Properties

Label 3840.2.br
Level $3840$
Weight $2$
Character orbit 3840.br
Rep. character $\chi_{3840}(737,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $736$
Sturm bound $1536$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3840.br (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 480 \)
Character field: \(\Q(\zeta_{8})\)
Sturm bound: \(1536\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3840, [\chi])\).

Total New Old
Modular forms 3200 800 2400
Cusp forms 2944 736 2208
Eisenstein series 256 64 192

Trace form

\( 736 q + 16 q^{13} + 16 q^{21} - 16 q^{25} - 16 q^{33} + 16 q^{37} + 8 q^{45} - 544 q^{49} - 32 q^{61} + 48 q^{69} + 16 q^{85} + 32 q^{93} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3840, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3840, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3840, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1920, [\chi])\)\(^{\oplus 2}\)