.0000 1.29141
\(615\) 0 0
\(616\) −1.00000 −0.0402911
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 28.0000 1.12633
\(619\) −10.0000 −0.401934 −0.200967 0.979598i \(-0.564408\pi\)
−0.200967 + 0.979598i \(0.564408\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −18.0000 −0.721734
\(623\) −18.0000 −0.721155
\(624\) 8.00000 0.320256
\(625\) 0 0
\(626\) 2.00000 0.0799361
\(627\) 8.00000 0.319489
\(628\) 22.0000 0.877896
\(629\) 0 0
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −8.00000 −0.318223
\(633\) −8.00000 −0.317971
\(634\) 6.00000 0.238290
\(635\) 0 0
\(636\) 12.0000 0.475831
\(637\) 4.00000 0.158486
\(638\) −6.00000 −0.237542
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 24.0000 0.947204
\(643\) −2.00000 −0.0788723 −0.0394362 0.999222i \(-0.512556\pi\)
−0.0394362 + 0.999222i \(0.512556\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.00000 0.235884 0.117942 0.993020i \(-0.462370\pi\)
0.117942 + 0.993020i \(0.462370\pi\)
\(648\) 11.0000 0.432121
\(649\) 6.00000 0.235521
\(650\) 0 0
\(651\) 20.0000 0.783862
\(652\) 4.00000 0.156652
\(653\) 18.0000 0.704394 0.352197 0.935926i \(-0.385435\pi\)
0.352197 + 0.935926i \(0.385435\pi\)
\(654\) −4.00000 −0.156412
\(655\) 0 0
\(656\) −12.0000 −0.468521
\(657\) 4.00000 0.156055
\(658\) −6.00000 −0.233904
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) 26.0000 1.01128 0.505641 0.862744i \(-0.331256\pi\)
0.505641 + 0.862744i \(0.331256\pi\)
\(662\) −20.0000 −0.777322
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 2.00000 0.0774984
\(667\) 0 0
\(668\) −24.0000 −0.928588
\(669\) 20.0000 0.773245
\(670\) 0 0
\(671\) 4.00000 0.154418
\(672\) 2.00000 0.0771517
\(673\) −2.00000 −0.0770943 −0.0385472 0.999257i \(-0.512273\pi\)
−0.0385472 + 0.999257i \(0.512273\pi\)
\(674\) −22.0000 −0.847408
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) −12.0000 −0.461197 −0.230599 0.973049i \(-0.574068\pi\)
−0.230599 + 0.973049i \(0.574068\pi\)
\(678\) −12.0000 −0.460857
\(679\) −10.0000 −0.383765
\(680\) 0 0
\(681\) 48.0000 1.83936
\(682\) −10.0000 −0.382920
\(683\) 24.0000 0.918334 0.459167 0.888350i \(-0.348148\pi\)
0.459167 + 0.888350i \(0.348148\pi\)
\(684\) −4.00000 −0.152944
\(685\) 0 0
\(686\) 1.00000 0.0381802
\(687\) −20.0000 −0.763048
\(688\) 4.00000 0.152499
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) 2.00000 0.0760836 0.0380418 0.999276i \(-0.487888\pi\)
0.0380418 + 0.999276i \(0.487888\pi\)
\(692\) −12.0000 −0.456172
\(693\) 1.00000 0.0379869
\(694\) 12.0000 0.455514
\(695\) 0 0
\(696\) 12.0000 0.454859
\(697\) 0 0
\(698\) −20.0000 −0.757011
\(699\) 12.0000 0.453882
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 16.0000 0.603881
\(703\) 8.00000 0.301726
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) 0 0
\(708\) −12.0000 −0.450988
\(709\) 38.0000 1.42712 0.713560 0.700594i \(-0.247082\pi\)
0.713560 + 0.700594i \(0.247082\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) −18.0000 −0.674579
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) −48.0000 −1.79259
\(718\) 24.0000 0.895672
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) 14.0000 0.521387
\(722\) 3.00000 0.111648
\(723\) −8.00000 −0.297523
\(724\) −10.0000 −0.371647
\(725\) 0 0
\(726\) −2.00000 −0.0742270
\(727\) −2.00000 −0.0741759 −0.0370879 0.999312i \(-0.511808\pi\)
−0.0370879 + 0.999312i \(0.511808\pi\)
\(728\) 4.00000 0.148250
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) −8.00000 −0.295689
\(733\) 40.0000 1.47743 0.738717 0.674016i \(-0.235432\pi\)
0.738717 + 0.674016i \(0.235432\pi\)
\(734\) −34.0000 −1.25496
\(735\) 0 0
\(736\) 0 0
\(737\) −4.00000 −0.147342
\(738\) 12.0000 0.441726
\(739\) −4.00000 −0.147142 −0.0735712 0.997290i \(-0.523440\pi\)
−0.0735712 + 0.997290i \(0.523440\pi\)
\(740\) 0 0
\(741\) −32.0000 −1.17555
\(742\) 6.00000 0.220267
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 20.0000 0.733236
\(745\) 0 0
\(746\) −22.0000 −0.805477
\(747\) −12.0000 −0.439057
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) −28.0000 −1.02173 −0.510867 0.859660i \(-0.670676\pi\)
−0.510867 + 0.859660i \(0.670676\pi\)
\(752\) −6.00000 −0.218797
\(753\) −36.0000 −1.31191
\(754\) 24.0000 0.874028
\(755\) 0 0
\(756\) 4.00000 0.145479
\(757\) −38.0000 −1.38113 −0.690567 0.723269i \(-0.742639\pi\)
−0.690567 + 0.723269i \(0.742639\pi\)
\(758\) 16.0000 0.581146
\(759\) 0 0
\(760\) 0 0
\(761\) 24.0000 0.869999 0.435000 0.900431i \(-0.356748\pi\)
0.435000 + 0.900431i \(0.356748\pi\)
\(762\) 16.0000 0.579619
\(763\) −2.00000 −0.0724049
\(764\) 0 0
\(765\) 0 0
\(766\) −6.00000 −0.216789
\(767\) −24.0000 −0.866590
\(768\) 2.00000 0.0721688
\(769\) −16.0000 −0.576975 −0.288487 0.957484i \(-0.593152\pi\)
−0.288487 + 0.957484i \(0.593152\pi\)
\(770\) 0 0
\(771\) −36.0000 −1.29651
\(772\) −14.0000 −0.503871
\(773\) 18.0000 0.647415 0.323708 0.946157i \(-0.395071\pi\)
0.323708 + 0.946157i \(0.395071\pi\)
\(774\) −4.00000 −0.143777
\(775\) 0 0
\(776\) −10.0000 −0.358979
\(777\) 4.00000 0.143499
\(778\) −30.0000 −1.07555
\(779\) 48.0000 1.71978
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 24.0000 0.857690
\(784\) 1.00000 0.0357143
\(785\) 0 0
\(786\) 0 0
\(787\) −44.0000 −1.56843 −0.784215 0.620489i \(-0.786934\pi\)
−0.784215 + 0.620489i \(0.786934\pi\)
\(788\) 6.00000 0.213741
\(789\) 0 0
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 1.00000 0.0355335
\(793\) −16.0000 −0.568177
\(794\) 2.00000 0.0709773
\(795\) 0 0
\(796\) 2.00000 0.0708881
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) −8.00000 −0.283197
\(799\) 0 0
\(800\) 0 0
\(801\) 18.0000 0.635999
\(802\) 6.00000 0.211867
\(803\) −4.00000 −0.141157
\(804\) 8.00000 0.282138
\(805\) 0 0
\(806\) 40.0000 1.40894
\(807\) 12.0000 0.422420
\(808\) 0 0
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) 6.00000 0.210559
\(813\) 40.0000 1.40286
\(814\) −2.00000 −0.0701000
\(815\) 0 0
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) −32.0000 −1.11885
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) 30.0000 1.04701 0.523504 0.852023i \(-0.324625\pi\)
0.523504 + 0.852023i \(0.324625\pi\)
\(822\) 12.0000 0.418548
\(823\) 4.00000 0.139431 0.0697156 0.997567i \(-0.477791\pi\)
0.0697156 + 0.997567i \(0.477791\pi\)
\(824\) 14.0000 0.487713
\(825\) 0 0
\(826\) −6.00000 −0.208767
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 26.0000 0.903017 0.451509 0.892267i \(-0.350886\pi\)
0.451509 + 0.892267i \(0.350886\pi\)
\(830\) 0 0
\(831\) 44.0000 1.52634
\(832\) 4.00000 0.138675
\(833\) 0 0
\(834\) 8.00000 0.277017
\(835\) 0 0
\(836\) 4.00000 0.138343
\(837\) 40.0000 1.38260
\(838\) 6.00000 0.207267
\(839\) 30.0000 1.03572 0.517858 0.855467i \(-0.326730\pi\)
0.517858 + 0.855467i \(0.326730\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −26.0000 −0.896019
\(843\) −36.0000 −1.23991
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) 6.00000 0.206284
\(847\) −1.00000 −0.0343604
\(848\) 6.00000 0.206041
\(849\) 32.0000 1.09824
\(850\) 0 0
\(851\) 0 0
\(852\) 24.0000 0.822226
\(853\) 4.00000 0.136957 0.0684787 0.997653i \(-0.478185\pi\)
0.0684787 + 0.997653i \(0.478185\pi\)
\(854\) −4.00000 −0.136877
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) 12.0000 0.409912 0.204956 0.978771i \(-0.434295\pi\)
0.204956 + 0.978771i \(0.434295\pi\)
\(858\) 8.00000 0.273115
\(859\) −10.0000 −0.341196 −0.170598 0.985341i \(-0.554570\pi\)
−0.170598 + 0.985341i \(0.554570\pi\)
\(860\) 0 0
\(861\) 24.0000 0.817918
\(862\) −24.0000 −0.817443
\(863\) −12.0000 −0.408485 −0.204242 0.978920i \(-0.565473\pi\)
−0.204242 + 0.978920i \(0.565473\pi\)
\(864\) 4.00000 0.136083
\(865\) 0 0
\(866\) 14.0000 0.475739
\(867\) −34.0000 −1.15470
\(868\) 10.0000 0.339422
\(869\) −8.00000 −0.271381
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) −2.00000 −0.0677285
\(873\) 10.0000 0.338449
\(874\) 0 0
\(875\) 0 0
\(876\) 8.00000 0.270295
\(877\) 34.0000 1.14810 0.574049 0.818821i \(-0.305372\pi\)
0.574049 + 0.818821i \(0.305372\pi\)
\(878\) 28.0000 0.944954
\(879\) −48.0000 −1.61900
\(880\) 0 0
\(881\) 6.00000 0.202145 0.101073 0.994879i \(-0.467773\pi\)
0.101073 + 0.994879i \(0.467773\pi\)
\(882\) −1.00000 −0.0336718
\(883\) 16.0000 0.538443 0.269221 0.963078i \(-0.413234\pi\)
0.269221 + 0.963078i \(0.413234\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −24.0000 −0.806296
\(887\) −12.0000 −0.402921 −0.201460 0.979497i \(-0.564569\pi\)
−0.201460 + 0.979497i \(0.564569\pi\)
\(888\) 4.00000 0.134231
\(889\) 8.00000 0.268311
\(890\) 0 0
\(891\) 11.0000 0.368514
\(892\) 10.0000 0.334825
\(893\) 24.0000 0.803129
\(894\) 36.0000 1.20402
\(895\) 0 0
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) −6.00000 −0.200223
\(899\) 60.0000 2.00111
\(900\) 0 0
\(901\) 0 0
\(902\) −12.0000 −0.399556
\(903\) −8.00000 −0.266223
\(904\) −6.00000 −0.199557
\(905\) 0 0
\(906\) 32.0000 1.06313
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) 24.0000 0.796468
\(909\) 0 0
\(910\) 0 0
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) −8.00000 −0.264906
\(913\) 12.0000 0.397142
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) 0 0
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) −64.0000 −2.10887
\(922\) 36.0000 1.18560
\(923\) 48.0000 1.57994
\(924\) 2.00000 0.0657952
\(925\) 0 0
\(926\) −40.0000 −1.31448
\(927\) −14.0000 −0.459820
\(928\) 6.00000 0.196960
\(929\) −42.0000 −1.37798 −0.688988 0.724773i \(-0.741945\pi\)
−0.688988 + 0.724773i \(0.741945\pi\)
\(930\) 0 0
\(931\) −4.00000 −0.131095
\(932\) 6.00000 0.196537
\(933\) 36.0000 1.17859
\(934\) 42.0000 1.37428
\(935\) 0 0
\(936\) −4.00000 −0.130744
\(937\) 52.0000 1.69877 0.849383 0.527777i \(-0.176974\pi\)
0.849383 + 0.527777i \(0.176974\pi\)
\(938\) 4.00000 0.130605
\(939\) −4.00000 −0.130535
\(940\) 0 0
\(941\) −36.0000 −1.17357 −0.586783 0.809744i \(-0.699606\pi\)
−0.586783 + 0.809744i \(0.699606\pi\)
\(942\) −44.0000 −1.43360
\(943\) 0 0
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) 4.00000 0.130051
\(947\) −48.0000 −1.55979 −0.779895 0.625910i \(-0.784728\pi\)
−0.779895 + 0.625910i \(0.784728\pi\)
\(948\) 16.0000 0.519656
\(949\) 16.0000 0.519382
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) 18.0000 0.583077 0.291539 0.956559i \(-0.405833\pi\)
0.291539 + 0.956559i \(0.405833\pi\)
\(954\) −6.00000 −0.194257
\(955\) 0 0
\(956\) −24.0000 −0.776215
\(957\) 12.0000 0.387905
\(958\) −12.0000 −0.387702
\(959\) 6.00000 0.193750
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) 8.00000 0.257930
\(963\) −12.0000 −0.386695
\(964\) −4.00000 −0.128831
\(965\) 0 0
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) 0 0
\(971\) 30.0000 0.962746 0.481373 0.876516i \(-0.340138\pi\)
0.481373 + 0.876516i \(0.340138\pi\)
\(972\) −10.0000 −0.320750
\(973\) 4.00000 0.128234
\(974\) 32.0000 1.02535
\(975\) 0 0
\(976\) −4.00000 −0.128037
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) −8.00000 −0.255812
\(979\) −18.0000 −0.575282
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 12.0000 0.382935
\(983\) 42.0000 1.33959 0.669796 0.742545i \(-0.266382\pi\)
0.669796 + 0.742545i \(0.266382\pi\)
\(984\) 24.0000 0.765092
\(985\) 0 0
\(986\) 0 0
\(987\) 12.0000 0.381964
\(988\) −16.0000 −0.509028
\(989\) 0 0
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 10.0000 0.317500
\(993\) 40.0000 1.26936
\(994\) 12.0000 0.380617
\(995\) 0 0
\(996\) −24.0000 −0.760469
\(997\) 52.0000 1.64686 0.823428 0.567420i \(-0.192059\pi\)
0.823428 + 0.567420i \(0.192059\pi\)
\(998\) 40.0000 1.26618
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3850.2.a.k.1.1 1
5.2 odd 4 3850.2.c.b.1849.1 2
5.3 odd 4 3850.2.c.b.1849.2 2
5.4 even 2 770.2.a.f.1.1 1
15.14 odd 2 6930.2.a.o.1.1 1
20.19 odd 2 6160.2.a.j.1.1 1
35.34 odd 2 5390.2.a.bj.1.1 1
55.54 odd 2 8470.2.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
770.2.a.f.1.1 1 5.4 even 2
3850.2.a.k.1.1 1 1.1 even 1 trivial
3850.2.c.b.1849.1 2 5.2 odd 4
3850.2.c.b.1849.2 2 5.3 odd 4
5390.2.a.bj.1.1 1 35.34 odd 2
6160.2.a.j.1.1 1 20.19 odd 2
6930.2.a.o.1.1 1 15.14 odd 2
8470.2.a.c.1.1 1 55.54 odd 2