# Properties

 Label 3840.2.d.q.2689.1 Level $3840$ Weight $2$ Character 3840.2689 Analytic conductor $30.663$ Analytic rank $1$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3840 = 2^{8} \cdot 3 \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3840.d (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$30.6625543762$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 480) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 2689.1 Root $$1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 3840.2689 Dual form 3840.2.d.q.2689.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+1.00000 q^{3} +(-2.00000 - 1.00000i) q^{5} +4.00000i q^{7} +1.00000 q^{9} +O(q^{10})$$ $$q+1.00000 q^{3} +(-2.00000 - 1.00000i) q^{5} +4.00000i q^{7} +1.00000 q^{9} -4.00000 q^{13} +(-2.00000 - 1.00000i) q^{15} -8.00000i q^{19} +4.00000i q^{21} +4.00000i q^{23} +(3.00000 + 4.00000i) q^{25} +1.00000 q^{27} +6.00000i q^{29} +8.00000 q^{31} +(4.00000 - 8.00000i) q^{35} +4.00000 q^{37} -4.00000 q^{39} -6.00000 q^{41} -4.00000 q^{43} +(-2.00000 - 1.00000i) q^{45} -4.00000i q^{47} -9.00000 q^{49} -12.0000 q^{53} -8.00000i q^{57} -6.00000i q^{61} +4.00000i q^{63} +(8.00000 + 4.00000i) q^{65} -12.0000 q^{67} +4.00000i q^{69} -16.0000 q^{71} +(3.00000 + 4.00000i) q^{75} -8.00000 q^{79} +1.00000 q^{81} -12.0000 q^{83} +6.00000i q^{87} -10.0000 q^{89} -16.0000i q^{91} +8.00000 q^{93} +(-8.00000 + 16.0000i) q^{95} -8.00000i q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{3} - 4 q^{5} + 2 q^{9}+O(q^{10})$$ 2 * q + 2 * q^3 - 4 * q^5 + 2 * q^9 $$2 q + 2 q^{3} - 4 q^{5} + 2 q^{9} - 8 q^{13} - 4 q^{15} + 6 q^{25} + 2 q^{27} + 16 q^{31} + 8 q^{35} + 8 q^{37} - 8 q^{39} - 12 q^{41} - 8 q^{43} - 4 q^{45} - 18 q^{49} - 24 q^{53} + 16 q^{65} - 24 q^{67} - 32 q^{71} + 6 q^{75} - 16 q^{79} + 2 q^{81} - 24 q^{83} - 20 q^{89} + 16 q^{93} - 16 q^{95}+O(q^{100})$$ 2 * q + 2 * q^3 - 4 * q^5 + 2 * q^9 - 8 * q^13 - 4 * q^15 + 6 * q^25 + 2 * q^27 + 16 * q^31 + 8 * q^35 + 8 * q^37 - 8 * q^39 - 12 * q^41 - 8 * q^43 - 4 * q^45 - 18 * q^49 - 24 * q^53 + 16 * q^65 - 24 * q^67 - 32 * q^71 + 6 * q^75 - 16 * q^79 + 2 * q^81 - 24 * q^83 - 20 * q^89 + 16 * q^93 - 16 * q^95

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times$$.

 $$n$$ $$511$$ $$1537$$ $$2561$$ $$2821$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 1.00000 0.577350
$$4$$ 0 0
$$5$$ −2.00000 1.00000i −0.894427 0.447214i
$$6$$ 0 0
$$7$$ 4.00000i 1.51186i 0.654654 + 0.755929i $$0.272814\pi$$
−0.654654 + 0.755929i $$0.727186\pi$$
$$8$$ 0 0
$$9$$ 1.00000 0.333333
$$10$$ 0 0
$$11$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$12$$ 0 0
$$13$$ −4.00000 −1.10940 −0.554700 0.832050i $$-0.687167\pi$$
−0.554700 + 0.832050i $$0.687167\pi$$
$$14$$ 0 0
$$15$$ −2.00000 1.00000i −0.516398 0.258199i
$$16$$ 0 0
$$17$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$18$$ 0 0
$$19$$ 8.00000i 1.83533i −0.397360 0.917663i $$-0.630073\pi$$
0.397360 0.917663i $$-0.369927\pi$$
$$20$$ 0 0
$$21$$ 4.00000i 0.872872i
$$22$$ 0 0
$$23$$ 4.00000i 0.834058i 0.908893 + 0.417029i $$0.136929\pi$$
−0.908893 + 0.417029i $$0.863071\pi$$
$$24$$ 0 0
$$25$$ 3.00000 + 4.00000i 0.600000 + 0.800000i
$$26$$ 0 0
$$27$$ 1.00000 0.192450
$$28$$ 0 0
$$29$$ 6.00000i 1.11417i 0.830455 + 0.557086i $$0.188081\pi$$
−0.830455 + 0.557086i $$0.811919\pi$$
$$30$$ 0 0
$$31$$ 8.00000 1.43684 0.718421 0.695608i $$-0.244865\pi$$
0.718421 + 0.695608i $$0.244865\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 4.00000 8.00000i 0.676123 1.35225i
$$36$$ 0 0
$$37$$ 4.00000 0.657596 0.328798 0.944400i $$-0.393356\pi$$
0.328798 + 0.944400i $$0.393356\pi$$
$$38$$ 0 0
$$39$$ −4.00000 −0.640513
$$40$$ 0 0
$$41$$ −6.00000 −0.937043 −0.468521 0.883452i $$-0.655213\pi$$
−0.468521 + 0.883452i $$0.655213\pi$$
$$42$$ 0 0
$$43$$ −4.00000 −0.609994 −0.304997 0.952353i $$-0.598656\pi$$
−0.304997 + 0.952353i $$0.598656\pi$$
$$44$$ 0 0
$$45$$ −2.00000 1.00000i −0.298142 0.149071i
$$46$$ 0 0
$$47$$ 4.00000i 0.583460i −0.956501 0.291730i $$-0.905769\pi$$
0.956501 0.291730i $$-0.0942309\pi$$
$$48$$ 0 0
$$49$$ −9.00000 −1.28571
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ −12.0000 −1.64833 −0.824163 0.566352i $$-0.808354\pi$$
−0.824163 + 0.566352i $$0.808354\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 8.00000i 1.05963i
$$58$$ 0 0
$$59$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$60$$ 0 0
$$61$$ 6.00000i 0.768221i −0.923287 0.384111i $$-0.874508\pi$$
0.923287 0.384111i $$-0.125492\pi$$
$$62$$ 0 0
$$63$$ 4.00000i 0.503953i
$$64$$ 0 0
$$65$$ 8.00000 + 4.00000i 0.992278 + 0.496139i
$$66$$ 0 0
$$67$$ −12.0000 −1.46603 −0.733017 0.680211i $$-0.761888\pi$$
−0.733017 + 0.680211i $$0.761888\pi$$
$$68$$ 0 0
$$69$$ 4.00000i 0.481543i
$$70$$ 0 0
$$71$$ −16.0000 −1.89885 −0.949425 0.313993i $$-0.898333\pi$$
−0.949425 + 0.313993i $$0.898333\pi$$
$$72$$ 0 0
$$73$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$74$$ 0 0
$$75$$ 3.00000 + 4.00000i 0.346410 + 0.461880i
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ −8.00000 −0.900070 −0.450035 0.893011i $$-0.648589\pi$$
−0.450035 + 0.893011i $$0.648589\pi$$
$$80$$ 0 0
$$81$$ 1.00000 0.111111
$$82$$ 0 0
$$83$$ −12.0000 −1.31717 −0.658586 0.752506i $$-0.728845\pi$$
−0.658586 + 0.752506i $$0.728845\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 6.00000i 0.643268i
$$88$$ 0 0
$$89$$ −10.0000 −1.06000 −0.529999 0.847998i $$-0.677808\pi$$
−0.529999 + 0.847998i $$0.677808\pi$$
$$90$$ 0 0
$$91$$ 16.0000i 1.67726i
$$92$$ 0 0
$$93$$ 8.00000 0.829561
$$94$$ 0 0
$$95$$ −8.00000 + 16.0000i −0.820783 + 1.64157i
$$96$$ 0 0
$$97$$ 8.00000i 0.812277i −0.913812 0.406138i $$-0.866875\pi$$
0.913812 0.406138i $$-0.133125\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 14.0000i 1.39305i −0.717532 0.696526i $$-0.754728\pi$$
0.717532 0.696526i $$-0.245272\pi$$
$$102$$ 0 0
$$103$$ 12.0000i 1.18240i −0.806527 0.591198i $$-0.798655\pi$$
0.806527 0.591198i $$-0.201345\pi$$
$$104$$ 0 0
$$105$$ 4.00000 8.00000i 0.390360 0.780720i
$$106$$ 0 0
$$107$$ 12.0000 1.16008 0.580042 0.814587i $$-0.303036\pi$$
0.580042 + 0.814587i $$0.303036\pi$$
$$108$$ 0 0
$$109$$ 10.0000i 0.957826i 0.877862 + 0.478913i $$0.158969\pi$$
−0.877862 + 0.478913i $$0.841031\pi$$
$$110$$ 0 0
$$111$$ 4.00000 0.379663
$$112$$ 0 0
$$113$$ 8.00000i 0.752577i −0.926503 0.376288i $$-0.877200\pi$$
0.926503 0.376288i $$-0.122800\pi$$
$$114$$ 0 0
$$115$$ 4.00000 8.00000i 0.373002 0.746004i
$$116$$ 0 0
$$117$$ −4.00000 −0.369800
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 11.0000 1.00000
$$122$$ 0 0
$$123$$ −6.00000 −0.541002
$$124$$ 0 0
$$125$$ −2.00000 11.0000i −0.178885 0.983870i
$$126$$ 0 0
$$127$$ 4.00000i 0.354943i −0.984126 0.177471i $$-0.943208\pi$$
0.984126 0.177471i $$-0.0567917\pi$$
$$128$$ 0 0
$$129$$ −4.00000 −0.352180
$$130$$ 0 0
$$131$$ 16.0000i 1.39793i 0.715158 + 0.698963i $$0.246355\pi$$
−0.715158 + 0.698963i $$0.753645\pi$$
$$132$$ 0 0
$$133$$ 32.0000 2.77475
$$134$$ 0 0
$$135$$ −2.00000 1.00000i −0.172133 0.0860663i
$$136$$ 0 0
$$137$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$138$$ 0 0
$$139$$ 8.00000i 0.678551i −0.940687 0.339276i $$-0.889818\pi$$
0.940687 0.339276i $$-0.110182\pi$$
$$140$$ 0 0
$$141$$ 4.00000i 0.336861i
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ 6.00000 12.0000i 0.498273 0.996546i
$$146$$ 0 0
$$147$$ −9.00000 −0.742307
$$148$$ 0 0
$$149$$ 14.0000i 1.14692i 0.819232 + 0.573462i $$0.194400\pi$$
−0.819232 + 0.573462i $$0.805600\pi$$
$$150$$ 0 0
$$151$$ −8.00000 −0.651031 −0.325515 0.945537i $$-0.605538\pi$$
−0.325515 + 0.945537i $$0.605538\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −16.0000 8.00000i −1.28515 0.642575i
$$156$$ 0 0
$$157$$ 4.00000 0.319235 0.159617 0.987179i $$-0.448974\pi$$
0.159617 + 0.987179i $$0.448974\pi$$
$$158$$ 0 0
$$159$$ −12.0000 −0.951662
$$160$$ 0 0
$$161$$ −16.0000 −1.26098
$$162$$ 0 0
$$163$$ 4.00000 0.313304 0.156652 0.987654i $$-0.449930\pi$$
0.156652 + 0.987654i $$0.449930\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 4.00000i 0.309529i 0.987951 + 0.154765i $$0.0494619\pi$$
−0.987951 + 0.154765i $$0.950538\pi$$
$$168$$ 0 0
$$169$$ 3.00000 0.230769
$$170$$ 0 0
$$171$$ 8.00000i 0.611775i
$$172$$ 0 0
$$173$$ −4.00000 −0.304114 −0.152057 0.988372i $$-0.548590\pi$$
−0.152057 + 0.988372i $$0.548590\pi$$
$$174$$ 0 0
$$175$$ −16.0000 + 12.0000i −1.20949 + 0.907115i
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 16.0000i 1.19590i −0.801535 0.597948i $$-0.795983\pi$$
0.801535 0.597948i $$-0.204017\pi$$
$$180$$ 0 0
$$181$$ 14.0000i 1.04061i −0.853980 0.520306i $$-0.825818\pi$$
0.853980 0.520306i $$-0.174182\pi$$
$$182$$ 0 0
$$183$$ 6.00000i 0.443533i
$$184$$ 0 0
$$185$$ −8.00000 4.00000i −0.588172 0.294086i
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 4.00000i 0.290957i
$$190$$ 0 0
$$191$$ −16.0000 −1.15772 −0.578860 0.815427i $$-0.696502\pi$$
−0.578860 + 0.815427i $$0.696502\pi$$
$$192$$ 0 0
$$193$$ 24.0000i 1.72756i 0.503871 + 0.863779i $$0.331909\pi$$
−0.503871 + 0.863779i $$0.668091\pi$$
$$194$$ 0 0
$$195$$ 8.00000 + 4.00000i 0.572892 + 0.286446i
$$196$$ 0 0
$$197$$ −12.0000 −0.854965 −0.427482 0.904024i $$-0.640599\pi$$
−0.427482 + 0.904024i $$0.640599\pi$$
$$198$$ 0 0
$$199$$ −8.00000 −0.567105 −0.283552 0.958957i $$-0.591513\pi$$
−0.283552 + 0.958957i $$0.591513\pi$$
$$200$$ 0 0
$$201$$ −12.0000 −0.846415
$$202$$ 0 0
$$203$$ −24.0000 −1.68447
$$204$$ 0 0
$$205$$ 12.0000 + 6.00000i 0.838116 + 0.419058i
$$206$$ 0 0
$$207$$ 4.00000i 0.278019i
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 8.00000i 0.550743i −0.961338 0.275371i $$-0.911199\pi$$
0.961338 0.275371i $$-0.0888008\pi$$
$$212$$ 0 0
$$213$$ −16.0000 −1.09630
$$214$$ 0 0
$$215$$ 8.00000 + 4.00000i 0.545595 + 0.272798i
$$216$$ 0 0
$$217$$ 32.0000i 2.17230i
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ 4.00000i 0.267860i −0.990991 0.133930i $$-0.957240\pi$$
0.990991 0.133930i $$-0.0427597\pi$$
$$224$$ 0 0
$$225$$ 3.00000 + 4.00000i 0.200000 + 0.266667i
$$226$$ 0 0
$$227$$ 4.00000 0.265489 0.132745 0.991150i $$-0.457621\pi$$
0.132745 + 0.991150i $$0.457621\pi$$
$$228$$ 0 0
$$229$$ 2.00000i 0.132164i 0.997814 + 0.0660819i $$0.0210498\pi$$
−0.997814 + 0.0660819i $$0.978950\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 8.00000i 0.524097i −0.965055 0.262049i $$-0.915602\pi$$
0.965055 0.262049i $$-0.0843981\pi$$
$$234$$ 0 0
$$235$$ −4.00000 + 8.00000i −0.260931 + 0.521862i
$$236$$ 0 0
$$237$$ −8.00000 −0.519656
$$238$$ 0 0
$$239$$ −16.0000 −1.03495 −0.517477 0.855697i $$-0.673129\pi$$
−0.517477 + 0.855697i $$0.673129\pi$$
$$240$$ 0 0
$$241$$ 14.0000 0.901819 0.450910 0.892570i $$-0.351100\pi$$
0.450910 + 0.892570i $$0.351100\pi$$
$$242$$ 0 0
$$243$$ 1.00000 0.0641500
$$244$$ 0 0
$$245$$ 18.0000 + 9.00000i 1.14998 + 0.574989i
$$246$$ 0 0
$$247$$ 32.0000i 2.03611i
$$248$$ 0 0
$$249$$ −12.0000 −0.760469
$$250$$ 0 0
$$251$$ 16.0000i 1.00991i −0.863145 0.504956i $$-0.831509\pi$$
0.863145 0.504956i $$-0.168491\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 24.0000i 1.49708i 0.663090 + 0.748539i $$0.269245\pi$$
−0.663090 + 0.748539i $$0.730755\pi$$
$$258$$ 0 0
$$259$$ 16.0000i 0.994192i
$$260$$ 0 0
$$261$$ 6.00000i 0.371391i
$$262$$ 0 0
$$263$$ 12.0000i 0.739952i −0.929041 0.369976i $$-0.879366\pi$$
0.929041 0.369976i $$-0.120634\pi$$
$$264$$ 0 0
$$265$$ 24.0000 + 12.0000i 1.47431 + 0.737154i
$$266$$ 0 0
$$267$$ −10.0000 −0.611990
$$268$$ 0 0
$$269$$ 6.00000i 0.365826i −0.983129 0.182913i $$-0.941447\pi$$
0.983129 0.182913i $$-0.0585527\pi$$
$$270$$ 0 0
$$271$$ −24.0000 −1.45790 −0.728948 0.684569i $$-0.759990\pi$$
−0.728948 + 0.684569i $$0.759990\pi$$
$$272$$ 0 0
$$273$$ 16.0000i 0.968364i
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 4.00000 0.240337 0.120168 0.992754i $$-0.461657\pi$$
0.120168 + 0.992754i $$0.461657\pi$$
$$278$$ 0 0
$$279$$ 8.00000 0.478947
$$280$$ 0 0
$$281$$ 26.0000 1.55103 0.775515 0.631329i $$-0.217490\pi$$
0.775515 + 0.631329i $$0.217490\pi$$
$$282$$ 0 0
$$283$$ −20.0000 −1.18888 −0.594438 0.804141i $$-0.702626\pi$$
−0.594438 + 0.804141i $$0.702626\pi$$
$$284$$ 0 0
$$285$$ −8.00000 + 16.0000i −0.473879 + 0.947758i
$$286$$ 0 0
$$287$$ 24.0000i 1.41668i
$$288$$ 0 0
$$289$$ 17.0000 1.00000
$$290$$ 0 0
$$291$$ 8.00000i 0.468968i
$$292$$ 0 0
$$293$$ −20.0000 −1.16841 −0.584206 0.811605i $$-0.698594\pi$$
−0.584206 + 0.811605i $$0.698594\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 16.0000i 0.925304i
$$300$$ 0 0
$$301$$ 16.0000i 0.922225i
$$302$$ 0 0
$$303$$ 14.0000i 0.804279i
$$304$$ 0 0
$$305$$ −6.00000 + 12.0000i −0.343559 + 0.687118i
$$306$$ 0 0
$$307$$ −12.0000 −0.684876 −0.342438 0.939540i $$-0.611253\pi$$
−0.342438 + 0.939540i $$0.611253\pi$$
$$308$$ 0 0
$$309$$ 12.0000i 0.682656i
$$310$$ 0 0
$$311$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$312$$ 0 0
$$313$$ 8.00000i 0.452187i 0.974106 + 0.226093i $$0.0725954\pi$$
−0.974106 + 0.226093i $$0.927405\pi$$
$$314$$ 0 0
$$315$$ 4.00000 8.00000i 0.225374 0.450749i
$$316$$ 0 0
$$317$$ −12.0000 −0.673987 −0.336994 0.941507i $$-0.609410\pi$$
−0.336994 + 0.941507i $$0.609410\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 12.0000 0.669775
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 0 0
$$325$$ −12.0000 16.0000i −0.665640 0.887520i
$$326$$ 0 0
$$327$$ 10.0000i 0.553001i
$$328$$ 0 0
$$329$$ 16.0000 0.882109
$$330$$ 0 0
$$331$$ 8.00000i 0.439720i 0.975531 + 0.219860i $$0.0705600\pi$$
−0.975531 + 0.219860i $$0.929440\pi$$
$$332$$ 0 0
$$333$$ 4.00000 0.219199
$$334$$ 0 0
$$335$$ 24.0000 + 12.0000i 1.31126 + 0.655630i
$$336$$ 0 0
$$337$$ 16.0000i 0.871576i 0.900049 + 0.435788i $$0.143530\pi$$
−0.900049 + 0.435788i $$0.856470\pi$$
$$338$$ 0 0
$$339$$ 8.00000i 0.434500i
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 8.00000i 0.431959i
$$344$$ 0 0
$$345$$ 4.00000 8.00000i 0.215353 0.430706i
$$346$$ 0 0
$$347$$ 28.0000 1.50312 0.751559 0.659665i $$-0.229302\pi$$
0.751559 + 0.659665i $$0.229302\pi$$
$$348$$ 0 0
$$349$$ 10.0000i 0.535288i −0.963518 0.267644i $$-0.913755\pi$$
0.963518 0.267644i $$-0.0862451\pi$$
$$350$$ 0 0
$$351$$ −4.00000 −0.213504
$$352$$ 0 0
$$353$$ 24.0000i 1.27739i −0.769460 0.638696i $$-0.779474\pi$$
0.769460 0.638696i $$-0.220526\pi$$
$$354$$ 0 0
$$355$$ 32.0000 + 16.0000i 1.69838 + 0.849192i
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$360$$ 0 0
$$361$$ −45.0000 −2.36842
$$362$$ 0 0
$$363$$ 11.0000 0.577350
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 28.0000i 1.46159i 0.682598 + 0.730794i $$0.260850\pi$$
−0.682598 + 0.730794i $$0.739150\pi$$
$$368$$ 0 0
$$369$$ −6.00000 −0.312348
$$370$$ 0 0
$$371$$ 48.0000i 2.49204i
$$372$$ 0 0
$$373$$ 20.0000 1.03556 0.517780 0.855514i $$-0.326758\pi$$
0.517780 + 0.855514i $$0.326758\pi$$
$$374$$ 0 0
$$375$$ −2.00000 11.0000i −0.103280 0.568038i
$$376$$ 0 0
$$377$$ 24.0000i 1.23606i
$$378$$ 0 0
$$379$$ 8.00000i 0.410932i 0.978664 + 0.205466i $$0.0658711\pi$$
−0.978664 + 0.205466i $$0.934129\pi$$
$$380$$ 0 0
$$381$$ 4.00000i 0.204926i
$$382$$ 0 0
$$383$$ 12.0000i 0.613171i 0.951843 + 0.306586i $$0.0991866\pi$$
−0.951843 + 0.306586i $$0.900813\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −4.00000 −0.203331
$$388$$ 0 0
$$389$$ 30.0000i 1.52106i 0.649303 + 0.760530i $$0.275061\pi$$
−0.649303 + 0.760530i $$0.724939\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 16.0000i 0.807093i
$$394$$ 0 0
$$395$$ 16.0000 + 8.00000i 0.805047 + 0.402524i
$$396$$ 0 0
$$397$$ 28.0000 1.40528 0.702640 0.711546i $$-0.252005\pi$$
0.702640 + 0.711546i $$0.252005\pi$$
$$398$$ 0 0
$$399$$ 32.0000 1.60200
$$400$$ 0 0
$$401$$ −30.0000 −1.49813 −0.749064 0.662497i $$-0.769497\pi$$
−0.749064 + 0.662497i $$0.769497\pi$$
$$402$$ 0 0
$$403$$ −32.0000 −1.59403
$$404$$ 0 0
$$405$$ −2.00000 1.00000i −0.0993808 0.0496904i
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 10.0000 0.494468 0.247234 0.968956i $$-0.420478\pi$$
0.247234 + 0.968956i $$0.420478\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 24.0000 + 12.0000i 1.17811 + 0.589057i
$$416$$ 0 0
$$417$$ 8.00000i 0.391762i
$$418$$ 0 0
$$419$$ 16.0000i 0.781651i 0.920465 + 0.390826i $$0.127810\pi$$
−0.920465 + 0.390826i $$0.872190\pi$$
$$420$$ 0 0
$$421$$ 14.0000i 0.682318i 0.940006 + 0.341159i $$0.110819\pi$$
−0.940006 + 0.341159i $$0.889181\pi$$
$$422$$ 0 0
$$423$$ 4.00000i 0.194487i
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 24.0000 1.16144
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 16.0000 0.770693 0.385346 0.922772i $$-0.374082\pi$$
0.385346 + 0.922772i $$0.374082\pi$$
$$432$$ 0 0
$$433$$ 40.0000i 1.92228i 0.276066 + 0.961139i $$0.410969\pi$$
−0.276066 + 0.961139i $$0.589031\pi$$
$$434$$ 0 0
$$435$$ 6.00000 12.0000i 0.287678 0.575356i
$$436$$ 0 0
$$437$$ 32.0000 1.53077
$$438$$ 0 0
$$439$$ −8.00000 −0.381819 −0.190910 0.981608i $$-0.561144\pi$$
−0.190910 + 0.981608i $$0.561144\pi$$
$$440$$ 0 0
$$441$$ −9.00000 −0.428571
$$442$$ 0 0
$$443$$ −20.0000 −0.950229 −0.475114 0.879924i $$-0.657593\pi$$
−0.475114 + 0.879924i $$0.657593\pi$$
$$444$$ 0 0
$$445$$ 20.0000 + 10.0000i 0.948091 + 0.474045i
$$446$$ 0 0
$$447$$ 14.0000i 0.662177i
$$448$$ 0 0
$$449$$ 30.0000 1.41579 0.707894 0.706319i $$-0.249646\pi$$
0.707894 + 0.706319i $$0.249646\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ −8.00000 −0.375873
$$454$$ 0 0
$$455$$ −16.0000 + 32.0000i −0.750092 + 1.50018i
$$456$$ 0 0
$$457$$ 8.00000i 0.374224i −0.982339 0.187112i $$-0.940087\pi$$
0.982339 0.187112i $$-0.0599128\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 22.0000i 1.02464i 0.858794 + 0.512321i $$0.171214\pi$$
−0.858794 + 0.512321i $$0.828786\pi$$
$$462$$ 0 0
$$463$$ 20.0000i 0.929479i −0.885448 0.464739i $$-0.846148\pi$$
0.885448 0.464739i $$-0.153852\pi$$
$$464$$ 0 0
$$465$$ −16.0000 8.00000i −0.741982 0.370991i
$$466$$ 0 0
$$467$$ 4.00000 0.185098 0.0925490 0.995708i $$-0.470499\pi$$
0.0925490 + 0.995708i $$0.470499\pi$$
$$468$$ 0 0
$$469$$ 48.0000i 2.21643i
$$470$$ 0 0
$$471$$ 4.00000 0.184310
$$472$$ 0 0
$$473$$ 0 0
$$474$$ 0 0
$$475$$ 32.0000 24.0000i 1.46826 1.10120i
$$476$$ 0 0
$$477$$ −12.0000 −0.549442
$$478$$ 0 0
$$479$$ 32.0000 1.46212 0.731059 0.682315i $$-0.239027\pi$$
0.731059 + 0.682315i $$0.239027\pi$$
$$480$$ 0 0
$$481$$ −16.0000 −0.729537
$$482$$ 0 0
$$483$$ −16.0000 −0.728025
$$484$$ 0 0
$$485$$ −8.00000 + 16.0000i −0.363261 + 0.726523i
$$486$$ 0 0
$$487$$ 4.00000i 0.181257i 0.995885 + 0.0906287i $$0.0288876\pi$$
−0.995885 + 0.0906287i $$0.971112\pi$$
$$488$$ 0 0
$$489$$ 4.00000 0.180886
$$490$$ 0 0
$$491$$ 32.0000i 1.44414i 0.691820 + 0.722070i $$0.256809\pi$$
−0.691820 + 0.722070i $$0.743191\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 64.0000i 2.87079i
$$498$$ 0 0
$$499$$ 24.0000i 1.07439i −0.843459 0.537194i $$-0.819484\pi$$
0.843459 0.537194i $$-0.180516\pi$$
$$500$$ 0 0
$$501$$ 4.00000i 0.178707i
$$502$$ 0 0
$$503$$ 28.0000i 1.24846i −0.781241 0.624229i $$-0.785413\pi$$
0.781241 0.624229i $$-0.214587\pi$$
$$504$$ 0 0
$$505$$ −14.0000 + 28.0000i −0.622992 + 1.24598i
$$506$$ 0 0
$$507$$ 3.00000 0.133235
$$508$$ 0 0
$$509$$ 6.00000i 0.265945i 0.991120 + 0.132973i $$0.0424523\pi$$
−0.991120 + 0.132973i $$0.957548\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 8.00000i 0.353209i
$$514$$ 0 0
$$515$$ −12.0000 + 24.0000i −0.528783 + 1.05757i
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ −4.00000 −0.175581
$$520$$ 0 0
$$521$$ −10.0000 −0.438108 −0.219054 0.975713i $$-0.570297\pi$$
−0.219054 + 0.975713i $$0.570297\pi$$
$$522$$ 0 0
$$523$$ 12.0000 0.524723 0.262362 0.964970i $$-0.415499\pi$$
0.262362 + 0.964970i $$0.415499\pi$$
$$524$$ 0 0
$$525$$ −16.0000 + 12.0000i −0.698297 + 0.523723i
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ 7.00000 0.304348
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 24.0000 1.03956
$$534$$ 0 0
$$535$$ −24.0000 12.0000i −1.03761 0.518805i
$$536$$ 0 0
$$537$$ 16.0000i 0.690451i
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ 10.0000i 0.429934i −0.976621 0.214967i $$-0.931036\pi$$
0.976621 0.214967i $$-0.0689643\pi$$
$$542$$ 0 0
$$543$$ 14.0000i 0.600798i
$$544$$ 0 0
$$545$$ 10.0000 20.0000i 0.428353 0.856706i
$$546$$ 0 0
$$547$$ 36.0000 1.53925 0.769624 0.638497i $$-0.220443\pi$$
0.769624 + 0.638497i $$0.220443\pi$$
$$548$$ 0 0
$$549$$ 6.00000i 0.256074i
$$550$$ 0 0
$$551$$ 48.0000 2.04487
$$552$$ 0 0
$$553$$ 32.0000i 1.36078i
$$554$$ 0 0
$$555$$ −8.00000 4.00000i −0.339581 0.169791i
$$556$$ 0 0
$$557$$ −4.00000 −0.169485 −0.0847427 0.996403i $$-0.527007\pi$$
−0.0847427 + 0.996403i $$0.527007\pi$$
$$558$$ 0 0
$$559$$ 16.0000 0.676728
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ −28.0000 −1.18006 −0.590030 0.807382i $$-0.700884\pi$$
−0.590030 + 0.807382i $$0.700884\pi$$
$$564$$ 0 0
$$565$$ −8.00000 + 16.0000i −0.336563 + 0.673125i
$$566$$ 0 0
$$567$$ 4.00000i 0.167984i
$$568$$ 0 0
$$569$$ 10.0000 0.419222 0.209611 0.977785i $$-0.432780\pi$$
0.209611 + 0.977785i $$0.432780\pi$$
$$570$$ 0 0
$$571$$ 40.0000i 1.67395i 0.547243 + 0.836974i $$0.315677\pi$$
−0.547243 + 0.836974i $$0.684323\pi$$
$$572$$ 0 0
$$573$$ −16.0000 −0.668410
$$574$$ 0 0
$$575$$ −16.0000 + 12.0000i −0.667246 + 0.500435i
$$576$$ 0 0
$$577$$ 16.0000i 0.666089i 0.942911 + 0.333044i $$0.108076\pi$$
−0.942911 + 0.333044i $$0.891924\pi$$
$$578$$ 0 0
$$579$$ 24.0000i 0.997406i
$$580$$ 0 0
$$581$$ 48.0000i 1.99138i
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 0 0
$$585$$ 8.00000 + 4.00000i 0.330759 + 0.165380i
$$586$$ 0 0
$$587$$ 28.0000 1.15568 0.577842 0.816149i $$-0.303895\pi$$
0.577842 + 0.816149i $$0.303895\pi$$
$$588$$ 0 0
$$589$$ 64.0000i 2.63707i
$$590$$ 0 0
$$591$$ −12.0000 −0.493614
$$592$$ 0 0
$$593$$ 8.00000i 0.328521i −0.986417 0.164260i $$-0.947476\pi$$
0.986417 0.164260i $$-0.0525237\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ −8.00000 −0.327418
$$598$$ 0 0
$$599$$ −32.0000 −1.30748 −0.653742 0.756717i $$-0.726802\pi$$
−0.653742 + 0.756717i $$0.726802\pi$$
$$600$$ 0 0
$$601$$ 26.0000 1.06056 0.530281 0.847822i $$-0.322086\pi$$
0.530281 + 0.847822i $$0.322086\pi$$
$$602$$ 0 0
$$603$$ −12.0000 −0.488678
$$604$$ 0 0
$$605$$ −22.0000 11.0000i −0.894427 0.447214i
$$606$$ 0 0
$$607$$ 20.0000i 0.811775i −0.913923 0.405887i $$-0.866962\pi$$
0.913923 0.405887i $$-0.133038\pi$$
$$608$$ 0 0
$$609$$ −24.0000 −0.972529
$$610$$ 0 0
$$611$$ 16.0000i 0.647291i
$$612$$ 0 0
$$613$$ −20.0000 −0.807792 −0.403896 0.914805i $$-0.632344\pi$$
−0.403896 + 0.914805i $$0.632344\pi$$
$$614$$ 0 0
$$615$$ 12.0000 + 6.00000i 0.483887 + 0.241943i
$$616$$ 0 0
$$617$$ 8.00000i 0.322068i −0.986949 0.161034i $$-0.948517\pi$$
0.986949 0.161034i $$-0.0514829\pi$$
$$618$$ 0 0
$$619$$ 24.0000i 0.964641i 0.875995 + 0.482321i $$0.160206\pi$$
−0.875995 + 0.482321i $$0.839794\pi$$
$$620$$ 0 0
$$621$$ 4.00000i 0.160514i
$$622$$ 0 0
$$623$$ 40.0000i 1.60257i
$$624$$ 0 0
$$625$$ −7.00000 + 24.0000i −0.280000 + 0.960000i
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 0 0
$$630$$ 0 0
$$631$$ 8.00000 0.318475 0.159237 0.987240i $$-0.449096\pi$$
0.159237 + 0.987240i $$0.449096\pi$$
$$632$$ 0 0
$$633$$ 8.00000i 0.317971i
$$634$$ 0 0
$$635$$ −4.00000 + 8.00000i −0.158735 + 0.317470i
$$636$$ 0 0
$$637$$ 36.0000 1.42637
$$638$$ 0 0
$$639$$ −16.0000 −0.632950
$$640$$ 0 0
$$641$$ −34.0000 −1.34292 −0.671460 0.741041i $$-0.734332\pi$$
−0.671460 + 0.741041i $$0.734332\pi$$
$$642$$ 0 0
$$643$$ −12.0000 −0.473234 −0.236617 0.971603i $$-0.576039\pi$$
−0.236617 + 0.971603i $$0.576039\pi$$
$$644$$ 0 0
$$645$$ 8.00000 + 4.00000i 0.315000 + 0.157500i
$$646$$ 0 0
$$647$$ 12.0000i 0.471769i −0.971781 0.235884i $$-0.924201\pi$$
0.971781 0.235884i $$-0.0757987\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 32.0000i 1.25418i
$$652$$ 0 0
$$653$$ 20.0000 0.782660 0.391330 0.920250i $$-0.372015\pi$$
0.391330 + 0.920250i $$0.372015\pi$$
$$654$$ 0 0
$$655$$ 16.0000 32.0000i 0.625172 1.25034i
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$660$$ 0 0
$$661$$ 30.0000i 1.16686i 0.812162 + 0.583432i $$0.198291\pi$$
−0.812162 + 0.583432i $$0.801709\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ −64.0000 32.0000i −2.48181 1.24091i
$$666$$ 0 0
$$667$$ −24.0000 −0.929284
$$668$$ 0 0
$$669$$ 4.00000i 0.154649i
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 8.00000i 0.308377i 0.988041 + 0.154189i $$0.0492764\pi$$
−0.988041 + 0.154189i $$0.950724\pi$$
$$674$$ 0 0
$$675$$ 3.00000 + 4.00000i 0.115470 + 0.153960i
$$676$$ 0 0
$$677$$ −12.0000 −0.461197 −0.230599 0.973049i $$-0.574068\pi$$
−0.230599 + 0.973049i $$0.574068\pi$$
$$678$$ 0 0
$$679$$ 32.0000 1.22805
$$680$$ 0 0
$$681$$ 4.00000 0.153280
$$682$$ 0 0
$$683$$ −36.0000 −1.37750 −0.688751 0.724998i $$-0.741841\pi$$
−0.688751 + 0.724998i $$0.741841\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 2.00000i 0.0763048i
$$688$$ 0 0
$$689$$ 48.0000 1.82865
$$690$$ 0 0
$$691$$ 8.00000i 0.304334i −0.988355 0.152167i $$-0.951375\pi$$
0.988355 0.152167i $$-0.0486252\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ −8.00000 + 16.0000i −0.303457 + 0.606915i
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ 8.00000i 0.302588i
$$700$$ 0 0
$$701$$ 42.0000i 1.58632i 0.609015 + 0.793159i $$0.291565\pi$$
−0.609015 + 0.793159i $$0.708435\pi$$
$$702$$ 0 0
$$703$$ 32.0000i 1.20690i
$$704$$ 0 0
$$705$$ −4.00000 + 8.00000i −0.150649 + 0.301297i
$$706$$ 0 0
$$707$$ 56.0000 2.10610
$$708$$ 0 0
$$709$$ 2.00000i 0.0751116i 0.999295 + 0.0375558i $$0.0119572\pi$$
−0.999295 + 0.0375558i $$0.988043\pi$$
$$710$$ 0 0
$$711$$ −8.00000 −0.300023
$$712$$ 0 0
$$713$$ 32.0000i 1.19841i
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ −16.0000 −0.597531
$$718$$ 0 0
$$719$$ −16.0000 −0.596699 −0.298350 0.954457i $$-0.596436\pi$$
−0.298350 + 0.954457i $$0.596436\pi$$
$$720$$ 0 0
$$721$$ 48.0000 1.78761
$$722$$ 0 0
$$723$$ 14.0000 0.520666
$$724$$ 0 0
$$725$$ −24.0000 + 18.0000i −0.891338 + 0.668503i
$$726$$ 0 0
$$727$$ 28.0000i 1.03846i −0.854634 0.519231i $$-0.826218\pi$$
0.854634 0.519231i $$-0.173782\pi$$
$$728$$ 0 0
$$729$$ 1.00000 0.0370370
$$730$$ 0 0
$$731$$ 0 0
$$732$$ 0 0
$$733$$ 4.00000 0.147743 0.0738717 0.997268i $$-0.476464\pi$$
0.0738717 + 0.997268i $$0.476464\pi$$
$$734$$ 0 0
$$735$$ 18.0000 + 9.00000i 0.663940 + 0.331970i
$$736$$ 0 0
$$737$$ 0 0
$$738$$ 0 0
$$739$$ 40.0000i 1.47142i 0.677295 + 0.735712i $$0.263152\pi$$
−0.677295 + 0.735712i $$0.736848\pi$$
$$740$$ 0 0
$$741$$ 32.0000i 1.17555i
$$742$$ 0 0
$$743$$ 12.0000i 0.440237i −0.975473 0.220119i $$-0.929356\pi$$
0.975473 0.220119i $$-0.0706445\pi$$
$$744$$ 0 0
$$745$$ 14.0000 28.0000i 0.512920 1.02584i
$$746$$ 0 0
$$747$$ −12.0000 −0.439057
$$748$$ 0 0
$$749$$ 48.0000i 1.75388i
$$750$$ 0 0
$$751$$ 8.00000 0.291924 0.145962 0.989290i $$-0.453372\pi$$
0.145962 + 0.989290i $$0.453372\pi$$
$$752$$ 0 0
$$753$$ 16.0000i 0.583072i
$$754$$ 0 0
$$755$$ 16.0000 + 8.00000i 0.582300 + 0.291150i
$$756$$ 0 0
$$757$$ −12.0000 −0.436147 −0.218074 0.975932i $$-0.569977\pi$$
−0.218074 + 0.975932i $$0.569977\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 6.00000 0.217500 0.108750 0.994069i $$-0.465315\pi$$
0.108750 + 0.994069i $$0.465315\pi$$
$$762$$ 0 0
$$763$$ −40.0000 −1.44810
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ −14.0000 −0.504853 −0.252426 0.967616i $$-0.581229\pi$$
−0.252426 + 0.967616i $$0.581229\pi$$
$$770$$ 0 0
$$771$$ 24.0000i 0.864339i
$$772$$ 0 0
$$773$$ −28.0000 −1.00709 −0.503545 0.863969i $$-0.667971\pi$$
−0.503545 + 0.863969i $$0.667971\pi$$
$$774$$ 0 0
$$775$$ 24.0000 + 32.0000i 0.862105 + 1.14947i
$$776$$ 0 0
$$777$$ 16.0000i 0.573997i
$$778$$ 0 0
$$779$$ 48.0000i 1.71978i
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 6.00000i 0.214423i
$$784$$ 0 0
$$785$$ −8.00000 4.00000i −0.285532 0.142766i
$$786$$ 0 0
$$787$$ −12.0000 −0.427754 −0.213877 0.976861i $$-0.568609\pi$$
−0.213877 + 0.976861i $$0.568609\pi$$
$$788$$ 0 0
$$789$$ 12.0000i 0.427211i
$$790$$ 0 0
$$791$$ 32.0000 1.13779
$$792$$ 0 0
$$793$$ 24.0000i 0.852265i
$$794$$ 0 0
$$795$$ 24.0000 + 12.0000i 0.851192 + 0.425596i
$$796$$ 0 0
$$797$$ −12.0000 −0.425062 −0.212531 0.977154i $$-0.568171\pi$$
−0.212531 + 0.977154i $$0.568171\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ −10.0000 −0.353333
$$802$$ 0 0