Properties

Label 3840.2.d.j.2689.1
Level $3840$
Weight $2$
Character 3840.2689
Analytic conductor $30.663$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3840.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(30.6625543762\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2689.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3840.2689
Dual form 3840.2.d.j.2689.2

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} +(1.00000 - 2.00000i) q^{5} +2.00000i q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +(1.00000 - 2.00000i) q^{5} +2.00000i q^{7} +1.00000 q^{9} -2.00000i q^{11} -6.00000 q^{13} +(-1.00000 + 2.00000i) q^{15} +2.00000i q^{17} -2.00000i q^{21} +4.00000i q^{23} +(-3.00000 - 4.00000i) q^{25} -1.00000 q^{27} +8.00000 q^{31} +2.00000i q^{33} +(4.00000 + 2.00000i) q^{35} -2.00000 q^{37} +6.00000 q^{39} -2.00000 q^{41} +4.00000 q^{43} +(1.00000 - 2.00000i) q^{45} +8.00000i q^{47} +3.00000 q^{49} -2.00000i q^{51} +6.00000 q^{53} +(-4.00000 - 2.00000i) q^{55} +10.0000i q^{59} -2.00000i q^{61} +2.00000i q^{63} +(-6.00000 + 12.0000i) q^{65} +8.00000 q^{67} -4.00000i q^{69} +12.0000 q^{71} -4.00000i q^{73} +(3.00000 + 4.00000i) q^{75} +4.00000 q^{77} +1.00000 q^{81} -4.00000 q^{83} +(4.00000 + 2.00000i) q^{85} -10.0000 q^{89} -12.0000i q^{91} -8.00000 q^{93} -8.00000i q^{97} -2.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{3} + 2q^{5} + 2q^{9} + O(q^{10}) \) \( 2q - 2q^{3} + 2q^{5} + 2q^{9} - 12q^{13} - 2q^{15} - 6q^{25} - 2q^{27} + 16q^{31} + 8q^{35} - 4q^{37} + 12q^{39} - 4q^{41} + 8q^{43} + 2q^{45} + 6q^{49} + 12q^{53} - 8q^{55} - 12q^{65} + 16q^{67} + 24q^{71} + 6q^{75} + 8q^{77} + 2q^{81} - 8q^{83} + 8q^{85} - 20q^{89} - 16q^{93} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1537\) \(2561\) \(2821\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.00000 2.00000i 0.447214 0.894427i
\(6\) 0 0
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.00000i 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) 0 0
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) −1.00000 + 2.00000i −0.258199 + 0.516398i
\(16\) 0 0
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 2.00000i 0.436436i
\(22\) 0 0
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) 4.00000 + 2.00000i 0.676123 + 0.338062i
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 1.00000 2.00000i 0.149071 0.298142i
\(46\) 0 0
\(47\) 8.00000i 1.16692i 0.812142 + 0.583460i \(0.198301\pi\)
−0.812142 + 0.583460i \(0.801699\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 2.00000i 0.280056i
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −4.00000 2.00000i −0.539360 0.269680i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.0000i 1.30189i 0.759125 + 0.650945i \(0.225627\pi\)
−0.759125 + 0.650945i \(0.774373\pi\)
\(60\) 0 0
\(61\) 2.00000i 0.256074i −0.991769 0.128037i \(-0.959132\pi\)
0.991769 0.128037i \(-0.0408676\pi\)
\(62\) 0 0
\(63\) 2.00000i 0.251976i
\(64\) 0 0
\(65\) −6.00000 + 12.0000i −0.744208 + 1.48842i
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) 4.00000i 0.481543i
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i −0.972217 0.234082i \(-0.924791\pi\)
0.972217 0.234082i \(-0.0752085\pi\)
\(74\) 0 0
\(75\) 3.00000 + 4.00000i 0.346410 + 0.461880i
\(76\) 0 0
\(77\) 4.00000 0.455842
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 4.00000 + 2.00000i 0.433861 + 0.216930i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 12.0000i 1.25794i
\(92\) 0 0
\(93\) −8.00000 −0.829561
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.00000i 0.812277i −0.913812 0.406138i \(-0.866875\pi\)
0.913812 0.406138i \(-0.133125\pi\)
\(98\) 0 0
\(99\) 2.00000i 0.201008i
\(100\) 0 0
\(101\) 8.00000i 0.796030i −0.917379 0.398015i \(-0.869699\pi\)
0.917379 0.398015i \(-0.130301\pi\)
\(102\) 0 0
\(103\) 14.0000i 1.37946i 0.724066 + 0.689730i \(0.242271\pi\)
−0.724066 + 0.689730i \(0.757729\pi\)
\(104\) 0 0
\(105\) −4.00000 2.00000i −0.390360 0.195180i
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i 0.877862 + 0.478913i \(0.158969\pi\)
−0.877862 + 0.478913i \(0.841031\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) 6.00000i 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 0 0
\(115\) 8.00000 + 4.00000i 0.746004 + 0.373002i
\(116\) 0 0
\(117\) −6.00000 −0.554700
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 0 0
\(123\) 2.00000 0.180334
\(124\) 0 0
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) 0 0
\(127\) 2.00000i 0.177471i −0.996055 0.0887357i \(-0.971717\pi\)
0.996055 0.0887357i \(-0.0282826\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 18.0000i 1.57267i −0.617802 0.786334i \(-0.711977\pi\)
0.617802 0.786334i \(-0.288023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.00000 + 2.00000i −0.0860663 + 0.172133i
\(136\) 0 0
\(137\) 18.0000i 1.53784i 0.639343 + 0.768922i \(0.279207\pi\)
−0.639343 + 0.768922i \(0.720793\pi\)
\(138\) 0 0
\(139\) 20.0000i 1.69638i −0.529694 0.848189i \(-0.677693\pi\)
0.529694 0.848189i \(-0.322307\pi\)
\(140\) 0 0
\(141\) 8.00000i 0.673722i
\(142\) 0 0
\(143\) 12.0000i 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −3.00000 −0.247436
\(148\) 0 0
\(149\) 20.0000i 1.63846i 0.573462 + 0.819232i \(0.305600\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) 2.00000i 0.161690i
\(154\) 0 0
\(155\) 8.00000 16.0000i 0.642575 1.28515i
\(156\) 0 0
\(157\) 22.0000 1.75579 0.877896 0.478852i \(-0.158947\pi\)
0.877896 + 0.478852i \(0.158947\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) −8.00000 −0.630488
\(162\) 0 0
\(163\) 16.0000 1.25322 0.626608 0.779334i \(-0.284443\pi\)
0.626608 + 0.779334i \(0.284443\pi\)
\(164\) 0 0
\(165\) 4.00000 + 2.00000i 0.311400 + 0.155700i
\(166\) 0 0
\(167\) 12.0000i 0.928588i 0.885681 + 0.464294i \(0.153692\pi\)
−0.885681 + 0.464294i \(0.846308\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) 8.00000 6.00000i 0.604743 0.453557i
\(176\) 0 0
\(177\) 10.0000i 0.751646i
\(178\) 0 0
\(179\) 10.0000i 0.747435i −0.927543 0.373718i \(-0.878083\pi\)
0.927543 0.373718i \(-0.121917\pi\)
\(180\) 0 0
\(181\) 2.00000i 0.148659i 0.997234 + 0.0743294i \(0.0236816\pi\)
−0.997234 + 0.0743294i \(0.976318\pi\)
\(182\) 0 0
\(183\) 2.00000i 0.147844i
\(184\) 0 0
\(185\) −2.00000 + 4.00000i −0.147043 + 0.294086i
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) 0 0
\(189\) 2.00000i 0.145479i
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) 4.00000i 0.287926i 0.989583 + 0.143963i \(0.0459847\pi\)
−0.989583 + 0.143963i \(0.954015\pi\)
\(194\) 0 0
\(195\) 6.00000 12.0000i 0.429669 0.859338i
\(196\) 0 0
\(197\) −22.0000 −1.56744 −0.783718 0.621117i \(-0.786679\pi\)
−0.783718 + 0.621117i \(0.786679\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.00000 + 4.00000i −0.139686 + 0.279372i
\(206\) 0 0
\(207\) 4.00000i 0.278019i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 12.0000i 0.826114i 0.910705 + 0.413057i \(0.135539\pi\)
−0.910705 + 0.413057i \(0.864461\pi\)
\(212\) 0 0
\(213\) −12.0000 −0.822226
\(214\) 0 0
\(215\) 4.00000 8.00000i 0.272798 0.545595i
\(216\) 0 0
\(217\) 16.0000i 1.08615i
\(218\) 0 0
\(219\) 4.00000i 0.270295i
\(220\) 0 0
\(221\) 12.0000i 0.807207i
\(222\) 0 0
\(223\) 26.0000i 1.74109i 0.492090 + 0.870544i \(0.336233\pi\)
−0.492090 + 0.870544i \(0.663767\pi\)
\(224\) 0 0
\(225\) −3.00000 4.00000i −0.200000 0.266667i
\(226\) 0 0
\(227\) 28.0000 1.85843 0.929213 0.369546i \(-0.120487\pi\)
0.929213 + 0.369546i \(0.120487\pi\)
\(228\) 0 0
\(229\) 10.0000i 0.660819i 0.943838 + 0.330409i \(0.107187\pi\)
−0.943838 + 0.330409i \(0.892813\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) 0 0
\(233\) 14.0000i 0.917170i −0.888650 0.458585i \(-0.848356\pi\)
0.888650 0.458585i \(-0.151644\pi\)
\(234\) 0 0
\(235\) 16.0000 + 8.00000i 1.04372 + 0.521862i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 3.00000 6.00000i 0.191663 0.383326i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 4.00000 0.253490
\(250\) 0 0
\(251\) 18.0000i 1.13615i 0.822977 + 0.568075i \(0.192312\pi\)
−0.822977 + 0.568075i \(0.807688\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) 0 0
\(255\) −4.00000 2.00000i −0.250490 0.125245i
\(256\) 0 0
\(257\) 18.0000i 1.12281i −0.827541 0.561405i \(-0.810261\pi\)
0.827541 0.561405i \(-0.189739\pi\)
\(258\) 0 0
\(259\) 4.00000i 0.248548i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.00000i 0.246651i 0.992366 + 0.123325i \(0.0393559\pi\)
−0.992366 + 0.123325i \(0.960644\pi\)
\(264\) 0 0
\(265\) 6.00000 12.0000i 0.368577 0.737154i
\(266\) 0 0
\(267\) 10.0000 0.611990
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 12.0000i 0.726273i
\(274\) 0 0
\(275\) −8.00000 + 6.00000i −0.482418 + 0.361814i
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) −16.0000 −0.951101 −0.475551 0.879688i \(-0.657751\pi\)
−0.475551 + 0.879688i \(0.657751\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.00000i 0.236113i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 8.00000i 0.468968i
\(292\) 0 0
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 20.0000 + 10.0000i 1.16445 + 0.582223i
\(296\) 0 0
\(297\) 2.00000i 0.116052i
\(298\) 0 0
\(299\) 24.0000i 1.38796i
\(300\) 0 0
\(301\) 8.00000i 0.461112i
\(302\) 0 0
\(303\) 8.00000i 0.459588i
\(304\) 0 0
\(305\) −4.00000 2.00000i −0.229039 0.114520i
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) 14.0000i 0.796432i
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 4.00000i 0.226093i −0.993590 0.113047i \(-0.963939\pi\)
0.993590 0.113047i \(-0.0360610\pi\)
\(314\) 0 0
\(315\) 4.00000 + 2.00000i 0.225374 + 0.112687i
\(316\) 0 0
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 18.0000 + 24.0000i 0.998460 + 1.33128i
\(326\) 0 0
\(327\) 10.0000i 0.553001i
\(328\) 0 0
\(329\) −16.0000 −0.882109
\(330\) 0 0
\(331\) 8.00000i 0.439720i 0.975531 + 0.219860i \(0.0705600\pi\)
−0.975531 + 0.219860i \(0.929440\pi\)
\(332\) 0 0
\(333\) −2.00000 −0.109599
\(334\) 0 0
\(335\) 8.00000 16.0000i 0.437087 0.874173i
\(336\) 0 0
\(337\) 28.0000i 1.52526i −0.646837 0.762629i \(-0.723908\pi\)
0.646837 0.762629i \(-0.276092\pi\)
\(338\) 0 0
\(339\) 6.00000i 0.325875i
\(340\) 0 0
\(341\) 16.0000i 0.866449i
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) −8.00000 4.00000i −0.430706 0.215353i
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 10.0000i 0.535288i 0.963518 + 0.267644i \(0.0862451\pi\)
−0.963518 + 0.267644i \(0.913755\pi\)
\(350\) 0 0
\(351\) 6.00000 0.320256
\(352\) 0 0
\(353\) 14.0000i 0.745145i 0.928003 + 0.372572i \(0.121524\pi\)
−0.928003 + 0.372572i \(0.878476\pi\)
\(354\) 0 0
\(355\) 12.0000 24.0000i 0.636894 1.27379i
\(356\) 0 0
\(357\) 4.00000 0.211702
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) −8.00000 4.00000i −0.418739 0.209370i
\(366\) 0 0
\(367\) 2.00000i 0.104399i −0.998637 0.0521996i \(-0.983377\pi\)
0.998637 0.0521996i \(-0.0166232\pi\)
\(368\) 0 0
\(369\) −2.00000 −0.104116
\(370\) 0 0
\(371\) 12.0000i 0.623009i
\(372\) 0 0
\(373\) 6.00000 0.310668 0.155334 0.987862i \(-0.450355\pi\)
0.155334 + 0.987862i \(0.450355\pi\)
\(374\) 0 0
\(375\) 11.0000 2.00000i 0.568038 0.103280i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 20.0000i 1.02733i 0.857991 + 0.513665i \(0.171713\pi\)
−0.857991 + 0.513665i \(0.828287\pi\)
\(380\) 0 0
\(381\) 2.00000i 0.102463i
\(382\) 0 0
\(383\) 16.0000i 0.817562i 0.912633 + 0.408781i \(0.134046\pi\)
−0.912633 + 0.408781i \(0.865954\pi\)
\(384\) 0 0
\(385\) 4.00000 8.00000i 0.203859 0.407718i
\(386\) 0 0
\(387\) 4.00000 0.203331
\(388\) 0 0
\(389\) 20.0000i 1.01404i −0.861934 0.507020i \(-0.830747\pi\)
0.861934 0.507020i \(-0.169253\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 0 0
\(393\) 18.0000i 0.907980i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 22.0000 1.09863 0.549314 0.835616i \(-0.314889\pi\)
0.549314 + 0.835616i \(0.314889\pi\)
\(402\) 0 0
\(403\) −48.0000 −2.39105
\(404\) 0 0
\(405\) 1.00000 2.00000i 0.0496904 0.0993808i
\(406\) 0 0
\(407\) 4.00000i 0.198273i
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) 18.0000i 0.887875i
\(412\) 0 0
\(413\) −20.0000 −0.984136
\(414\) 0 0
\(415\) −4.00000 + 8.00000i −0.196352 + 0.392705i
\(416\) 0 0
\(417\) 20.0000i 0.979404i
\(418\) 0 0
\(419\) 10.0000i 0.488532i 0.969708 + 0.244266i \(0.0785470\pi\)
−0.969708 + 0.244266i \(0.921453\pi\)
\(420\) 0 0
\(421\) 22.0000i 1.07221i 0.844150 + 0.536107i \(0.180106\pi\)
−0.844150 + 0.536107i \(0.819894\pi\)
\(422\) 0 0
\(423\) 8.00000i 0.388973i
\(424\) 0 0
\(425\) 8.00000 6.00000i 0.388057 0.291043i
\(426\) 0 0
\(427\) 4.00000 0.193574
\(428\) 0 0
\(429\) 12.0000i 0.579365i
\(430\) 0 0
\(431\) −32.0000 −1.54139 −0.770693 0.637207i \(-0.780090\pi\)
−0.770693 + 0.637207i \(0.780090\pi\)
\(432\) 0 0
\(433\) 4.00000i 0.192228i 0.995370 + 0.0961139i \(0.0306413\pi\)
−0.995370 + 0.0961139i \(0.969359\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 3.00000 0.142857
\(442\) 0 0
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) 0 0
\(445\) −10.0000 + 20.0000i −0.474045 + 0.948091i
\(446\) 0 0
\(447\) 20.0000i 0.945968i
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 4.00000i 0.188353i
\(452\) 0 0
\(453\) 8.00000 0.375873
\(454\) 0 0
\(455\) −24.0000 12.0000i −1.12514 0.562569i
\(456\) 0 0
\(457\) 32.0000i 1.49690i −0.663193 0.748448i \(-0.730799\pi\)
0.663193 0.748448i \(-0.269201\pi\)
\(458\) 0 0
\(459\) 2.00000i 0.0933520i
\(460\) 0 0
\(461\) 12.0000i 0.558896i −0.960161 0.279448i \(-0.909849\pi\)
0.960161 0.279448i \(-0.0901514\pi\)
\(462\) 0 0
\(463\) 6.00000i 0.278844i 0.990233 + 0.139422i \(0.0445244\pi\)
−0.990233 + 0.139422i \(0.955476\pi\)
\(464\) 0 0
\(465\) −8.00000 + 16.0000i −0.370991 + 0.741982i
\(466\) 0 0
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) 16.0000i 0.738811i
\(470\) 0 0
\(471\) −22.0000 −1.01371
\(472\) 0 0
\(473\) 8.00000i 0.367840i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) 20.0000 0.913823 0.456912 0.889512i \(-0.348956\pi\)
0.456912 + 0.889512i \(0.348956\pi\)
\(480\) 0 0
\(481\) 12.0000 0.547153
\(482\) 0 0
\(483\) 8.00000 0.364013
\(484\) 0 0
\(485\) −16.0000 8.00000i −0.726523 0.363261i
\(486\) 0 0
\(487\) 18.0000i 0.815658i −0.913058 0.407829i \(-0.866286\pi\)
0.913058 0.407829i \(-0.133714\pi\)
\(488\) 0 0
\(489\) −16.0000 −0.723545
\(490\) 0 0
\(491\) 18.0000i 0.812329i 0.913800 + 0.406164i \(0.133134\pi\)
−0.913800 + 0.406164i \(0.866866\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −4.00000 2.00000i −0.179787 0.0898933i
\(496\) 0 0
\(497\) 24.0000i 1.07655i
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 12.0000i 0.536120i
\(502\) 0 0
\(503\) 24.0000i 1.07011i 0.844818 + 0.535054i \(0.179709\pi\)
−0.844818 + 0.535054i \(0.820291\pi\)
\(504\) 0 0
\(505\) −16.0000 8.00000i −0.711991 0.355995i
\(506\) 0 0
\(507\) −23.0000 −1.02147
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 8.00000 0.353899
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 28.0000 + 14.0000i 1.23383 + 0.616914i
\(516\) 0 0
\(517\) 16.0000 0.703679
\(518\) 0 0
\(519\) −14.0000 −0.614532
\(520\) 0 0
\(521\) −22.0000 −0.963837 −0.481919 0.876216i \(-0.660060\pi\)
−0.481919 + 0.876216i \(0.660060\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 0 0
\(525\) −8.00000 + 6.00000i −0.349149 + 0.261861i
\(526\) 0 0
\(527\) 16.0000i 0.696971i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 10.0000i 0.433963i
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) 12.0000 24.0000i 0.518805 1.03761i
\(536\) 0 0
\(537\) 10.0000i 0.431532i
\(538\) 0 0
\(539\) 6.00000i 0.258438i
\(540\) 0 0
\(541\) 38.0000i 1.63375i 0.576816 + 0.816874i \(0.304295\pi\)
−0.576816 + 0.816874i \(0.695705\pi\)
\(542\) 0 0
\(543\) 2.00000i 0.0858282i
\(544\) 0 0
\(545\) 20.0000 + 10.0000i 0.856706 + 0.428353i
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) 2.00000i 0.0853579i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.00000 4.00000i 0.0848953 0.169791i
\(556\) 0 0
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) 0 0
\(563\) −44.0000 −1.85438 −0.927189 0.374593i \(-0.877783\pi\)
−0.927189 + 0.374593i \(0.877783\pi\)
\(564\) 0 0
\(565\) −12.0000 6.00000i −0.504844 0.252422i
\(566\) 0 0
\(567\) 2.00000i 0.0839921i
\(568\) 0 0
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) 8.00000i 0.334790i 0.985890 + 0.167395i \(0.0535355\pi\)
−0.985890 + 0.167395i \(0.946465\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) 0 0
\(575\) 16.0000 12.0000i 0.667246 0.500435i
\(576\) 0 0
\(577\) 32.0000i 1.33218i 0.745873 + 0.666089i \(0.232033\pi\)
−0.745873 + 0.666089i \(0.767967\pi\)
\(578\) 0 0
\(579\) 4.00000i 0.166234i
\(580\) 0 0
\(581\) 8.00000i 0.331896i
\(582\) 0 0
\(583\) 12.0000i 0.496989i
\(584\) 0 0
\(585\) −6.00000 + 12.0000i −0.248069 + 0.496139i
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 22.0000 0.904959
\(592\) 0 0
\(593\) 6.00000i 0.246390i −0.992382 0.123195i \(-0.960686\pi\)
0.992382 0.123195i \(-0.0393141\pi\)
\(594\) 0 0
\(595\) −4.00000 + 8.00000i −0.163984 + 0.327968i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) 0 0
\(605\) 7.00000 14.0000i 0.284590 0.569181i
\(606\) 0 0
\(607\) 22.0000i 0.892952i −0.894795 0.446476i \(-0.852679\pi\)
0.894795 0.446476i \(-0.147321\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 48.0000i 1.94187i
\(612\) 0 0
\(613\) 26.0000 1.05013 0.525065 0.851062i \(-0.324041\pi\)
0.525065 + 0.851062i \(0.324041\pi\)
\(614\) 0 0
\(615\) 2.00000 4.00000i 0.0806478 0.161296i
\(616\) 0 0
\(617\) 2.00000i 0.0805170i −0.999189 0.0402585i \(-0.987182\pi\)
0.999189 0.0402585i \(-0.0128181\pi\)
\(618\) 0 0
\(619\) 20.0000i 0.803868i 0.915669 + 0.401934i \(0.131662\pi\)
−0.915669 + 0.401934i \(0.868338\pi\)
\(620\) 0 0
\(621\) 4.00000i 0.160514i
\(622\) 0 0
\(623\) 20.0000i 0.801283i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.00000i 0.159490i
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) 12.0000i 0.476957i
\(634\) 0 0
\(635\) −4.00000 2.00000i −0.158735 0.0793676i
\(636\) 0 0
\(637\) −18.0000 −0.713186
\(638\) 0 0
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 0 0
\(643\) −24.0000 −0.946468 −0.473234 0.880937i \(-0.656913\pi\)
−0.473234 + 0.880937i \(0.656913\pi\)
\(644\) 0 0
\(645\) −4.00000 + 8.00000i −0.157500 + 0.315000i
\(646\) 0 0
\(647\) 48.0000i 1.88707i −0.331266 0.943537i \(-0.607476\pi\)
0.331266 0.943537i \(-0.392524\pi\)
\(648\) 0 0
\(649\) 20.0000 0.785069
\(650\) 0 0
\(651\) 16.0000i 0.627089i
\(652\) 0 0
\(653\) −26.0000 −1.01746 −0.508729 0.860927i \(-0.669885\pi\)
−0.508729 + 0.860927i \(0.669885\pi\)
\(654\) 0 0
\(655\) −36.0000 18.0000i −1.40664 0.703318i
\(656\) 0 0
\(657\) 4.00000i 0.156055i
\(658\) 0 0
\(659\) 50.0000i 1.94772i 0.227142 + 0.973862i \(0.427062\pi\)
−0.227142 + 0.973862i \(0.572938\pi\)
\(660\) 0 0
\(661\) 2.00000i 0.0777910i 0.999243 + 0.0388955i \(0.0123839\pi\)
−0.999243 + 0.0388955i \(0.987616\pi\)
\(662\) 0 0
\(663\) 12.0000i 0.466041i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 26.0000i 1.00522i
\(670\) 0 0
\(671\) −4.00000 −0.154418
\(672\) 0 0
\(673\) 36.0000i 1.38770i −0.720121 0.693849i \(-0.755914\pi\)
0.720121 0.693849i \(-0.244086\pi\)
\(674\) 0 0
\(675\) 3.00000 + 4.00000i 0.115470 + 0.153960i
\(676\) 0 0
\(677\) −2.00000 −0.0768662 −0.0384331 0.999261i \(-0.512237\pi\)
−0.0384331 + 0.999261i \(0.512237\pi\)
\(678\) 0 0
\(679\) 16.0000 0.614024
\(680\) 0 0
\(681\) −28.0000 −1.07296
\(682\) 0 0
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) 36.0000 + 18.0000i 1.37549 + 0.687745i
\(686\) 0 0
\(687\) 10.0000i 0.381524i
\(688\) 0 0
\(689\) −36.0000 −1.37149
\(690\) 0 0
\(691\) 8.00000i 0.304334i −0.988355 0.152167i \(-0.951375\pi\)
0.988355 0.152167i \(-0.0486252\pi\)
\(692\) 0 0
\(693\) 4.00000 0.151947
\(694\) 0 0
\(695\) −40.0000 20.0000i −1.51729 0.758643i
\(696\) 0 0
\(697\) 4.00000i 0.151511i
\(698\) 0 0
\(699\) 14.0000i 0.529529i
\(700\) 0 0
\(701\) 32.0000i 1.20862i −0.796748 0.604312i \(-0.793448\pi\)
0.796748 0.604312i \(-0.206552\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −16.0000 8.00000i −0.602595 0.301297i
\(706\) 0 0
\(707\) 16.0000 0.601742
\(708\) 0 0
\(709\) 30.0000i 1.12667i −0.826227 0.563337i \(-0.809517\pi\)
0.826227 0.563337i \(-0.190483\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 32.0000i 1.19841i
\(714\) 0 0
\(715\) 24.0000 + 12.0000i 0.897549 + 0.448775i
\(716\) 0 0
\(717\) −20.0000 −0.746914
\(718\) 0 0
\(719\) −40.0000 −1.49175 −0.745874 0.666087i \(-0.767968\pi\)
−0.745874 + 0.666087i \(0.767968\pi\)
\(720\) 0 0
\(721\) −28.0000 −1.04277
\(722\) 0 0
\(723\) −22.0000 −0.818189
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 18.0000i 0.667583i −0.942647 0.333792i \(-0.891672\pi\)
0.942647 0.333792i \(-0.108328\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 8.00000i 0.295891i
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) −3.00000 + 6.00000i −0.110657 + 0.221313i
\(736\) 0 0
\(737\) 16.0000i 0.589368i
\(738\) 0 0
\(739\) 40.0000i 1.47142i −0.677295 0.735712i \(-0.736848\pi\)
0.677295 0.735712i \(-0.263152\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000i 0.880475i 0.897881 + 0.440237i \(0.145106\pi\)
−0.897881 + 0.440237i \(0.854894\pi\)
\(744\) 0 0
\(745\) 40.0000 + 20.0000i 1.46549 + 0.732743i
\(746\) 0 0
\(747\) −4.00000 −0.146352
\(748\) 0 0
\(749\) 24.0000i 0.876941i
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) 18.0000i 0.655956i
\(754\) 0 0
\(755\) −8.00000 + 16.0000i −0.291150 + 0.582300i
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 0 0
\(759\) −8.00000 −0.290382
\(760\) 0 0
\(761\) 18.0000 0.652499 0.326250 0.945284i \(-0.394215\pi\)
0.326250 + 0.945284i \(0.394215\pi\)
\(762\) 0 0
\(763\) −20.0000 −0.724049
\(764\) 0 0
\(765\) 4.00000 + 2.00000i 0.144620 + 0.0723102i
\(766\) 0 0
\(767\) 60.0000i 2.16647i
\(768\) 0 0
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) 18.0000i 0.648254i
\(772\) 0 0
\(773\) −54.0000 −1.94225 −0.971123 0.238581i \(-0.923318\pi\)
−0.971123 + 0.238581i \(0.923318\pi\)
\(774\) 0 0
\(775\) −24.0000 32.0000i −0.862105 1.14947i
\(776\) 0 0
\(777\) 4.00000i 0.143499i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 24.0000i 0.858788i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.0000 44.0000i 0.785214 1.57043i
\(786\) 0 0
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) 0 0
\(789\) 4.00000i 0.142404i
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 12.0000i 0.426132i
\(794\) 0 0
\(795\) −6.00000 + 12.0000i −0.212798 + 0.425596i
\(796\) 0 0
\(797\) 2.00000 0.0708436 0.0354218 0.999372i \(-0.488723\pi\)
0.0354218 + 0.999372i \(0.488723\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) 0 0
\(801\) −10.0000 −0.353333
\(802\) 0 0
\(803\) −8.00000 −0.282314