Properties

Label 3840.2.k.y.1921.1
Level $3840$
Weight $2$
Character 3840.1921
Analytic conductor $30.663$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3840.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(30.6625543762\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1921.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3840.1921
Dual form 3840.2.k.y.1921.2

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000i q^{3} -1.00000i q^{5} +4.00000 q^{7} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{3} -1.00000i q^{5} +4.00000 q^{7} -1.00000 q^{9} -2.00000i q^{13} -1.00000 q^{15} +6.00000 q^{17} +4.00000i q^{19} -4.00000i q^{21} -1.00000 q^{25} +1.00000i q^{27} +6.00000i q^{29} +8.00000 q^{31} -4.00000i q^{35} +2.00000i q^{37} -2.00000 q^{39} +6.00000 q^{41} -4.00000i q^{43} +1.00000i q^{45} +9.00000 q^{49} -6.00000i q^{51} -6.00000i q^{53} +4.00000 q^{57} +10.0000i q^{61} -4.00000 q^{63} -2.00000 q^{65} +4.00000i q^{67} -2.00000 q^{73} +1.00000i q^{75} +8.00000 q^{79} +1.00000 q^{81} -12.0000i q^{83} -6.00000i q^{85} +6.00000 q^{87} -18.0000 q^{89} -8.00000i q^{91} -8.00000i q^{93} +4.00000 q^{95} +2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 8q^{7} - 2q^{9} + O(q^{10}) \) \( 2q + 8q^{7} - 2q^{9} - 2q^{15} + 12q^{17} - 2q^{25} + 16q^{31} - 4q^{39} + 12q^{41} + 18q^{49} + 8q^{57} - 8q^{63} - 4q^{65} - 4q^{73} + 16q^{79} + 2q^{81} + 12q^{87} - 36q^{89} + 8q^{95} + 4q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1537\) \(2561\) \(2821\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i
\(6\) 0 0
\(7\) 4.00000 1.51186 0.755929 0.654654i \(-0.227186\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) − 4.00000i − 0.872872i
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 4.00000i − 0.676123i
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) − 4.00000i − 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) 1.00000i 0.149071i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) − 6.00000i − 0.840168i
\(52\) 0 0
\(53\) − 6.00000i − 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 10.0000i 1.28037i 0.768221 + 0.640184i \(0.221142\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 0 0
\(63\) −4.00000 −0.503953
\(64\) 0 0
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) 1.00000i 0.115470i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 12.0000i − 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) 0 0
\(85\) − 6.00000i − 0.650791i
\(86\) 0 0
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) −18.0000 −1.90800 −0.953998 0.299813i \(-0.903076\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) − 8.00000i − 0.838628i
\(92\) 0 0
\(93\) − 8.00000i − 0.829561i
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 18.0000i 1.79107i 0.444994 + 0.895533i \(0.353206\pi\)
−0.444994 + 0.895533i \(0.646794\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) − 12.0000i − 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i 0.877862 + 0.478913i \(0.158969\pi\)
−0.877862 + 0.478913i \(0.841031\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) −18.0000 −1.69330 −0.846649 0.532152i \(-0.821383\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) 0 0
\(119\) 24.0000 2.20008
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) − 6.00000i − 0.541002i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 20.0000 1.77471 0.887357 0.461084i \(-0.152539\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 16.0000i 1.38738i
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) − 4.00000i − 0.339276i −0.985506 0.169638i \(-0.945740\pi\)
0.985506 0.169638i \(-0.0542598\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 6.00000 0.498273
\(146\) 0 0
\(147\) − 9.00000i − 0.742307i
\(148\) 0 0
\(149\) − 6.00000i − 0.491539i −0.969328 0.245770i \(-0.920959\pi\)
0.969328 0.245770i \(-0.0790407\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) − 8.00000i − 0.642575i
\(156\) 0 0
\(157\) − 2.00000i − 0.159617i −0.996810 0.0798087i \(-0.974569\pi\)
0.996810 0.0798087i \(-0.0254309\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) − 4.00000i − 0.305888i
\(172\) 0 0
\(173\) − 18.0000i − 1.36851i −0.729241 0.684257i \(-0.760127\pi\)
0.729241 0.684257i \(-0.239873\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 24.0000i − 1.79384i −0.442189 0.896922i \(-0.645798\pi\)
0.442189 0.896922i \(-0.354202\pi\)
\(180\) 0 0
\(181\) 14.0000i 1.04061i 0.853980 + 0.520306i \(0.174182\pi\)
−0.853980 + 0.520306i \(0.825818\pi\)
\(182\) 0 0
\(183\) 10.0000 0.739221
\(184\) 0 0
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 4.00000i 0.290957i
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) −22.0000 −1.58359 −0.791797 0.610784i \(-0.790854\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) 0 0
\(195\) 2.00000i 0.143223i
\(196\) 0 0
\(197\) − 6.00000i − 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 0 0
\(203\) 24.0000i 1.68447i
\(204\) 0 0
\(205\) − 6.00000i − 0.419058i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 20.0000i − 1.37686i −0.725304 0.688428i \(-0.758301\pi\)
0.725304 0.688428i \(-0.241699\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) 32.0000 2.17230
\(218\) 0 0
\(219\) 2.00000i 0.135147i
\(220\) 0 0
\(221\) − 12.0000i − 0.807207i
\(222\) 0 0
\(223\) 20.0000 1.33930 0.669650 0.742677i \(-0.266444\pi\)
0.669650 + 0.742677i \(0.266444\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 0 0
\(229\) − 10.0000i − 0.660819i −0.943838 0.330409i \(-0.892813\pi\)
0.943838 0.330409i \(-0.107187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 8.00000i − 0.519656i
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) − 9.00000i − 0.574989i
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) − 24.0000i − 1.51487i −0.652913 0.757433i \(-0.726453\pi\)
0.652913 0.757433i \(-0.273547\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −6.00000 −0.375735
\(256\) 0 0
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) 8.00000i 0.497096i
\(260\) 0 0
\(261\) − 6.00000i − 0.371391i
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) 18.0000i 1.10158i
\(268\) 0 0
\(269\) 6.00000i 0.365826i 0.983129 + 0.182913i \(0.0585527\pi\)
−0.983129 + 0.182913i \(0.941447\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) −8.00000 −0.484182
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.00000i 0.120168i 0.998193 + 0.0600842i \(0.0191369\pi\)
−0.998193 + 0.0600842i \(0.980863\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) − 28.0000i − 1.66443i −0.554455 0.832214i \(-0.687073\pi\)
0.554455 0.832214i \(-0.312927\pi\)
\(284\) 0 0
\(285\) − 4.00000i − 0.236940i
\(286\) 0 0
\(287\) 24.0000 1.41668
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) − 2.00000i − 0.117242i
\(292\) 0 0
\(293\) − 6.00000i − 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) − 16.0000i − 0.922225i
\(302\) 0 0
\(303\) 18.0000 1.03407
\(304\) 0 0
\(305\) 10.0000 0.572598
\(306\) 0 0
\(307\) − 20.0000i − 1.14146i −0.821138 0.570730i \(-0.806660\pi\)
0.821138 0.570730i \(-0.193340\pi\)
\(308\) 0 0
\(309\) − 4.00000i − 0.227552i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −2.00000 −0.113047 −0.0565233 0.998401i \(-0.518002\pi\)
−0.0565233 + 0.998401i \(0.518002\pi\)
\(314\) 0 0
\(315\) 4.00000i 0.225374i
\(316\) 0 0
\(317\) − 18.0000i − 1.01098i −0.862832 0.505490i \(-0.831312\pi\)
0.862832 0.505490i \(-0.168688\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 24.0000i 1.33540i
\(324\) 0 0
\(325\) 2.00000i 0.110940i
\(326\) 0 0
\(327\) 10.0000 0.553001
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 28.0000i − 1.53902i −0.638635 0.769510i \(-0.720501\pi\)
0.638635 0.769510i \(-0.279499\pi\)
\(332\) 0 0
\(333\) − 2.00000i − 0.109599i
\(334\) 0 0
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) 26.0000 1.41631 0.708155 0.706057i \(-0.249528\pi\)
0.708155 + 0.706057i \(0.249528\pi\)
\(338\) 0 0
\(339\) 18.0000i 0.977626i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000i 0.644194i 0.946707 + 0.322097i \(0.104388\pi\)
−0.946707 + 0.322097i \(0.895612\pi\)
\(348\) 0 0
\(349\) 10.0000i 0.535288i 0.963518 + 0.267644i \(0.0862451\pi\)
−0.963518 + 0.267644i \(0.913755\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 24.0000i − 1.27021i
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) − 11.0000i − 0.577350i
\(364\) 0 0
\(365\) 2.00000i 0.104685i
\(366\) 0 0
\(367\) −28.0000 −1.46159 −0.730794 0.682598i \(-0.760850\pi\)
−0.730794 + 0.682598i \(0.760850\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) − 24.0000i − 1.24602i
\(372\) 0 0
\(373\) 26.0000i 1.34623i 0.739538 + 0.673114i \(0.235044\pi\)
−0.739538 + 0.673114i \(0.764956\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) − 4.00000i − 0.205466i −0.994709 0.102733i \(-0.967241\pi\)
0.994709 0.102733i \(-0.0327588\pi\)
\(380\) 0 0
\(381\) − 20.0000i − 1.02463i
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.00000i 0.203331i
\(388\) 0 0
\(389\) − 6.00000i − 0.304212i −0.988364 0.152106i \(-0.951394\pi\)
0.988364 0.152106i \(-0.0486055\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 8.00000i − 0.402524i
\(396\) 0 0
\(397\) 22.0000i 1.10415i 0.833795 + 0.552074i \(0.186163\pi\)
−0.833795 + 0.552074i \(0.813837\pi\)
\(398\) 0 0
\(399\) 16.0000 0.801002
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) − 16.0000i − 0.797017i
\(404\) 0 0
\(405\) − 1.00000i − 0.0496904i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) 6.00000i 0.295958i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) −4.00000 −0.195881
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) − 10.0000i − 0.487370i −0.969854 0.243685i \(-0.921644\pi\)
0.969854 0.243685i \(-0.0783563\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) 40.0000i 1.93574i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) 0 0
\(435\) − 6.00000i − 0.287678i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) −9.00000 −0.428571
\(442\) 0 0
\(443\) 12.0000i 0.570137i 0.958507 + 0.285069i \(0.0920164\pi\)
−0.958507 + 0.285069i \(0.907984\pi\)
\(444\) 0 0
\(445\) 18.0000i 0.853282i
\(446\) 0 0
\(447\) −6.00000 −0.283790
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 8.00000i 0.375873i
\(454\) 0 0
\(455\) −8.00000 −0.375046
\(456\) 0 0
\(457\) −26.0000 −1.21623 −0.608114 0.793849i \(-0.708074\pi\)
−0.608114 + 0.793849i \(0.708074\pi\)
\(458\) 0 0
\(459\) 6.00000i 0.280056i
\(460\) 0 0
\(461\) 30.0000i 1.39724i 0.715493 + 0.698620i \(0.246202\pi\)
−0.715493 + 0.698620i \(0.753798\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 0 0
\(465\) −8.00000 −0.370991
\(466\) 0 0
\(467\) 36.0000i 1.66588i 0.553362 + 0.832941i \(0.313345\pi\)
−0.553362 + 0.832941i \(0.686655\pi\)
\(468\) 0 0
\(469\) 16.0000i 0.738811i
\(470\) 0 0
\(471\) −2.00000 −0.0921551
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 4.00000i − 0.183533i
\(476\) 0 0
\(477\) 6.00000i 0.274721i
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 2.00000i − 0.0908153i
\(486\) 0 0
\(487\) 28.0000 1.26880 0.634401 0.773004i \(-0.281247\pi\)
0.634401 + 0.773004i \(0.281247\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) 24.0000i 1.08310i 0.840667 + 0.541552i \(0.182163\pi\)
−0.840667 + 0.541552i \(0.817837\pi\)
\(492\) 0 0
\(493\) 36.0000i 1.62136i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.00000i 0.179065i 0.995984 + 0.0895323i \(0.0285372\pi\)
−0.995984 + 0.0895323i \(0.971463\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 0 0
\(507\) − 9.00000i − 0.399704i
\(508\) 0 0
\(509\) 6.00000i 0.265945i 0.991120 + 0.132973i \(0.0424523\pi\)
−0.991120 + 0.132973i \(0.957548\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) 0 0
\(513\) −4.00000 −0.176604
\(514\) 0 0
\(515\) − 4.00000i − 0.176261i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) 20.0000i 0.874539i 0.899331 + 0.437269i \(0.144054\pi\)
−0.899331 + 0.437269i \(0.855946\pi\)
\(524\) 0 0
\(525\) 4.00000i 0.174574i
\(526\) 0 0
\(527\) 48.0000 2.09091
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 12.0000i − 0.519778i
\(534\) 0 0
\(535\) −12.0000 −0.518805
\(536\) 0 0
\(537\) −24.0000 −1.03568
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 10.0000i 0.429934i 0.976621 + 0.214967i \(0.0689643\pi\)
−0.976621 + 0.214967i \(0.931036\pi\)
\(542\) 0 0
\(543\) 14.0000 0.600798
\(544\) 0 0
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) 28.0000i 1.19719i 0.801050 + 0.598597i \(0.204275\pi\)
−0.801050 + 0.598597i \(0.795725\pi\)
\(548\) 0 0
\(549\) − 10.0000i − 0.426790i
\(550\) 0 0
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) 32.0000 1.36078
\(554\) 0 0
\(555\) − 2.00000i − 0.0848953i
\(556\) 0 0
\(557\) − 18.0000i − 0.762684i −0.924434 0.381342i \(-0.875462\pi\)
0.924434 0.381342i \(-0.124538\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.0000i 0.505740i 0.967500 + 0.252870i \(0.0813744\pi\)
−0.967500 + 0.252870i \(0.918626\pi\)
\(564\) 0 0
\(565\) 18.0000i 0.757266i
\(566\) 0 0
\(567\) 4.00000 0.167984
\(568\) 0 0
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) 20.0000i 0.836974i 0.908223 + 0.418487i \(0.137439\pi\)
−0.908223 + 0.418487i \(0.862561\pi\)
\(572\) 0 0
\(573\) 24.0000i 1.00261i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 22.0000i 0.914289i
\(580\) 0 0
\(581\) − 48.0000i − 1.99138i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 2.00000 0.0826898
\(586\) 0 0
\(587\) − 12.0000i − 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 0 0
\(589\) 32.0000i 1.31854i
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) − 24.0000i − 0.983904i
\(596\) 0 0
\(597\) 8.00000i 0.327418i
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) 0 0
\(603\) − 4.00000i − 0.162893i
\(604\) 0 0
\(605\) − 11.0000i − 0.447214i
\(606\) 0 0
\(607\) −4.00000 −0.162355 −0.0811775 0.996700i \(-0.525868\pi\)
−0.0811775 + 0.996700i \(0.525868\pi\)
\(608\) 0 0
\(609\) 24.0000 0.972529
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 2.00000i 0.0807792i 0.999184 + 0.0403896i \(0.0128599\pi\)
−0.999184 + 0.0403896i \(0.987140\pi\)
\(614\) 0 0
\(615\) −6.00000 −0.241943
\(616\) 0 0
\(617\) −30.0000 −1.20775 −0.603877 0.797077i \(-0.706378\pi\)
−0.603877 + 0.797077i \(0.706378\pi\)
\(618\) 0 0
\(619\) 44.0000i 1.76851i 0.467005 + 0.884255i \(0.345333\pi\)
−0.467005 + 0.884255i \(0.654667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −72.0000 −2.88462
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.0000i 0.478471i
\(630\) 0 0
\(631\) −32.0000 −1.27390 −0.636950 0.770905i \(-0.719804\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) 0 0
\(633\) −20.0000 −0.794929
\(634\) 0 0
\(635\) − 20.0000i − 0.793676i
\(636\) 0 0
\(637\) − 18.0000i − 0.713186i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 0 0
\(643\) 4.00000i 0.157745i 0.996885 + 0.0788723i \(0.0251319\pi\)
−0.996885 + 0.0788723i \(0.974868\pi\)
\(644\) 0 0
\(645\) 4.00000i 0.157500i
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) − 32.0000i − 1.25418i
\(652\) 0 0
\(653\) − 18.0000i − 0.704394i −0.935926 0.352197i \(-0.885435\pi\)
0.935926 0.352197i \(-0.114565\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.00000 0.0780274
\(658\) 0 0
\(659\) − 48.0000i − 1.86981i −0.354892 0.934907i \(-0.615482\pi\)
0.354892 0.934907i \(-0.384518\pi\)
\(660\) 0 0
\(661\) 14.0000i 0.544537i 0.962221 + 0.272268i \(0.0877739\pi\)
−0.962221 + 0.272268i \(0.912226\pi\)
\(662\) 0 0
\(663\) −12.0000 −0.466041
\(664\) 0 0
\(665\) 16.0000 0.620453
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) − 20.0000i − 0.773245i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) 0 0
\(675\) − 1.00000i − 0.0384900i
\(676\) 0 0
\(677\) − 6.00000i − 0.230599i −0.993331 0.115299i \(-0.963217\pi\)
0.993331 0.115299i \(-0.0367827\pi\)
\(678\) 0 0
\(679\) 8.00000 0.307012
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) − 12.0000i − 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) 0 0
\(685\) 6.00000i 0.229248i
\(686\) 0 0
\(687\) −10.0000 −0.381524
\(688\) 0 0
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) − 44.0000i − 1.67384i −0.547326 0.836919i \(-0.684354\pi\)
0.547326 0.836919i \(-0.315646\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.00000 −0.151729
\(696\) 0 0
\(697\) 36.0000 1.36360
\(698\) 0 0
\(699\) − 18.0000i − 0.680823i
\(700\) 0 0
\(701\) 6.00000i 0.226617i 0.993560 + 0.113308i \(0.0361448\pi\)
−0.993560 + 0.113308i \(0.963855\pi\)
\(702\) 0 0
\(703\) −8.00000 −0.301726
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 72.0000i 2.70784i
\(708\) 0 0
\(709\) 38.0000i 1.42712i 0.700594 + 0.713560i \(0.252918\pi\)
−0.700594 + 0.713560i \(0.747082\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 24.0000i − 0.896296i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) − 2.00000i − 0.0743808i
\(724\) 0 0
\(725\) − 6.00000i − 0.222834i
\(726\) 0 0
\(727\) 28.0000 1.03846 0.519231 0.854634i \(-0.326218\pi\)
0.519231 + 0.854634i \(0.326218\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) − 24.0000i − 0.887672i
\(732\) 0 0
\(733\) 22.0000i 0.812589i 0.913742 + 0.406294i \(0.133179\pi\)
−0.913742 + 0.406294i \(0.866821\pi\)
\(734\) 0 0
\(735\) −9.00000 −0.331970
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 52.0000i 1.91285i 0.291977 + 0.956425i \(0.405687\pi\)
−0.291977 + 0.956425i \(0.594313\pi\)
\(740\) 0 0
\(741\) − 8.00000i − 0.293887i
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) −6.00000 −0.219823
\(746\) 0 0
\(747\) 12.0000i 0.439057i
\(748\) 0 0
\(749\) − 48.0000i − 1.75388i
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) 0 0
\(753\) −24.0000 −0.874609
\(754\) 0 0
\(755\) 8.00000i 0.291150i
\(756\) 0 0
\(757\) 2.00000i 0.0726912i 0.999339 + 0.0363456i \(0.0115717\pi\)
−0.999339 + 0.0363456i \(0.988428\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) 40.0000i 1.44810i
\(764\) 0 0
\(765\) 6.00000i 0.216930i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 0 0
\(771\) 18.0000i 0.648254i
\(772\) 0 0
\(773\) 42.0000i 1.51064i 0.655359 + 0.755318i \(0.272517\pi\)
−0.655359 + 0.755318i \(0.727483\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) 8.00000 0.286998
\(778\) 0 0
\(779\) 24.0000i 0.859889i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −6.00000 −0.214423
\(784\) 0 0
\(785\) −2.00000 −0.0713831
\(786\) 0 0
\(787\) 4.00000i 0.142585i 0.997455 + 0.0712923i \(0.0227123\pi\)
−0.997455 + 0.0712923i \(0.977288\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −72.0000 −2.56003
\(792\) 0 0
\(793\) 20.0000 0.710221
\(794\) 0 0
\(795\) 6.00000i 0.212798i
\(796\) 0 0
\(797\) 30.0000i 1.06265i 0.847167 + 0.531327i \(0.178307\pi\)
−0.847167 + 0.531327i \(0.821693\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 18.0000 0.635999
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.00000 0.211210
\(808\) 0 0
\(809\) 54.0000 1.89854 0.949269 0.314464i \(-0.101825\pi\)
0.949269 + 0.314464i \(0.101825\pi\)
\(810\) 0 0
\(811\) − 4.00000i − 0.140459i −0.997531 0.0702295i \(-0.977627\pi\)
0.997531 0.0702295i \(-0.0223732\pi\)
\(812\) 0 0
\(813\) 16.0000i 0.561144i
\(814\) 0 0
\(815\) 4.00000 0.140114
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) 0 0
\(819\) 8.00000i 0.279543i
\(820\) 0 0
\(821\) 18.0000i 0.628204i 0.949389 + 0.314102i \(0.101703\pi\)
−0.949389 + 0.314102i \(0.898297\pi\)
\(822\) 0 0
\(823\) −20.0000 −0.697156 −0.348578 0.937280i \(-0.613335\pi\)
−0.348578 + 0.937280i \(0.613335\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000i 0.417281i 0.977992 + 0.208640i \(0.0669038\pi\)
−0.977992 + 0.208640i \(0.933096\pi\)
\(828\) 0 0
\(829\) − 38.0000i − 1.31979i −0.751356 0.659897i \(-0.770600\pi\)
0.751356 0.659897i \(-0.229400\pi\)
\(830\) 0 0
\(831\) 2.00000 0.0693792
\(832\) 0 0
\(833\) 54.0000 1.87099
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 8.00000i 0.276520i
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 0 0
\(843\) 18.0000i 0.619953i
\(844\) 0 0
\(845\) − 9.00000i − 0.309609i
\(846\) 0 0
\(847\) 44.0000 1.51186
\(848\) 0 0
\(849\) −28.0000 −0.960958
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 46.0000i − 1.57501i −0.616308 0.787505i \(-0.711372\pi\)
0.616308 0.787505i \(-0.288628\pi\)
\(854\) 0 0
\(855\) −4.00000 −0.136797
\(856\) 0 0
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 0 0
\(859\) − 4.00000i − 0.136478i −0.997669 0.0682391i \(-0.978262\pi\)
0.997669 0.0682391i \(-0.0217381\pi\)
\(860\) 0 0
\(861\) − 24.0000i − 0.817918i
\(862\) 0 0
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) −18.0000 −0.612018
\(866\) 0 0
\(867\) − 19.0000i − 0.645274i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) 0 0
\(873\) −2.00000 −0.0676897
\(874\) 0 0
\(875\) 4.00000i 0.135225i
\(876\) 0 0
\(877\) − 2.00000i − 0.0675352i −0.999430 0.0337676i \(-0.989249\pi\)
0.999430 0.0337676i \(-0.0107506\pi\)
\(878\) 0 0
\(879\) −6.00000 −0.202375
\(880\) 0 0
\(881\) −54.0000 −1.81931 −0.909653 0.415369i \(-0.863653\pi\)
−0.909653 + 0.415369i \(0.863653\pi\)
\(882\) 0 0
\(883\) 4.00000i 0.134611i 0.997732 + 0.0673054i \(0.0214402\pi\)
−0.997732 + 0.0673054i \(0.978560\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 80.0000 2.68311
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −24.0000 −0.802232
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 48.0000i 1.60089i
\(900\) 0 0
\(901\) − 36.0000i − 1.19933i
\(902\) 0 0
\(903\) −16.0000 −0.532447
\(904\) 0 0
\(905\) 14.0000 0.465376
\(906\) 0 0
\(907\) 44.0000i 1.46100i 0.682915 + 0.730498i \(0.260712\pi\)
−0.682915 + 0.730498i \(0.739288\pi\)
\(908\) 0 0
\(909\) − 18.0000i − 0.597022i
\(910\) 0 0
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) − 10.0000i − 0.330590i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 2.00000i − 0.0657596i
\(926\) 0 0
\(927\) −4.00000 −0.131377
\(928\) 0 0
\(929\) −6.00000 −0.196854 −0.0984268 0.995144i \(-0.531381\pi\)
−0.0984268 + 0.995144i \(0.531381\pi\)
\(930\) 0 0
\(931\) 36.0000i 1.17985i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −26.0000 −0.849383 −0.424691 0.905338i \(-0.639617\pi\)
−0.424691 + 0.905338i \(0.639617\pi\)
\(938\) 0 0
\(939\) 2.00000i 0.0652675i
\(940\) 0 0
\(941\) − 18.0000i − 0.586783i −0.955992 0.293392i \(-0.905216\pi\)
0.955992 0.293392i \(-0.0947840\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 4.00000 0.130120
\(946\) 0 0
\(947\) − 36.0000i − 1.16984i −0.811090 0.584921i \(-0.801125\pi\)
0.811090 0.584921i \(-0.198875\pi\)
\(948\) 0 0
\(949\) 4.00000i 0.129845i
\(950\) 0 0
\(951\) −18.0000 −0.583690
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 24.0000i 0.776622i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −24.0000 −0.775000
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 12.0000i 0.386695i
\(964\) 0 0
\(965\) 22.0000i 0.708205i
\(966\) 0 0
\(967\) 4.00000 0.128631 0.0643157 0.997930i \(-0.479514\pi\)
0.0643157 + 0.997930i \(0.479514\pi\)
\(968\) 0 0
\(969\) 24.0000 0.770991
\(970\) 0 0
\(971\) 24.0000i 0.770197i 0.922876 + 0.385098i \(0.125832\pi\)
−0.922876 + 0.385098i \(0.874168\pi\)
\(972\) 0 0
\(973\) − 16.0000i − 0.512936i
\(974\) 0 0
\(975\) 2.00000 0.0640513
\(976\) 0 0
\(977\) −42.0000 −1.34370 −0.671850 0.740688i \(-0.734500\pi\)
−0.671850 + 0.740688i \(0.734500\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) − 10.0000i − 0.319275i
\(982\) 0 0
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 0 0
\(985\) −6.00000 −0.191176
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) −28.0000 −0.888553
\(994\) 0 0
\(995\) 8.00000i 0.253617i
\(996\) 0 0
\(997\) 26.0000i 0.823428i 0.911313 + 0.411714i \(0.135070\pi\)
−0.911313 + 0.411714i \(0.864930\pi\)
\(998\) 0 0
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3840.2.k.y.1921.1 2
4.3 odd 2 3840.2.k.f.1921.2 2
8.3 odd 2 3840.2.k.f.1921.1 2
8.5 even 2 inner 3840.2.k.y.1921.2 2
16.3 odd 4 240.2.a.b.1.1 1
16.5 even 4 960.2.a.e.1.1 1
16.11 odd 4 960.2.a.p.1.1 1
16.13 even 4 30.2.a.a.1.1 1
48.5 odd 4 2880.2.a.a.1.1 1
48.11 even 4 2880.2.a.q.1.1 1
48.29 odd 4 90.2.a.c.1.1 1
48.35 even 4 720.2.a.j.1.1 1
80.3 even 4 1200.2.f.e.49.1 2
80.13 odd 4 150.2.c.a.49.2 2
80.19 odd 4 1200.2.a.k.1.1 1
80.27 even 4 4800.2.f.w.3649.1 2
80.29 even 4 150.2.a.b.1.1 1
80.37 odd 4 4800.2.f.p.3649.2 2
80.43 even 4 4800.2.f.w.3649.2 2
80.53 odd 4 4800.2.f.p.3649.1 2
80.59 odd 4 4800.2.a.d.1.1 1
80.67 even 4 1200.2.f.e.49.2 2
80.69 even 4 4800.2.a.cq.1.1 1
80.77 odd 4 150.2.c.a.49.1 2
112.13 odd 4 1470.2.a.d.1.1 1
112.45 odd 12 1470.2.i.q.961.1 2
112.61 odd 12 1470.2.i.q.361.1 2
112.93 even 12 1470.2.i.o.361.1 2
112.109 even 12 1470.2.i.o.961.1 2
144.13 even 12 810.2.e.l.541.1 2
144.29 odd 12 810.2.e.b.271.1 2
144.61 even 12 810.2.e.l.271.1 2
144.77 odd 12 810.2.e.b.541.1 2
176.109 odd 4 3630.2.a.w.1.1 1
208.77 even 4 5070.2.a.w.1.1 1
208.109 odd 4 5070.2.b.k.1351.2 2
208.125 odd 4 5070.2.b.k.1351.1 2
240.29 odd 4 450.2.a.d.1.1 1
240.77 even 4 450.2.c.b.199.2 2
240.83 odd 4 3600.2.f.i.2449.1 2
240.173 even 4 450.2.c.b.199.1 2
240.179 even 4 3600.2.a.f.1.1 1
240.227 odd 4 3600.2.f.i.2449.2 2
272.237 even 4 8670.2.a.g.1.1 1
336.125 even 4 4410.2.a.z.1.1 1
560.349 odd 4 7350.2.a.ct.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.2.a.a.1.1 1 16.13 even 4
90.2.a.c.1.1 1 48.29 odd 4
150.2.a.b.1.1 1 80.29 even 4
150.2.c.a.49.1 2 80.77 odd 4
150.2.c.a.49.2 2 80.13 odd 4
240.2.a.b.1.1 1 16.3 odd 4
450.2.a.d.1.1 1 240.29 odd 4
450.2.c.b.199.1 2 240.173 even 4
450.2.c.b.199.2 2 240.77 even 4
720.2.a.j.1.1 1 48.35 even 4
810.2.e.b.271.1 2 144.29 odd 12
810.2.e.b.541.1 2 144.77 odd 12
810.2.e.l.271.1 2 144.61 even 12
810.2.e.l.541.1 2 144.13 even 12
960.2.a.e.1.1 1 16.5 even 4
960.2.a.p.1.1 1 16.11 odd 4
1200.2.a.k.1.1 1 80.19 odd 4
1200.2.f.e.49.1 2 80.3 even 4
1200.2.f.e.49.2 2 80.67 even 4
1470.2.a.d.1.1 1 112.13 odd 4
1470.2.i.o.361.1 2 112.93 even 12
1470.2.i.o.961.1 2 112.109 even 12
1470.2.i.q.361.1 2 112.61 odd 12
1470.2.i.q.961.1 2 112.45 odd 12
2880.2.a.a.1.1 1 48.5 odd 4
2880.2.a.q.1.1 1 48.11 even 4
3600.2.a.f.1.1 1 240.179 even 4
3600.2.f.i.2449.1 2 240.83 odd 4
3600.2.f.i.2449.2 2 240.227 odd 4
3630.2.a.w.1.1 1 176.109 odd 4
3840.2.k.f.1921.1 2 8.3 odd 2
3840.2.k.f.1921.2 2 4.3 odd 2
3840.2.k.y.1921.1 2 1.1 even 1 trivial
3840.2.k.y.1921.2 2 8.5 even 2 inner
4410.2.a.z.1.1 1 336.125 even 4
4800.2.a.d.1.1 1 80.59 odd 4
4800.2.a.cq.1.1 1 80.69 even 4
4800.2.f.p.3649.1 2 80.53 odd 4
4800.2.f.p.3649.2 2 80.37 odd 4
4800.2.f.w.3649.1 2 80.27 even 4
4800.2.f.w.3649.2 2 80.43 even 4
5070.2.a.w.1.1 1 208.77 even 4
5070.2.b.k.1351.1 2 208.125 odd 4
5070.2.b.k.1351.2 2 208.109 odd 4
7350.2.a.ct.1.1 1 560.349 odd 4
8670.2.a.g.1.1 1 272.237 even 4