Properties

Label 3840.2.k.s.1921.1
Level $3840$
Weight $2$
Character 3840.1921
Analytic conductor $30.663$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3840.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(30.6625543762\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 480)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1921.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3840.1921
Dual form 3840.2.k.s.1921.2

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000i q^{3} +1.00000i q^{5} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{3} +1.00000i q^{5} -1.00000 q^{9} -2.00000i q^{13} +1.00000 q^{15} +6.00000 q^{17} -4.00000i q^{19} +8.00000 q^{23} -1.00000 q^{25} +1.00000i q^{27} +2.00000i q^{29} -4.00000 q^{31} +10.0000i q^{37} -2.00000 q^{39} -2.00000 q^{41} +4.00000i q^{43} -1.00000i q^{45} -8.00000 q^{47} -7.00000 q^{49} -6.00000i q^{51} -2.00000i q^{53} -4.00000 q^{57} -8.00000i q^{59} +2.00000i q^{61} +2.00000 q^{65} -12.0000i q^{67} -8.00000i q^{69} +8.00000 q^{71} +14.0000 q^{73} +1.00000i q^{75} +12.0000 q^{79} +1.00000 q^{81} -4.00000i q^{83} +6.00000i q^{85} +2.00000 q^{87} +14.0000 q^{89} +4.00000i q^{93} +4.00000 q^{95} +2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{9} + 2 q^{15} + 12 q^{17} + 16 q^{23} - 2 q^{25} - 8 q^{31} - 4 q^{39} - 4 q^{41} - 16 q^{47} - 14 q^{49} - 8 q^{57} + 4 q^{65} + 16 q^{71} + 28 q^{73} + 24 q^{79} + 2 q^{81} + 4 q^{87} + 28 q^{89} + 8 q^{95} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1537\) \(2561\) \(2821\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) − 4.00000i − 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.00000 1.66812 0.834058 0.551677i \(-0.186012\pi\)
0.834058 + 0.551677i \(0.186012\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 2.00000i 0.371391i 0.982607 + 0.185695i \(0.0594537\pi\)
−0.982607 + 0.185695i \(0.940546\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.0000i 1.64399i 0.569495 + 0.821995i \(0.307139\pi\)
−0.569495 + 0.821995i \(0.692861\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 0 0
\(45\) − 1.00000i − 0.149071i
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) − 6.00000i − 0.840168i
\(52\) 0 0
\(53\) − 2.00000i − 0.274721i −0.990521 0.137361i \(-0.956138\pi\)
0.990521 0.137361i \(-0.0438619\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) − 8.00000i − 1.04151i −0.853706 0.520756i \(-0.825650\pi\)
0.853706 0.520756i \(-0.174350\pi\)
\(60\) 0 0
\(61\) 2.00000i 0.256074i 0.991769 + 0.128037i \(0.0408676\pi\)
−0.991769 + 0.128037i \(0.959132\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) − 12.0000i − 1.46603i −0.680211 0.733017i \(-0.738112\pi\)
0.680211 0.733017i \(-0.261888\pi\)
\(68\) 0 0
\(69\) − 8.00000i − 0.963087i
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) 0 0
\(75\) 1.00000i 0.115470i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 4.00000i − 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) 0 0
\(85\) 6.00000i 0.650791i
\(86\) 0 0
\(87\) 2.00000 0.214423
\(88\) 0 0
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.00000i 0.414781i
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 10.0000i − 0.995037i −0.867453 0.497519i \(-0.834245\pi\)
0.867453 0.497519i \(-0.165755\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 12.0000i − 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i 0.877862 + 0.478913i \(0.158969\pi\)
−0.877862 + 0.478913i \(0.841031\pi\)
\(110\) 0 0
\(111\) 10.0000 0.949158
\(112\) 0 0
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) 8.00000i 0.746004i
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 2.00000i 0.180334i
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) − 8.00000i − 0.698963i −0.936943 0.349482i \(-0.886358\pi\)
0.936943 0.349482i \(-0.113642\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −22.0000 −1.87959 −0.939793 0.341743i \(-0.888983\pi\)
−0.939793 + 0.341743i \(0.888983\pi\)
\(138\) 0 0
\(139\) − 20.0000i − 1.69638i −0.529694 0.848189i \(-0.677693\pi\)
0.529694 0.848189i \(-0.322307\pi\)
\(140\) 0 0
\(141\) 8.00000i 0.673722i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 0 0
\(147\) 7.00000i 0.577350i
\(148\) 0 0
\(149\) − 10.0000i − 0.819232i −0.912258 0.409616i \(-0.865663\pi\)
0.912258 0.409616i \(-0.134337\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) − 4.00000i − 0.321288i
\(156\) 0 0
\(157\) − 10.0000i − 0.798087i −0.916932 0.399043i \(-0.869342\pi\)
0.916932 0.399043i \(-0.130658\pi\)
\(158\) 0 0
\(159\) −2.00000 −0.158610
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 20.0000i − 1.56652i −0.621694 0.783260i \(-0.713555\pi\)
0.621694 0.783260i \(-0.286445\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 4.00000i 0.305888i
\(172\) 0 0
\(173\) 2.00000i 0.152057i 0.997106 + 0.0760286i \(0.0242240\pi\)
−0.997106 + 0.0760286i \(0.975776\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −8.00000 −0.601317
\(178\) 0 0
\(179\) 16.0000i 1.19590i 0.801535 + 0.597948i \(0.204017\pi\)
−0.801535 + 0.597948i \(0.795983\pi\)
\(180\) 0 0
\(181\) 14.0000i 1.04061i 0.853980 + 0.520306i \(0.174182\pi\)
−0.853980 + 0.520306i \(0.825818\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) −10.0000 −0.735215
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) 10.0000 0.719816 0.359908 0.932988i \(-0.382808\pi\)
0.359908 + 0.932988i \(0.382808\pi\)
\(194\) 0 0
\(195\) − 2.00000i − 0.143223i
\(196\) 0 0
\(197\) − 2.00000i − 0.142494i −0.997459 0.0712470i \(-0.977302\pi\)
0.997459 0.0712470i \(-0.0226979\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) −12.0000 −0.846415
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) − 2.00000i − 0.139686i
\(206\) 0 0
\(207\) −8.00000 −0.556038
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 28.0000i 1.92760i 0.266627 + 0.963800i \(0.414091\pi\)
−0.266627 + 0.963800i \(0.585909\pi\)
\(212\) 0 0
\(213\) − 8.00000i − 0.548151i
\(214\) 0 0
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) − 14.0000i − 0.946032i
\(220\) 0 0
\(221\) − 12.0000i − 0.807207i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) − 12.0000i − 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i 0.980152 + 0.198246i \(0.0635244\pi\)
−0.980152 + 0.198246i \(0.936476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) − 8.00000i − 0.521862i
\(236\) 0 0
\(237\) − 12.0000i − 0.779484i
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) − 7.00000i − 0.447214i
\(246\) 0 0
\(247\) −8.00000 −0.509028
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) 24.0000i 1.51487i 0.652913 + 0.757433i \(0.273547\pi\)
−0.652913 + 0.757433i \(0.726453\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 6.00000 0.375735
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) − 2.00000i − 0.123797i
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 2.00000 0.122859
\(266\) 0 0
\(267\) − 14.0000i − 0.856786i
\(268\) 0 0
\(269\) − 30.0000i − 1.82913i −0.404436 0.914566i \(-0.632532\pi\)
0.404436 0.914566i \(-0.367468\pi\)
\(270\) 0 0
\(271\) −4.00000 −0.242983 −0.121491 0.992592i \(-0.538768\pi\)
−0.121491 + 0.992592i \(0.538768\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 18.0000i 1.08152i 0.841178 + 0.540758i \(0.181862\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −2.00000 −0.119310 −0.0596550 0.998219i \(-0.519000\pi\)
−0.0596550 + 0.998219i \(0.519000\pi\)
\(282\) 0 0
\(283\) − 12.0000i − 0.713326i −0.934233 0.356663i \(-0.883914\pi\)
0.934233 0.356663i \(-0.116086\pi\)
\(284\) 0 0
\(285\) − 4.00000i − 0.236940i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) − 2.00000i − 0.117242i
\(292\) 0 0
\(293\) 14.0000i 0.817889i 0.912559 + 0.408944i \(0.134103\pi\)
−0.912559 + 0.408944i \(0.865897\pi\)
\(294\) 0 0
\(295\) 8.00000 0.465778
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 16.0000i − 0.925304i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −10.0000 −0.574485
\(304\) 0 0
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) − 20.0000i − 1.14146i −0.821138 0.570730i \(-0.806660\pi\)
0.821138 0.570730i \(-0.193340\pi\)
\(308\) 0 0
\(309\) − 8.00000i − 0.455104i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −2.00000 −0.113047 −0.0565233 0.998401i \(-0.518002\pi\)
−0.0565233 + 0.998401i \(0.518002\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 26.0000i 1.46031i 0.683284 + 0.730153i \(0.260551\pi\)
−0.683284 + 0.730153i \(0.739449\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) − 24.0000i − 1.33540i
\(324\) 0 0
\(325\) 2.00000i 0.110940i
\(326\) 0 0
\(327\) 10.0000 0.553001
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 12.0000i − 0.659580i −0.944054 0.329790i \(-0.893022\pi\)
0.944054 0.329790i \(-0.106978\pi\)
\(332\) 0 0
\(333\) − 10.0000i − 0.547997i
\(334\) 0 0
\(335\) 12.0000 0.655630
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) 10.0000i 0.543125i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 8.00000 0.430706
\(346\) 0 0
\(347\) − 12.0000i − 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) 2.00000i 0.107058i 0.998566 + 0.0535288i \(0.0170469\pi\)
−0.998566 + 0.0535288i \(0.982953\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) −2.00000 −0.106449 −0.0532246 0.998583i \(-0.516950\pi\)
−0.0532246 + 0.998583i \(0.516950\pi\)
\(354\) 0 0
\(355\) 8.00000i 0.424596i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −16.0000 −0.844448 −0.422224 0.906492i \(-0.638750\pi\)
−0.422224 + 0.906492i \(0.638750\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) − 11.0000i − 0.577350i
\(364\) 0 0
\(365\) 14.0000i 0.732793i
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 0 0
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) − 14.0000i − 0.724893i −0.932005 0.362446i \(-0.881942\pi\)
0.932005 0.362446i \(-0.118058\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 4.00000 0.206010
\(378\) 0 0
\(379\) 20.0000i 1.02733i 0.857991 + 0.513665i \(0.171713\pi\)
−0.857991 + 0.513665i \(0.828287\pi\)
\(380\) 0 0
\(381\) − 16.0000i − 0.819705i
\(382\) 0 0
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 4.00000i − 0.203331i
\(388\) 0 0
\(389\) 6.00000i 0.304212i 0.988364 + 0.152106i \(0.0486055\pi\)
−0.988364 + 0.152106i \(0.951394\pi\)
\(390\) 0 0
\(391\) 48.0000 2.42746
\(392\) 0 0
\(393\) −8.00000 −0.403547
\(394\) 0 0
\(395\) 12.0000i 0.603786i
\(396\) 0 0
\(397\) 30.0000i 1.50566i 0.658217 + 0.752828i \(0.271311\pi\)
−0.658217 + 0.752828i \(0.728689\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.0000 −0.699127 −0.349563 0.936913i \(-0.613670\pi\)
−0.349563 + 0.936913i \(0.613670\pi\)
\(402\) 0 0
\(403\) 8.00000i 0.398508i
\(404\) 0 0
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) 22.0000i 1.08518i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 4.00000 0.196352
\(416\) 0 0
\(417\) −20.0000 −0.979404
\(418\) 0 0
\(419\) − 32.0000i − 1.56330i −0.623716 0.781651i \(-0.714378\pi\)
0.623716 0.781651i \(-0.285622\pi\)
\(420\) 0 0
\(421\) − 10.0000i − 0.487370i −0.969854 0.243685i \(-0.921644\pi\)
0.969854 0.243685i \(-0.0783563\pi\)
\(422\) 0 0
\(423\) 8.00000 0.388973
\(424\) 0 0
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 0 0
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) 0 0
\(435\) 2.00000i 0.0958927i
\(436\) 0 0
\(437\) − 32.0000i − 1.53077i
\(438\) 0 0
\(439\) −4.00000 −0.190910 −0.0954548 0.995434i \(-0.530431\pi\)
−0.0954548 + 0.995434i \(0.530431\pi\)
\(440\) 0 0
\(441\) 7.00000 0.333333
\(442\) 0 0
\(443\) 20.0000i 0.950229i 0.879924 + 0.475114i \(0.157593\pi\)
−0.879924 + 0.475114i \(0.842407\pi\)
\(444\) 0 0
\(445\) 14.0000i 0.663664i
\(446\) 0 0
\(447\) −10.0000 −0.472984
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 20.0000i − 0.939682i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 38.0000 1.77757 0.888783 0.458329i \(-0.151552\pi\)
0.888783 + 0.458329i \(0.151552\pi\)
\(458\) 0 0
\(459\) 6.00000i 0.280056i
\(460\) 0 0
\(461\) − 14.0000i − 0.652045i −0.945362 0.326023i \(-0.894291\pi\)
0.945362 0.326023i \(-0.105709\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 0 0
\(465\) −4.00000 −0.185496
\(466\) 0 0
\(467\) − 4.00000i − 0.185098i −0.995708 0.0925490i \(-0.970499\pi\)
0.995708 0.0925490i \(-0.0295015\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −10.0000 −0.460776
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 4.00000i 0.183533i
\(476\) 0 0
\(477\) 2.00000i 0.0915737i
\(478\) 0 0
\(479\) −32.0000 −1.46212 −0.731059 0.682315i \(-0.760973\pi\)
−0.731059 + 0.682315i \(0.760973\pi\)
\(480\) 0 0
\(481\) 20.0000 0.911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.00000i 0.0908153i
\(486\) 0 0
\(487\) −40.0000 −1.81257 −0.906287 0.422664i \(-0.861095\pi\)
−0.906287 + 0.422664i \(0.861095\pi\)
\(488\) 0 0
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) 16.0000i 0.722070i 0.932552 + 0.361035i \(0.117576\pi\)
−0.932552 + 0.361035i \(0.882424\pi\)
\(492\) 0 0
\(493\) 12.0000i 0.540453i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.00000i 0.179065i 0.995984 + 0.0895323i \(0.0285372\pi\)
−0.995984 + 0.0895323i \(0.971463\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) 0 0
\(507\) − 9.00000i − 0.399704i
\(508\) 0 0
\(509\) − 30.0000i − 1.32973i −0.746965 0.664863i \(-0.768490\pi\)
0.746965 0.664863i \(-0.231510\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.00000 0.176604
\(514\) 0 0
\(515\) 8.00000i 0.352522i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 2.00000 0.0877903
\(520\) 0 0
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 0 0
\(523\) 28.0000i 1.22435i 0.790721 + 0.612177i \(0.209706\pi\)
−0.790721 + 0.612177i \(0.790294\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −24.0000 −1.04546
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) 8.00000i 0.347170i
\(532\) 0 0
\(533\) 4.00000i 0.173259i
\(534\) 0 0
\(535\) 12.0000 0.518805
\(536\) 0 0
\(537\) 16.0000 0.690451
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 42.0000i 1.80572i 0.429934 + 0.902861i \(0.358537\pi\)
−0.429934 + 0.902861i \(0.641463\pi\)
\(542\) 0 0
\(543\) 14.0000 0.600798
\(544\) 0 0
\(545\) −10.0000 −0.428353
\(546\) 0 0
\(547\) − 28.0000i − 1.19719i −0.801050 0.598597i \(-0.795725\pi\)
0.801050 0.598597i \(-0.204275\pi\)
\(548\) 0 0
\(549\) − 2.00000i − 0.0853579i
\(550\) 0 0
\(551\) 8.00000 0.340811
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 10.0000i 0.424476i
\(556\) 0 0
\(557\) 18.0000i 0.762684i 0.924434 + 0.381342i \(0.124538\pi\)
−0.924434 + 0.381342i \(0.875462\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.0000i 1.51722i 0.651546 + 0.758610i \(0.274121\pi\)
−0.651546 + 0.758610i \(0.725879\pi\)
\(564\) 0 0
\(565\) − 10.0000i − 0.420703i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) 4.00000i 0.167395i 0.996491 + 0.0836974i \(0.0266729\pi\)
−0.996491 + 0.0836974i \(0.973327\pi\)
\(572\) 0 0
\(573\) − 24.0000i − 1.00261i
\(574\) 0 0
\(575\) −8.00000 −0.333623
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) − 10.0000i − 0.415586i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −2.00000 −0.0826898
\(586\) 0 0
\(587\) − 12.0000i − 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 0 0
\(589\) 16.0000i 0.659269i
\(590\) 0 0
\(591\) −2.00000 −0.0822690
\(592\) 0 0
\(593\) −26.0000 −1.06769 −0.533846 0.845582i \(-0.679254\pi\)
−0.533846 + 0.845582i \(0.679254\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 20.0000i 0.818546i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) 0 0
\(603\) 12.0000i 0.488678i
\(604\) 0 0
\(605\) 11.0000i 0.447214i
\(606\) 0 0
\(607\) −40.0000 −1.62355 −0.811775 0.583970i \(-0.801498\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16.0000i 0.647291i
\(612\) 0 0
\(613\) 26.0000i 1.05013i 0.851062 + 0.525065i \(0.175959\pi\)
−0.851062 + 0.525065i \(0.824041\pi\)
\(614\) 0 0
\(615\) −2.00000 −0.0806478
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) − 4.00000i − 0.160774i −0.996764 0.0803868i \(-0.974384\pi\)
0.996764 0.0803868i \(-0.0256155\pi\)
\(620\) 0 0
\(621\) 8.00000i 0.321029i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 60.0000i 2.39236i
\(630\) 0 0
\(631\) −4.00000 −0.159237 −0.0796187 0.996825i \(-0.525370\pi\)
−0.0796187 + 0.996825i \(0.525370\pi\)
\(632\) 0 0
\(633\) 28.0000 1.11290
\(634\) 0 0
\(635\) 16.0000i 0.634941i
\(636\) 0 0
\(637\) 14.0000i 0.554700i
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) 0 0
\(641\) 26.0000 1.02694 0.513469 0.858108i \(-0.328360\pi\)
0.513469 + 0.858108i \(0.328360\pi\)
\(642\) 0 0
\(643\) − 4.00000i − 0.157745i −0.996885 0.0788723i \(-0.974868\pi\)
0.996885 0.0788723i \(-0.0251319\pi\)
\(644\) 0 0
\(645\) 4.00000i 0.157500i
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 30.0000i − 1.17399i −0.809590 0.586995i \(-0.800311\pi\)
0.809590 0.586995i \(-0.199689\pi\)
\(654\) 0 0
\(655\) 8.00000 0.312586
\(656\) 0 0
\(657\) −14.0000 −0.546192
\(658\) 0 0
\(659\) 24.0000i 0.934907i 0.884018 + 0.467454i \(0.154829\pi\)
−0.884018 + 0.467454i \(0.845171\pi\)
\(660\) 0 0
\(661\) 38.0000i 1.47803i 0.673690 + 0.739014i \(0.264708\pi\)
−0.673690 + 0.739014i \(0.735292\pi\)
\(662\) 0 0
\(663\) −12.0000 −0.466041
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 16.0000i 0.619522i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) 0 0
\(675\) − 1.00000i − 0.0384900i
\(676\) 0 0
\(677\) − 42.0000i − 1.61419i −0.590421 0.807096i \(-0.701038\pi\)
0.590421 0.807096i \(-0.298962\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) − 36.0000i − 1.37750i −0.724998 0.688751i \(-0.758159\pi\)
0.724998 0.688751i \(-0.241841\pi\)
\(684\) 0 0
\(685\) − 22.0000i − 0.840577i
\(686\) 0 0
\(687\) 6.00000 0.228914
\(688\) 0 0
\(689\) −4.00000 −0.152388
\(690\) 0 0
\(691\) 28.0000i 1.06517i 0.846376 + 0.532585i \(0.178779\pi\)
−0.846376 + 0.532585i \(0.821221\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 20.0000 0.758643
\(696\) 0 0
\(697\) −12.0000 −0.454532
\(698\) 0 0
\(699\) 6.00000i 0.226941i
\(700\) 0 0
\(701\) − 30.0000i − 1.13308i −0.824033 0.566542i \(-0.808281\pi\)
0.824033 0.566542i \(-0.191719\pi\)
\(702\) 0 0
\(703\) 40.0000 1.50863
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) − 10.0000i − 0.375558i −0.982211 0.187779i \(-0.939871\pi\)
0.982211 0.187779i \(-0.0601289\pi\)
\(710\) 0 0
\(711\) −12.0000 −0.450035
\(712\) 0 0
\(713\) −32.0000 −1.19841
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 24.0000i − 0.896296i
\(718\) 0 0
\(719\) −40.0000 −1.49175 −0.745874 0.666087i \(-0.767968\pi\)
−0.745874 + 0.666087i \(0.767968\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) − 2.00000i − 0.0743808i
\(724\) 0 0
\(725\) − 2.00000i − 0.0742781i
\(726\) 0 0
\(727\) −40.0000 −1.48352 −0.741759 0.670667i \(-0.766008\pi\)
−0.741759 + 0.670667i \(0.766008\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 24.0000i 0.887672i
\(732\) 0 0
\(733\) 22.0000i 0.812589i 0.913742 + 0.406294i \(0.133179\pi\)
−0.913742 + 0.406294i \(0.866821\pi\)
\(734\) 0 0
\(735\) −7.00000 −0.258199
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 28.0000i − 1.03000i −0.857191 0.514998i \(-0.827793\pi\)
0.857191 0.514998i \(-0.172207\pi\)
\(740\) 0 0
\(741\) 8.00000i 0.293887i
\(742\) 0 0
\(743\) −8.00000 −0.293492 −0.146746 0.989174i \(-0.546880\pi\)
−0.146746 + 0.989174i \(0.546880\pi\)
\(744\) 0 0
\(745\) 10.0000 0.366372
\(746\) 0 0
\(747\) 4.00000i 0.146352i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 28.0000 1.02173 0.510867 0.859660i \(-0.329324\pi\)
0.510867 + 0.859660i \(0.329324\pi\)
\(752\) 0 0
\(753\) 24.0000 0.874609
\(754\) 0 0
\(755\) 20.0000i 0.727875i
\(756\) 0 0
\(757\) 2.00000i 0.0726912i 0.999339 + 0.0363456i \(0.0115717\pi\)
−0.999339 + 0.0363456i \(0.988428\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) − 6.00000i − 0.216930i
\(766\) 0 0
\(767\) −16.0000 −0.577727
\(768\) 0 0
\(769\) 50.0000 1.80305 0.901523 0.432731i \(-0.142450\pi\)
0.901523 + 0.432731i \(0.142450\pi\)
\(770\) 0 0
\(771\) − 6.00000i − 0.216085i
\(772\) 0 0
\(773\) 46.0000i 1.65451i 0.561830 + 0.827253i \(0.310097\pi\)
−0.561830 + 0.827253i \(0.689903\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.00000i 0.286630i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −2.00000 −0.0714742
\(784\) 0 0
\(785\) 10.0000 0.356915
\(786\) 0 0
\(787\) 44.0000i 1.56843i 0.620489 + 0.784215i \(0.286934\pi\)
−0.620489 + 0.784215i \(0.713066\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.00000 0.142044
\(794\) 0 0
\(795\) − 2.00000i − 0.0709327i
\(796\) 0 0
\(797\) − 30.0000i − 1.06265i −0.847167 0.531327i \(-0.821693\pi\)
0.847167 0.531327i \(-0.178307\pi\)
\(798\) 0 0
\(799\) −48.0000 −1.69812
\(800\) 0 0
\(801\) −14.0000 −0.494666
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −30.0000 −1.05605
\(808\) 0 0
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 0 0
\(811\) 36.0000i 1.26413i 0.774915 + 0.632065i \(0.217793\pi\)
−0.774915 + 0.632065i \(0.782207\pi\)
\(812\) 0 0
\(813\) 4.00000i 0.140286i
\(814\) 0 0
\(815\) 20.0000 0.700569
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 42.0000i − 1.46581i −0.680331 0.732905i \(-0.738164\pi\)
0.680331 0.732905i \(-0.261836\pi\)
\(822\) 0 0
\(823\) −40.0000 −1.39431 −0.697156 0.716919i \(-0.745552\pi\)
−0.697156 + 0.716919i \(0.745552\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 4.00000i − 0.139094i −0.997579 0.0695468i \(-0.977845\pi\)
0.997579 0.0695468i \(-0.0221553\pi\)
\(828\) 0 0
\(829\) − 6.00000i − 0.208389i −0.994557 0.104194i \(-0.966774\pi\)
0.994557 0.104194i \(-0.0332264\pi\)
\(830\) 0 0
\(831\) 18.0000 0.624413
\(832\) 0 0
\(833\) −42.0000 −1.45521
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 4.00000i − 0.138260i
\(838\) 0 0
\(839\) 16.0000 0.552381 0.276191 0.961103i \(-0.410928\pi\)
0.276191 + 0.961103i \(0.410928\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) 2.00000i 0.0688837i
\(844\) 0 0
\(845\) 9.00000i 0.309609i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −12.0000 −0.411839
\(850\) 0 0
\(851\) 80.0000i 2.74236i
\(852\) 0 0
\(853\) − 6.00000i − 0.205436i −0.994711 0.102718i \(-0.967246\pi\)
0.994711 0.102718i \(-0.0327539\pi\)
\(854\) 0 0
\(855\) −4.00000 −0.136797
\(856\) 0 0
\(857\) −30.0000 −1.02478 −0.512390 0.858753i \(-0.671240\pi\)
−0.512390 + 0.858753i \(0.671240\pi\)
\(858\) 0 0
\(859\) 20.0000i 0.682391i 0.939992 + 0.341196i \(0.110832\pi\)
−0.939992 + 0.341196i \(0.889168\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) −2.00000 −0.0680020
\(866\) 0 0
\(867\) − 19.0000i − 0.645274i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −24.0000 −0.813209
\(872\) 0 0
\(873\) −2.00000 −0.0676897
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 6.00000i 0.202606i 0.994856 + 0.101303i \(0.0323011\pi\)
−0.994856 + 0.101303i \(0.967699\pi\)
\(878\) 0 0
\(879\) 14.0000 0.472208
\(880\) 0 0
\(881\) 26.0000 0.875962 0.437981 0.898984i \(-0.355694\pi\)
0.437981 + 0.898984i \(0.355694\pi\)
\(882\) 0 0
\(883\) 44.0000i 1.48072i 0.672212 + 0.740359i \(0.265344\pi\)
−0.672212 + 0.740359i \(0.734656\pi\)
\(884\) 0 0
\(885\) − 8.00000i − 0.268917i
\(886\) 0 0
\(887\) −32.0000 −1.07445 −0.537227 0.843437i \(-0.680528\pi\)
−0.537227 + 0.843437i \(0.680528\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 32.0000i 1.07084i
\(894\) 0 0
\(895\) −16.0000 −0.534821
\(896\) 0 0
\(897\) −16.0000 −0.534224
\(898\) 0 0
\(899\) − 8.00000i − 0.266815i
\(900\) 0 0
\(901\) − 12.0000i − 0.399778i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −14.0000 −0.465376
\(906\) 0 0
\(907\) − 28.0000i − 0.929725i −0.885383 0.464862i \(-0.846104\pi\)
0.885383 0.464862i \(-0.153896\pi\)
\(908\) 0 0
\(909\) 10.0000i 0.331679i
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 2.00000i 0.0661180i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −4.00000 −0.131948 −0.0659739 0.997821i \(-0.521015\pi\)
−0.0659739 + 0.997821i \(0.521015\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) 0 0
\(923\) − 16.0000i − 0.526646i
\(924\) 0 0
\(925\) − 10.0000i − 0.328798i
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) 0 0
\(929\) −14.0000 −0.459325 −0.229663 0.973270i \(-0.573762\pi\)
−0.229663 + 0.973270i \(0.573762\pi\)
\(930\) 0 0
\(931\) 28.0000i 0.917663i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 6.00000 0.196011 0.0980057 0.995186i \(-0.468754\pi\)
0.0980057 + 0.995186i \(0.468754\pi\)
\(938\) 0 0
\(939\) 2.00000i 0.0652675i
\(940\) 0 0
\(941\) 18.0000i 0.586783i 0.955992 + 0.293392i \(0.0947840\pi\)
−0.955992 + 0.293392i \(0.905216\pi\)
\(942\) 0 0
\(943\) −16.0000 −0.521032
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 28.0000i 0.909878i 0.890523 + 0.454939i \(0.150339\pi\)
−0.890523 + 0.454939i \(0.849661\pi\)
\(948\) 0 0
\(949\) − 28.0000i − 0.908918i
\(950\) 0 0
\(951\) 26.0000 0.843108
\(952\) 0 0
\(953\) 26.0000 0.842223 0.421111 0.907009i \(-0.361640\pi\)
0.421111 + 0.907009i \(0.361640\pi\)
\(954\) 0 0
\(955\) 24.0000i 0.776622i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 12.0000i 0.386695i
\(964\) 0 0
\(965\) 10.0000i 0.321911i
\(966\) 0 0
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) 0 0
\(969\) −24.0000 −0.770991
\(970\) 0 0
\(971\) − 8.00000i − 0.256732i −0.991727 0.128366i \(-0.959027\pi\)
0.991727 0.128366i \(-0.0409733\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 2.00000 0.0640513
\(976\) 0 0
\(977\) 38.0000 1.21573 0.607864 0.794041i \(-0.292027\pi\)
0.607864 + 0.794041i \(0.292027\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) − 10.0000i − 0.319275i
\(982\) 0 0
\(983\) −56.0000 −1.78612 −0.893061 0.449935i \(-0.851447\pi\)
−0.893061 + 0.449935i \(0.851447\pi\)
\(984\) 0 0
\(985\) 2.00000 0.0637253
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 32.0000i 1.01754i
\(990\) 0 0
\(991\) 52.0000 1.65183 0.825917 0.563791i \(-0.190658\pi\)
0.825917 + 0.563791i \(0.190658\pi\)
\(992\) 0 0
\(993\) −12.0000 −0.380808
\(994\) 0 0
\(995\) − 20.0000i − 0.634043i
\(996\) 0 0
\(997\) 18.0000i 0.570066i 0.958518 + 0.285033i \(0.0920045\pi\)
−0.958518 + 0.285033i \(0.907995\pi\)
\(998\) 0 0
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3840.2.k.s.1921.1 2
4.3 odd 2 3840.2.k.n.1921.2 2
8.3 odd 2 3840.2.k.n.1921.1 2
8.5 even 2 inner 3840.2.k.s.1921.2 2
16.3 odd 4 480.2.a.d.1.1 1
16.5 even 4 960.2.a.b.1.1 1
16.11 odd 4 960.2.a.k.1.1 1
16.13 even 4 480.2.a.g.1.1 yes 1
48.5 odd 4 2880.2.a.z.1.1 1
48.11 even 4 2880.2.a.ba.1.1 1
48.29 odd 4 1440.2.a.d.1.1 1
48.35 even 4 1440.2.a.c.1.1 1
80.3 even 4 2400.2.f.l.1249.1 2
80.13 odd 4 2400.2.f.g.1249.2 2
80.19 odd 4 2400.2.a.z.1.1 1
80.27 even 4 4800.2.f.o.3649.1 2
80.29 even 4 2400.2.a.i.1.1 1
80.37 odd 4 4800.2.f.v.3649.2 2
80.43 even 4 4800.2.f.o.3649.2 2
80.53 odd 4 4800.2.f.v.3649.1 2
80.59 odd 4 4800.2.a.s.1.1 1
80.67 even 4 2400.2.f.l.1249.2 2
80.69 even 4 4800.2.a.cb.1.1 1
80.77 odd 4 2400.2.f.g.1249.1 2
240.29 odd 4 7200.2.a.ba.1.1 1
240.77 even 4 7200.2.f.k.6049.1 2
240.83 odd 4 7200.2.f.s.6049.2 2
240.173 even 4 7200.2.f.k.6049.2 2
240.179 even 4 7200.2.a.z.1.1 1
240.227 odd 4 7200.2.f.s.6049.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.2.a.d.1.1 1 16.3 odd 4
480.2.a.g.1.1 yes 1 16.13 even 4
960.2.a.b.1.1 1 16.5 even 4
960.2.a.k.1.1 1 16.11 odd 4
1440.2.a.c.1.1 1 48.35 even 4
1440.2.a.d.1.1 1 48.29 odd 4
2400.2.a.i.1.1 1 80.29 even 4
2400.2.a.z.1.1 1 80.19 odd 4
2400.2.f.g.1249.1 2 80.77 odd 4
2400.2.f.g.1249.2 2 80.13 odd 4
2400.2.f.l.1249.1 2 80.3 even 4
2400.2.f.l.1249.2 2 80.67 even 4
2880.2.a.z.1.1 1 48.5 odd 4
2880.2.a.ba.1.1 1 48.11 even 4
3840.2.k.n.1921.1 2 8.3 odd 2
3840.2.k.n.1921.2 2 4.3 odd 2
3840.2.k.s.1921.1 2 1.1 even 1 trivial
3840.2.k.s.1921.2 2 8.5 even 2 inner
4800.2.a.s.1.1 1 80.59 odd 4
4800.2.a.cb.1.1 1 80.69 even 4
4800.2.f.o.3649.1 2 80.27 even 4
4800.2.f.o.3649.2 2 80.43 even 4
4800.2.f.v.3649.1 2 80.53 odd 4
4800.2.f.v.3649.2 2 80.37 odd 4
7200.2.a.z.1.1 1 240.179 even 4
7200.2.a.ba.1.1 1 240.29 odd 4
7200.2.f.k.6049.1 2 240.77 even 4
7200.2.f.k.6049.2 2 240.173 even 4
7200.2.f.s.6049.1 2 240.227 odd 4
7200.2.f.s.6049.2 2 240.83 odd 4