Properties

Label 3840.2.k.j.1921.2
Level $3840$
Weight $2$
Character 3840.1921
Analytic conductor $30.663$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3840.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(30.6625543762\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1921.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3840.1921
Dual form 3840.2.k.j.1921.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000i q^{3} +1.00000i q^{5} -1.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{3} +1.00000i q^{5} -1.00000 q^{9} +4.00000i q^{11} -6.00000i q^{13} -1.00000 q^{15} -6.00000 q^{17} -4.00000i q^{19} -1.00000 q^{25} -1.00000i q^{27} +2.00000i q^{29} +8.00000 q^{31} -4.00000 q^{33} -2.00000i q^{37} +6.00000 q^{39} +6.00000 q^{41} -12.0000i q^{43} -1.00000i q^{45} -8.00000 q^{47} -7.00000 q^{49} -6.00000i q^{51} +6.00000i q^{53} -4.00000 q^{55} +4.00000 q^{57} -12.0000i q^{59} -14.0000i q^{61} +6.00000 q^{65} +4.00000i q^{67} +8.00000 q^{71} +6.00000 q^{73} -1.00000i q^{75} +8.00000 q^{79} +1.00000 q^{81} -12.0000i q^{83} -6.00000i q^{85} -2.00000 q^{87} -10.0000 q^{89} +8.00000i q^{93} +4.00000 q^{95} +2.00000 q^{97} -4.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{9} - 2q^{15} - 12q^{17} - 2q^{25} + 16q^{31} - 8q^{33} + 12q^{39} + 12q^{41} - 16q^{47} - 14q^{49} - 8q^{55} + 8q^{57} + 12q^{65} + 16q^{71} + 12q^{73} + 16q^{79} + 2q^{81} - 4q^{87} - 20q^{89} + 8q^{95} + 4q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1537\) \(2561\) \(2821\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 4.00000i 1.20605i 0.797724 + 0.603023i \(0.206037\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(12\) 0 0
\(13\) − 6.00000i − 1.66410i −0.554700 0.832050i \(-0.687167\pi\)
0.554700 0.832050i \(-0.312833\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) − 4.00000i − 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) 2.00000i 0.371391i 0.982607 + 0.185695i \(0.0594537\pi\)
−0.982607 + 0.185695i \(0.940546\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) −4.00000 −0.696311
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 2.00000i − 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 0 0
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) − 12.0000i − 1.82998i −0.403473 0.914991i \(-0.632197\pi\)
0.403473 0.914991i \(-0.367803\pi\)
\(44\) 0 0
\(45\) − 1.00000i − 0.149071i
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) − 6.00000i − 0.840168i
\(52\) 0 0
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 0 0
\(59\) − 12.0000i − 1.56227i −0.624364 0.781133i \(-0.714642\pi\)
0.624364 0.781133i \(-0.285358\pi\)
\(60\) 0 0
\(61\) − 14.0000i − 1.79252i −0.443533 0.896258i \(-0.646275\pi\)
0.443533 0.896258i \(-0.353725\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) − 1.00000i − 0.115470i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 12.0000i − 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) 0 0
\(85\) − 6.00000i − 0.650791i
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 8.00000i 0.829561i
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) − 4.00000i − 0.402015i
\(100\) 0 0
\(101\) 6.00000i 0.597022i 0.954406 + 0.298511i \(0.0964900\pi\)
−0.954406 + 0.298511i \(0.903510\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.00000i 0.386695i 0.981130 + 0.193347i \(0.0619344\pi\)
−0.981130 + 0.193347i \(0.938066\pi\)
\(108\) 0 0
\(109\) 18.0000i 1.72409i 0.506834 + 0.862044i \(0.330816\pi\)
−0.506834 + 0.862044i \(0.669184\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.00000i 0.554700i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) 0 0
\(123\) 6.00000i 0.541002i
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 12.0000 1.05654
\(130\) 0 0
\(131\) 4.00000i 0.349482i 0.984614 + 0.174741i \(0.0559088\pi\)
−0.984614 + 0.174741i \(0.944091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) − 4.00000i − 0.339276i −0.985506 0.169638i \(-0.945740\pi\)
0.985506 0.169638i \(-0.0542598\pi\)
\(140\) 0 0
\(141\) − 8.00000i − 0.673722i
\(142\) 0 0
\(143\) 24.0000 2.00698
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 0 0
\(147\) − 7.00000i − 0.577350i
\(148\) 0 0
\(149\) − 10.0000i − 0.819232i −0.912258 0.409616i \(-0.865663\pi\)
0.912258 0.409616i \(-0.134337\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) 8.00000i 0.642575i
\(156\) 0 0
\(157\) − 6.00000i − 0.478852i −0.970915 0.239426i \(-0.923041\pi\)
0.970915 0.239426i \(-0.0769593\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 0 0
\(165\) − 4.00000i − 0.311400i
\(166\) 0 0
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) −23.0000 −1.76923
\(170\) 0 0
\(171\) 4.00000i 0.305888i
\(172\) 0 0
\(173\) − 14.0000i − 1.06440i −0.846619 0.532200i \(-0.821365\pi\)
0.846619 0.532200i \(-0.178635\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 12.0000 0.901975
\(178\) 0 0
\(179\) − 12.0000i − 0.896922i −0.893802 0.448461i \(-0.851972\pi\)
0.893802 0.448461i \(-0.148028\pi\)
\(180\) 0 0
\(181\) − 10.0000i − 0.743294i −0.928374 0.371647i \(-0.878793\pi\)
0.928374 0.371647i \(-0.121207\pi\)
\(182\) 0 0
\(183\) 14.0000 1.03491
\(184\) 0 0
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) − 24.0000i − 1.75505i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 0 0
\(195\) 6.00000i 0.429669i
\(196\) 0 0
\(197\) − 10.0000i − 0.712470i −0.934396 0.356235i \(-0.884060\pi\)
0.934396 0.356235i \(-0.115940\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 6.00000i 0.419058i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) 12.0000i 0.826114i 0.910705 + 0.413057i \(0.135539\pi\)
−0.910705 + 0.413057i \(0.864461\pi\)
\(212\) 0 0
\(213\) 8.00000i 0.548151i
\(214\) 0 0
\(215\) 12.0000 0.818393
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 6.00000i 0.405442i
\(220\) 0 0
\(221\) 36.0000i 2.42162i
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) − 28.0000i − 1.85843i −0.369546 0.929213i \(-0.620487\pi\)
0.369546 0.929213i \(-0.379513\pi\)
\(228\) 0 0
\(229\) − 10.0000i − 0.660819i −0.943838 0.330409i \(-0.892813\pi\)
0.943838 0.330409i \(-0.107187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.00000 −0.131024 −0.0655122 0.997852i \(-0.520868\pi\)
−0.0655122 + 0.997852i \(0.520868\pi\)
\(234\) 0 0
\(235\) − 8.00000i − 0.521862i
\(236\) 0 0
\(237\) 8.00000i 0.519656i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) − 7.00000i − 0.447214i
\(246\) 0 0
\(247\) −24.0000 −1.52708
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) − 28.0000i − 1.76734i −0.468106 0.883672i \(-0.655064\pi\)
0.468106 0.883672i \(-0.344936\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 6.00000 0.375735
\(256\) 0 0
\(257\) 10.0000 0.623783 0.311891 0.950118i \(-0.399037\pi\)
0.311891 + 0.950118i \(0.399037\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) − 2.00000i − 0.123797i
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) − 10.0000i − 0.611990i
\(268\) 0 0
\(269\) 18.0000i 1.09748i 0.835993 + 0.548740i \(0.184892\pi\)
−0.835993 + 0.548740i \(0.815108\pi\)
\(270\) 0 0
\(271\) 24.0000 1.45790 0.728948 0.684569i \(-0.240010\pi\)
0.728948 + 0.684569i \(0.240010\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 4.00000i − 0.241209i
\(276\) 0 0
\(277\) − 2.00000i − 0.120168i −0.998193 0.0600842i \(-0.980863\pi\)
0.998193 0.0600842i \(-0.0191369\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i 0.992908 + 0.118888i \(0.0379328\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(284\) 0 0
\(285\) 4.00000i 0.236940i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 2.00000i 0.117242i
\(292\) 0 0
\(293\) 22.0000i 1.28525i 0.766179 + 0.642627i \(0.222155\pi\)
−0.766179 + 0.642627i \(0.777845\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) 4.00000 0.232104
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −6.00000 −0.344691
\(304\) 0 0
\(305\) 14.0000 0.801638
\(306\) 0 0
\(307\) − 28.0000i − 1.59804i −0.601302 0.799022i \(-0.705351\pi\)
0.601302 0.799022i \(-0.294649\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 14.0000i − 0.786318i −0.919470 0.393159i \(-0.871382\pi\)
0.919470 0.393159i \(-0.128618\pi\)
\(318\) 0 0
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) 24.0000i 1.33540i
\(324\) 0 0
\(325\) 6.00000i 0.332820i
\(326\) 0 0
\(327\) −18.0000 −0.995402
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 28.0000i 1.53902i 0.638635 + 0.769510i \(0.279499\pi\)
−0.638635 + 0.769510i \(0.720501\pi\)
\(332\) 0 0
\(333\) 2.00000i 0.109599i
\(334\) 0 0
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) − 6.00000i − 0.325875i
\(340\) 0 0
\(341\) 32.0000i 1.73290i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 12.0000i − 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) − 14.0000i − 0.749403i −0.927146 0.374701i \(-0.877745\pi\)
0.927146 0.374701i \(-0.122255\pi\)
\(350\) 0 0
\(351\) −6.00000 −0.320256
\(352\) 0 0
\(353\) 26.0000 1.38384 0.691920 0.721974i \(-0.256765\pi\)
0.691920 + 0.721974i \(0.256765\pi\)
\(354\) 0 0
\(355\) 8.00000i 0.424596i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) − 5.00000i − 0.262432i
\(364\) 0 0
\(365\) 6.00000i 0.314054i
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) − 2.00000i − 0.103556i −0.998659 0.0517780i \(-0.983511\pi\)
0.998659 0.0517780i \(-0.0164888\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) − 4.00000i − 0.205466i −0.994709 0.102733i \(-0.967241\pi\)
0.994709 0.102733i \(-0.0327588\pi\)
\(380\) 0 0
\(381\) 8.00000i 0.409852i
\(382\) 0 0
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 12.0000i 0.609994i
\(388\) 0 0
\(389\) 6.00000i 0.304212i 0.988364 + 0.152106i \(0.0486055\pi\)
−0.988364 + 0.152106i \(0.951394\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −4.00000 −0.201773
\(394\) 0 0
\(395\) 8.00000i 0.402524i
\(396\) 0 0
\(397\) − 38.0000i − 1.90717i −0.301131 0.953583i \(-0.597364\pi\)
0.301131 0.953583i \(-0.402636\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.0000 −0.699127 −0.349563 0.936913i \(-0.613670\pi\)
−0.349563 + 0.936913i \(0.613670\pi\)
\(402\) 0 0
\(403\) − 48.0000i − 2.39105i
\(404\) 0 0
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) − 2.00000i − 0.0986527i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 0 0
\(417\) 4.00000 0.195881
\(418\) 0 0
\(419\) 36.0000i 1.75872i 0.476162 + 0.879358i \(0.342028\pi\)
−0.476162 + 0.879358i \(0.657972\pi\)
\(420\) 0 0
\(421\) − 10.0000i − 0.487370i −0.969854 0.243685i \(-0.921644\pi\)
0.969854 0.243685i \(-0.0783563\pi\)
\(422\) 0 0
\(423\) 8.00000 0.388973
\(424\) 0 0
\(425\) 6.00000 0.291043
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 24.0000i 1.15873i
\(430\) 0 0
\(431\) 16.0000 0.770693 0.385346 0.922772i \(-0.374082\pi\)
0.385346 + 0.922772i \(0.374082\pi\)
\(432\) 0 0
\(433\) −30.0000 −1.44171 −0.720854 0.693087i \(-0.756250\pi\)
−0.720854 + 0.693087i \(0.756250\pi\)
\(434\) 0 0
\(435\) − 2.00000i − 0.0958927i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) 7.00000 0.333333
\(442\) 0 0
\(443\) 4.00000i 0.190046i 0.995475 + 0.0950229i \(0.0302924\pi\)
−0.995475 + 0.0950229i \(0.969708\pi\)
\(444\) 0 0
\(445\) − 10.0000i − 0.474045i
\(446\) 0 0
\(447\) 10.0000 0.472984
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 24.0000i 1.13012i
\(452\) 0 0
\(453\) 16.0000i 0.751746i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) 0 0
\(459\) 6.00000i 0.280056i
\(460\) 0 0
\(461\) − 14.0000i − 0.652045i −0.945362 0.326023i \(-0.894291\pi\)
0.945362 0.326023i \(-0.105709\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 0 0
\(465\) −8.00000 −0.370991
\(466\) 0 0
\(467\) − 28.0000i − 1.29569i −0.761774 0.647843i \(-0.775671\pi\)
0.761774 0.647843i \(-0.224329\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 6.00000 0.276465
\(472\) 0 0
\(473\) 48.0000 2.20704
\(474\) 0 0
\(475\) 4.00000i 0.183533i
\(476\) 0 0
\(477\) − 6.00000i − 0.274721i
\(478\) 0 0
\(479\) 32.0000 1.46212 0.731059 0.682315i \(-0.239027\pi\)
0.731059 + 0.682315i \(0.239027\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.00000i 0.0908153i
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) 36.0000i 1.62466i 0.583200 + 0.812329i \(0.301800\pi\)
−0.583200 + 0.812329i \(0.698200\pi\)
\(492\) 0 0
\(493\) − 12.0000i − 0.540453i
\(494\) 0 0
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 20.0000i − 0.895323i −0.894203 0.447661i \(-0.852257\pi\)
0.894203 0.447661i \(-0.147743\pi\)
\(500\) 0 0
\(501\) 16.0000i 0.714827i
\(502\) 0 0
\(503\) −16.0000 −0.713405 −0.356702 0.934218i \(-0.616099\pi\)
−0.356702 + 0.934218i \(0.616099\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) 0 0
\(507\) − 23.0000i − 1.02147i
\(508\) 0 0
\(509\) 2.00000i 0.0886484i 0.999017 + 0.0443242i \(0.0141135\pi\)
−0.999017 + 0.0443242i \(0.985887\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −4.00000 −0.176604
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 32.0000i − 1.40736i
\(518\) 0 0
\(519\) 14.0000 0.614532
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) 4.00000i 0.174908i 0.996169 + 0.0874539i \(0.0278730\pi\)
−0.996169 + 0.0874539i \(0.972127\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −48.0000 −2.09091
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 12.0000i 0.520756i
\(532\) 0 0
\(533\) − 36.0000i − 1.55933i
\(534\) 0 0
\(535\) −4.00000 −0.172935
\(536\) 0 0
\(537\) 12.0000 0.517838
\(538\) 0 0
\(539\) − 28.0000i − 1.20605i
\(540\) 0 0
\(541\) − 30.0000i − 1.28980i −0.764267 0.644900i \(-0.776899\pi\)
0.764267 0.644900i \(-0.223101\pi\)
\(542\) 0 0
\(543\) 10.0000 0.429141
\(544\) 0 0
\(545\) −18.0000 −0.771035
\(546\) 0 0
\(547\) 36.0000i 1.53925i 0.638497 + 0.769624i \(0.279557\pi\)
−0.638497 + 0.769624i \(0.720443\pi\)
\(548\) 0 0
\(549\) 14.0000i 0.597505i
\(550\) 0 0
\(551\) 8.00000 0.340811
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.00000i 0.0848953i
\(556\) 0 0
\(557\) 18.0000i 0.762684i 0.924434 + 0.381342i \(0.124538\pi\)
−0.924434 + 0.381342i \(0.875462\pi\)
\(558\) 0 0
\(559\) −72.0000 −3.04528
\(560\) 0 0
\(561\) 24.0000 1.01328
\(562\) 0 0
\(563\) 4.00000i 0.168580i 0.996441 + 0.0842900i \(0.0268622\pi\)
−0.996441 + 0.0842900i \(0.973138\pi\)
\(564\) 0 0
\(565\) − 6.00000i − 0.252422i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 12.0000i 0.502184i 0.967963 + 0.251092i \(0.0807897\pi\)
−0.967963 + 0.251092i \(0.919210\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) − 14.0000i − 0.581820i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −24.0000 −0.993978
\(584\) 0 0
\(585\) −6.00000 −0.248069
\(586\) 0 0
\(587\) 4.00000i 0.165098i 0.996587 + 0.0825488i \(0.0263060\pi\)
−0.996587 + 0.0825488i \(0.973694\pi\)
\(588\) 0 0
\(589\) − 32.0000i − 1.31854i
\(590\) 0 0
\(591\) 10.0000 0.411345
\(592\) 0 0
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −40.0000 −1.63436 −0.817178 0.576386i \(-0.804463\pi\)
−0.817178 + 0.576386i \(0.804463\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) 0 0
\(603\) − 4.00000i − 0.162893i
\(604\) 0 0
\(605\) − 5.00000i − 0.203279i
\(606\) 0 0
\(607\) −40.0000 −1.62355 −0.811775 0.583970i \(-0.801498\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 48.0000i 1.94187i
\(612\) 0 0
\(613\) − 2.00000i − 0.0807792i −0.999184 0.0403896i \(-0.987140\pi\)
0.999184 0.0403896i \(-0.0128599\pi\)
\(614\) 0 0
\(615\) −6.00000 −0.241943
\(616\) 0 0
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 0 0
\(619\) 28.0000i 1.12542i 0.826656 + 0.562708i \(0.190240\pi\)
−0.826656 + 0.562708i \(0.809760\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 16.0000i 0.638978i
\(628\) 0 0
\(629\) 12.0000i 0.478471i
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) −12.0000 −0.476957
\(634\) 0 0
\(635\) 8.00000i 0.317470i
\(636\) 0 0
\(637\) 42.0000i 1.66410i
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) 4.00000i 0.157745i 0.996885 + 0.0788723i \(0.0251319\pi\)
−0.996885 + 0.0788723i \(0.974868\pi\)
\(644\) 0 0
\(645\) 12.0000i 0.472500i
\(646\) 0 0
\(647\) −48.0000 −1.88707 −0.943537 0.331266i \(-0.892524\pi\)
−0.943537 + 0.331266i \(0.892524\pi\)
\(648\) 0 0
\(649\) 48.0000 1.88416
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 14.0000i − 0.547862i −0.961749 0.273931i \(-0.911676\pi\)
0.961749 0.273931i \(-0.0883240\pi\)
\(654\) 0 0
\(655\) −4.00000 −0.156293
\(656\) 0 0
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) 4.00000i 0.155818i 0.996960 + 0.0779089i \(0.0248243\pi\)
−0.996960 + 0.0779089i \(0.975176\pi\)
\(660\) 0 0
\(661\) 6.00000i 0.233373i 0.993169 + 0.116686i \(0.0372273\pi\)
−0.993169 + 0.116686i \(0.962773\pi\)
\(662\) 0 0
\(663\) −36.0000 −1.39812
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) − 8.00000i − 0.309298i
\(670\) 0 0
\(671\) 56.0000 2.16186
\(672\) 0 0
\(673\) −14.0000 −0.539660 −0.269830 0.962908i \(-0.586968\pi\)
−0.269830 + 0.962908i \(0.586968\pi\)
\(674\) 0 0
\(675\) 1.00000i 0.0384900i
\(676\) 0 0
\(677\) 38.0000i 1.46046i 0.683202 + 0.730229i \(0.260587\pi\)
−0.683202 + 0.730229i \(0.739413\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 28.0000 1.07296
\(682\) 0 0
\(683\) − 28.0000i − 1.07139i −0.844411 0.535695i \(-0.820050\pi\)
0.844411 0.535695i \(-0.179950\pi\)
\(684\) 0 0
\(685\) − 2.00000i − 0.0764161i
\(686\) 0 0
\(687\) 10.0000 0.381524
\(688\) 0 0
\(689\) 36.0000 1.37149
\(690\) 0 0
\(691\) − 20.0000i − 0.760836i −0.924815 0.380418i \(-0.875780\pi\)
0.924815 0.380418i \(-0.124220\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.00000 0.151729
\(696\) 0 0
\(697\) −36.0000 −1.36360
\(698\) 0 0
\(699\) − 2.00000i − 0.0756469i
\(700\) 0 0
\(701\) − 30.0000i − 1.13308i −0.824033 0.566542i \(-0.808281\pi\)
0.824033 0.566542i \(-0.191719\pi\)
\(702\) 0 0
\(703\) −8.00000 −0.301726
\(704\) 0 0
\(705\) 8.00000 0.301297
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) − 10.0000i − 0.375558i −0.982211 0.187779i \(-0.939871\pi\)
0.982211 0.187779i \(-0.0601289\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 24.0000i 0.897549i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) − 14.0000i − 0.520666i
\(724\) 0 0
\(725\) − 2.00000i − 0.0742781i
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 72.0000i 2.66302i
\(732\) 0 0
\(733\) 26.0000i 0.960332i 0.877178 + 0.480166i \(0.159424\pi\)
−0.877178 + 0.480166i \(0.840576\pi\)
\(734\) 0 0
\(735\) 7.00000 0.258199
\(736\) 0 0
\(737\) −16.0000 −0.589368
\(738\) 0 0
\(739\) − 4.00000i − 0.147142i −0.997290 0.0735712i \(-0.976560\pi\)
0.997290 0.0735712i \(-0.0234396\pi\)
\(740\) 0 0
\(741\) − 24.0000i − 0.881662i
\(742\) 0 0
\(743\) −16.0000 −0.586983 −0.293492 0.955962i \(-0.594817\pi\)
−0.293492 + 0.955962i \(0.594817\pi\)
\(744\) 0 0
\(745\) 10.0000 0.366372
\(746\) 0 0
\(747\) 12.0000i 0.439057i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −8.00000 −0.291924 −0.145962 0.989290i \(-0.546628\pi\)
−0.145962 + 0.989290i \(0.546628\pi\)
\(752\) 0 0
\(753\) 28.0000 1.02038
\(754\) 0 0
\(755\) 16.0000i 0.582300i
\(756\) 0 0
\(757\) − 2.00000i − 0.0726912i −0.999339 0.0363456i \(-0.988428\pi\)
0.999339 0.0363456i \(-0.0115717\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −26.0000 −0.942499 −0.471250 0.882000i \(-0.656197\pi\)
−0.471250 + 0.882000i \(0.656197\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 6.00000i 0.216930i
\(766\) 0 0
\(767\) −72.0000 −2.59977
\(768\) 0 0
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) 10.0000i 0.360141i
\(772\) 0 0
\(773\) − 42.0000i − 1.51064i −0.655359 0.755318i \(-0.727483\pi\)
0.655359 0.755318i \(-0.272517\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 24.0000i − 0.859889i
\(780\) 0 0
\(781\) 32.0000i 1.14505i
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) 6.00000 0.214149
\(786\) 0 0
\(787\) 4.00000i 0.142585i 0.997455 + 0.0712923i \(0.0227123\pi\)
−0.997455 + 0.0712923i \(0.977288\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −84.0000 −2.98293
\(794\) 0 0
\(795\) − 6.00000i − 0.212798i
\(796\) 0 0
\(797\) 2.00000i 0.0708436i 0.999372 + 0.0354218i \(0.0112775\pi\)
−0.999372 + 0.0354218i \(0.988723\pi\)
\(798\) 0 0
\(799\) 48.0000 1.69812
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) 0 0
\(803\) 24.0000i 0.846942i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −18.0000 −0.633630
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) 28.0000i 0.983213i 0.870817 + 0.491606i \(0.163590\pi\)
−0.870817 + 0.491606i \(0.836410\pi\)
\(812\) 0 0
\(813\) 24.0000i 0.841717i
\(814\) 0 0
\(815\) −4.00000 −0.140114
\(816\) 0 0
\(817\) −48.0000 −1.67931
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 10.0000i − 0.349002i −0.984657 0.174501i \(-0.944169\pi\)
0.984657 0.174501i \(-0.0558313\pi\)
\(822\) 0 0
\(823\) 48.0000 1.67317 0.836587 0.547833i \(-0.184547\pi\)
0.836587 + 0.547833i \(0.184547\pi\)
\(824\) 0 0
\(825\) 4.00000 0.139262
\(826\) 0 0
\(827\) 36.0000i 1.25184i 0.779886 + 0.625921i \(0.215277\pi\)
−0.779886 + 0.625921i \(0.784723\pi\)
\(828\) 0 0
\(829\) 2.00000i 0.0694629i 0.999397 + 0.0347314i \(0.0110576\pi\)
−0.999397 + 0.0347314i \(0.988942\pi\)
\(830\) 0 0
\(831\) 2.00000 0.0693792
\(832\) 0 0
\(833\) 42.0000 1.45521
\(834\) 0 0
\(835\) 16.0000i 0.553703i
\(836\) 0 0
\(837\) − 8.00000i − 0.276520i
\(838\) 0 0
\(839\) 40.0000 1.38095 0.690477 0.723355i \(-0.257401\pi\)
0.690477 + 0.723355i \(0.257401\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) 22.0000i 0.757720i
\(844\) 0 0
\(845\) − 23.0000i − 0.791224i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −4.00000 −0.137280
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 14.0000i 0.479351i 0.970853 + 0.239675i \(0.0770410\pi\)
−0.970853 + 0.239675i \(0.922959\pi\)
\(854\) 0 0
\(855\) −4.00000 −0.136797
\(856\) 0 0
\(857\) −2.00000 −0.0683187 −0.0341593 0.999416i \(-0.510875\pi\)
−0.0341593 + 0.999416i \(0.510875\pi\)
\(858\) 0 0
\(859\) − 4.00000i − 0.136478i −0.997669 0.0682391i \(-0.978262\pi\)
0.997669 0.0682391i \(-0.0217381\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −8.00000 −0.272323 −0.136162 0.990687i \(-0.543477\pi\)
−0.136162 + 0.990687i \(0.543477\pi\)
\(864\) 0 0
\(865\) 14.0000 0.476014
\(866\) 0 0
\(867\) 19.0000i 0.645274i
\(868\) 0 0
\(869\) 32.0000i 1.08553i
\(870\) 0 0
\(871\) 24.0000 0.813209
\(872\) 0 0
\(873\) −2.00000 −0.0676897
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 22.0000i − 0.742887i −0.928456 0.371444i \(-0.878863\pi\)
0.928456 0.371444i \(-0.121137\pi\)
\(878\) 0 0
\(879\) −22.0000 −0.742042
\(880\) 0 0
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) 0 0
\(883\) 52.0000i 1.74994i 0.484178 + 0.874970i \(0.339119\pi\)
−0.484178 + 0.874970i \(0.660881\pi\)
\(884\) 0 0
\(885\) 12.0000i 0.403376i
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 4.00000i 0.134005i
\(892\) 0 0
\(893\) 32.0000i 1.07084i
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.0000i 0.533630i
\(900\) 0 0
\(901\) − 36.0000i − 1.19933i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.0000 0.332411
\(906\) 0 0
\(907\) − 28.0000i − 0.929725i −0.885383 0.464862i \(-0.846104\pi\)
0.885383 0.464862i \(-0.153896\pi\)
\(908\) 0 0
\(909\) − 6.00000i − 0.199007i
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 48.0000 1.58857
\(914\) 0 0
\(915\) 14.0000i 0.462826i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) 28.0000 0.922631
\(922\) 0 0
\(923\) − 48.0000i − 1.57994i
\(924\) 0 0
\(925\) 2.00000i 0.0657596i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) 28.0000i 0.917663i
\(932\) 0 0
\(933\) 8.00000i 0.261908i
\(934\) 0 0
\(935\) 24.0000 0.784884
\(936\) 0 0
\(937\) −42.0000 −1.37208 −0.686040 0.727564i \(-0.740653\pi\)
−0.686040 + 0.727564i \(0.740653\pi\)
\(938\) 0 0
\(939\) − 10.0000i − 0.326338i
\(940\) 0 0
\(941\) 50.0000i 1.62995i 0.579494 + 0.814977i \(0.303250\pi\)
−0.579494 + 0.814977i \(0.696750\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 60.0000i − 1.94974i −0.222779 0.974869i \(-0.571513\pi\)
0.222779 0.974869i \(-0.428487\pi\)
\(948\) 0 0
\(949\) − 36.0000i − 1.16861i
\(950\) 0 0
\(951\) 14.0000 0.453981
\(952\) 0 0
\(953\) 14.0000 0.453504 0.226752 0.973952i \(-0.427189\pi\)
0.226752 + 0.973952i \(0.427189\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 8.00000i − 0.258603i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) − 4.00000i − 0.128898i
\(964\) 0 0
\(965\) − 14.0000i − 0.450676i
\(966\) 0 0
\(967\) −48.0000 −1.54358 −0.771788 0.635880i \(-0.780637\pi\)
−0.771788 + 0.635880i \(0.780637\pi\)
\(968\) 0 0
\(969\) −24.0000 −0.770991
\(970\) 0 0
\(971\) − 12.0000i − 0.385098i −0.981287 0.192549i \(-0.938325\pi\)
0.981287 0.192549i \(-0.0616755\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −6.00000 −0.192154
\(976\) 0 0
\(977\) 58.0000 1.85558 0.927792 0.373097i \(-0.121704\pi\)
0.927792 + 0.373097i \(0.121704\pi\)
\(978\) 0 0
\(979\) − 40.0000i − 1.27841i
\(980\) 0 0
\(981\) − 18.0000i − 0.574696i
\(982\) 0 0
\(983\) 32.0000 1.02064 0.510321 0.859984i \(-0.329527\pi\)
0.510321 + 0.859984i \(0.329527\pi\)
\(984\) 0 0
\(985\) 10.0000 0.318626
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 0 0
\(993\) −28.0000 −0.888553
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 18.0000i − 0.570066i −0.958518 0.285033i \(-0.907995\pi\)
0.958518 0.285033i \(-0.0920045\pi\)
\(998\) 0 0
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3840.2.k.j.1921.2 2
4.3 odd 2 3840.2.k.o.1921.1 2
8.3 odd 2 3840.2.k.o.1921.2 2
8.5 even 2 inner 3840.2.k.j.1921.1 2
16.3 odd 4 120.2.a.b.1.1 1
16.5 even 4 960.2.a.j.1.1 1
16.11 odd 4 960.2.a.c.1.1 1
16.13 even 4 240.2.a.c.1.1 1
48.5 odd 4 2880.2.a.bb.1.1 1
48.11 even 4 2880.2.a.x.1.1 1
48.29 odd 4 720.2.a.d.1.1 1
48.35 even 4 360.2.a.b.1.1 1
80.3 even 4 600.2.f.b.49.2 2
80.13 odd 4 1200.2.f.g.49.1 2
80.19 odd 4 600.2.a.c.1.1 1
80.27 even 4 4800.2.f.bc.3649.2 2
80.29 even 4 1200.2.a.o.1.1 1
80.37 odd 4 4800.2.f.i.3649.1 2
80.43 even 4 4800.2.f.bc.3649.1 2
80.53 odd 4 4800.2.f.i.3649.2 2
80.59 odd 4 4800.2.a.cd.1.1 1
80.67 even 4 600.2.f.b.49.1 2
80.69 even 4 4800.2.a.r.1.1 1
80.77 odd 4 1200.2.f.g.49.2 2
112.83 even 4 5880.2.a.a.1.1 1
144.67 odd 12 3240.2.q.g.2161.1 2
144.83 even 12 3240.2.q.q.1081.1 2
144.115 odd 12 3240.2.q.g.1081.1 2
144.131 even 12 3240.2.q.q.2161.1 2
240.29 odd 4 3600.2.a.t.1.1 1
240.77 even 4 3600.2.f.c.2449.1 2
240.83 odd 4 1800.2.f.j.649.2 2
240.173 even 4 3600.2.f.c.2449.2 2
240.179 even 4 1800.2.a.n.1.1 1
240.227 odd 4 1800.2.f.j.649.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.2.a.b.1.1 1 16.3 odd 4
240.2.a.c.1.1 1 16.13 even 4
360.2.a.b.1.1 1 48.35 even 4
600.2.a.c.1.1 1 80.19 odd 4
600.2.f.b.49.1 2 80.67 even 4
600.2.f.b.49.2 2 80.3 even 4
720.2.a.d.1.1 1 48.29 odd 4
960.2.a.c.1.1 1 16.11 odd 4
960.2.a.j.1.1 1 16.5 even 4
1200.2.a.o.1.1 1 80.29 even 4
1200.2.f.g.49.1 2 80.13 odd 4
1200.2.f.g.49.2 2 80.77 odd 4
1800.2.a.n.1.1 1 240.179 even 4
1800.2.f.j.649.1 2 240.227 odd 4
1800.2.f.j.649.2 2 240.83 odd 4
2880.2.a.x.1.1 1 48.11 even 4
2880.2.a.bb.1.1 1 48.5 odd 4
3240.2.q.g.1081.1 2 144.115 odd 12
3240.2.q.g.2161.1 2 144.67 odd 12
3240.2.q.q.1081.1 2 144.83 even 12
3240.2.q.q.2161.1 2 144.131 even 12
3600.2.a.t.1.1 1 240.29 odd 4
3600.2.f.c.2449.1 2 240.77 even 4
3600.2.f.c.2449.2 2 240.173 even 4
3840.2.k.j.1921.1 2 8.5 even 2 inner
3840.2.k.j.1921.2 2 1.1 even 1 trivial
3840.2.k.o.1921.1 2 4.3 odd 2
3840.2.k.o.1921.2 2 8.3 odd 2
4800.2.a.r.1.1 1 80.69 even 4
4800.2.a.cd.1.1 1 80.59 odd 4
4800.2.f.i.3649.1 2 80.37 odd 4
4800.2.f.i.3649.2 2 80.53 odd 4
4800.2.f.bc.3649.1 2 80.43 even 4
4800.2.f.bc.3649.2 2 80.27 even 4
5880.2.a.a.1.1 1 112.83 even 4