Properties

Label 384.8.a.t
Level $384$
Weight $8$
Character orbit 384.a
Self dual yes
Analytic conductor $119.956$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 384.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(119.955849786\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Defining polynomial: \(x^{4} - 620 x^{2} - 700 x + 83625\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 27 q^{3} + ( 84 - \beta_{2} ) q^{5} + ( -170 - \beta_{3} ) q^{7} + 729 q^{9} +O(q^{10})\) \( q + 27 q^{3} + ( 84 - \beta_{2} ) q^{5} + ( -170 - \beta_{3} ) q^{7} + 729 q^{9} + ( 964 + \beta_{1} - 6 \beta_{2} + \beta_{3} ) q^{11} + ( 2670 - 2 \beta_{1} - 9 \beta_{2} - \beta_{3} ) q^{13} + ( 2268 - 27 \beta_{2} ) q^{15} + ( 6558 + \beta_{1} - 20 \beta_{2} + 7 \beta_{3} ) q^{17} + ( -3864 + 3 \beta_{1} + 44 \beta_{2} - 19 \beta_{3} ) q^{19} + ( -4590 - 27 \beta_{3} ) q^{21} + ( 2828 - 76 \beta_{2} - 14 \beta_{3} ) q^{23} + ( 39763 - 4 \beta_{1} - 166 \beta_{2} + 58 \beta_{3} ) q^{25} + 19683 q^{27} + ( -464 - 6 \beta_{1} - 61 \beta_{2} - 76 \beta_{3} ) q^{29} + ( -17938 + 22 \beta_{1} - 84 \beta_{2} - 111 \beta_{3} ) q^{31} + ( 26028 + 27 \beta_{1} - 162 \beta_{2} + 27 \beta_{3} ) q^{33} + ( -44760 - 57 \beta_{1} + 818 \beta_{2} - 221 \beta_{3} ) q^{35} + ( -45022 + 66 \beta_{1} - 885 \beta_{2} + 65 \beta_{3} ) q^{37} + ( 72090 - 54 \beta_{1} - 243 \beta_{2} - 27 \beta_{3} ) q^{39} + ( 2806 - 41 \beta_{1} - 8 \beta_{2} - 91 \beta_{3} ) q^{41} + ( 16672 + 61 \beta_{1} + 544 \beta_{2} + 111 \beta_{3} ) q^{43} + ( 61236 - 729 \beta_{2} ) q^{45} + ( 333612 - 4 \beta_{1} - 1432 \beta_{2} - 170 \beta_{3} ) q^{47} + ( 600285 - 78 \beta_{1} - 2226 \beta_{2} + 232 \beta_{3} ) q^{49} + ( 177066 + 27 \beta_{1} - 540 \beta_{2} + 189 \beta_{3} ) q^{51} + ( -216144 - 218 \beta_{1} - 1297 \beta_{2} - 8 \beta_{3} ) q^{53} + ( 826224 - 18 \beta_{1} - 1484 \beta_{2} + 1486 \beta_{3} ) q^{55} + ( -104328 + 81 \beta_{1} + 1188 \beta_{2} - 513 \beta_{3} ) q^{57} + ( 469612 - 56 \beta_{1} + 2156 \beta_{2} + 1428 \beta_{3} ) q^{59} + ( -475294 + 54 \beta_{1} + 2807 \beta_{2} + 1133 \beta_{3} ) q^{61} + ( -123930 - 729 \beta_{3} ) q^{63} + ( 1091736 + 9 \beta_{1} - 4000 \beta_{2} - 1533 \beta_{3} ) q^{65} + ( 1376372 + 336 \beta_{1} - 1876 \beta_{2} - 1476 \beta_{3} ) q^{67} + ( 76356 - 2052 \beta_{2} - 378 \beta_{3} ) q^{69} + ( 241924 + 516 \beta_{1} + 6740 \beta_{2} + 502 \beta_{3} ) q^{71} + ( 811190 + 446 \beta_{1} + 11002 \beta_{2} + 656 \beta_{3} ) q^{73} + ( 1073601 - 108 \beta_{1} - 4482 \beta_{2} + 1566 \beta_{3} ) q^{75} + ( -2244872 + 106 \beta_{1} + 18432 \beta_{2} - 766 \beta_{3} ) q^{77} + ( -1617954 - 168 \beta_{1} + 5756 \beta_{2} + 1051 \beta_{3} ) q^{79} + 531441 q^{81} + ( 4254900 - 439 \beta_{1} - 2906 \beta_{2} + 541 \beta_{3} ) q^{83} + ( 3030648 + 268 \beta_{1} - 12114 \beta_{2} + 3624 \beta_{3} ) q^{85} + ( -12528 - 162 \beta_{1} - 1647 \beta_{2} - 2052 \beta_{3} ) q^{87} + ( 3389954 - 610 \beta_{1} + 5680 \beta_{2} + 2450 \beta_{3} ) q^{89} + ( 1673076 - 1331 \beta_{1} - 17460 \beta_{2} - 6005 \beta_{3} ) q^{91} + ( -484326 + 594 \beta_{1} - 2268 \beta_{2} - 2997 \beta_{3} ) q^{93} + ( -5630976 - 1060 \beta_{1} + 21644 \beta_{2} - 4000 \beta_{3} ) q^{95} + ( 545130 - 550 \beta_{1} + 13700 \beta_{2} + 6970 \beta_{3} ) q^{97} + ( 702756 + 729 \beta_{1} - 4374 \beta_{2} + 729 \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 108q^{3} + 336q^{5} - 680q^{7} + 2916q^{9} + O(q^{10}) \) \( 4q + 108q^{3} + 336q^{5} - 680q^{7} + 2916q^{9} + 3856q^{11} + 10680q^{13} + 9072q^{15} + 26232q^{17} - 15456q^{19} - 18360q^{21} + 11312q^{23} + 159052q^{25} + 78732q^{27} - 1856q^{29} - 71752q^{31} + 104112q^{33} - 179040q^{35} - 180088q^{37} + 288360q^{39} + 11224q^{41} + 66688q^{43} + 244944q^{45} + 1334448q^{47} + 2401140q^{49} + 708264q^{51} - 864576q^{53} + 3304896q^{55} - 417312q^{57} + 1878448q^{59} - 1901176q^{61} - 495720q^{63} + 4366944q^{65} + 5505488q^{67} + 305424q^{69} + 967696q^{71} + 3244760q^{73} + 4294404q^{75} - 8979488q^{77} - 6471816q^{79} + 2125764q^{81} + 17019600q^{83} + 12122592q^{85} - 50112q^{87} + 13559816q^{89} + 6692304q^{91} - 1937304q^{93} - 22523904q^{95} + 2180520q^{97} + 2811024q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 620 x^{2} - 700 x + 83625\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( 16 \nu^{3} - 100 \nu^{2} + 680 \nu + 22600 \)\()/25\)
\(\beta_{2}\)\(=\)\((\)\( 16 \nu^{3} - 220 \nu^{2} - 5320 \nu + 59800 \)\()/25\)
\(\beta_{3}\)\(=\)\((\)\( 48 \nu^{3} - 1020 \nu^{2} - 14760 \nu + 291000 \)\()/25\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{3} - 6 \beta_{2} + 3 \beta_{1}\)\()/768\)
\(\nu^{2}\)\(=\)\((\)\(-25 \beta_{3} + 70 \beta_{2} + 5 \beta_{1} + 119040\)\()/384\)
\(\nu^{3}\)\(=\)\((\)\(-355 \beta_{3} + 1130 \beta_{2} + 1135 \beta_{1} + 403200\)\()/768\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−16.8500
21.8313
−17.7724
12.7912
0 27.0000 0 −333.320 0 −988.659 0 729.000 0
1.2 0 27.0000 0 −127.307 0 547.276 0 729.000 0
1.3 0 27.0000 0 282.264 0 1362.23 0 729.000 0
1.4 0 27.0000 0 514.363 0 −1600.84 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 384.8.a.t yes 4
4.b odd 2 1 384.8.a.p yes 4
8.b even 2 1 384.8.a.m 4
8.d odd 2 1 384.8.a.q yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
384.8.a.m 4 8.b even 2 1
384.8.a.p yes 4 4.b odd 2 1
384.8.a.q yes 4 8.d odd 2 1
384.8.a.t yes 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(384))\):

\( T_{5}^{4} - 336 T_{5}^{3} - 179328 T_{5}^{2} + 33072640 T_{5} + 6160819200 \)
\( T_{7}^{4} + 680 T_{7}^{3} - 2616456 T_{7}^{2} - 1091635168 T_{7} + \)\(11\!\cdots\!44\)\( \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( ( -27 + T )^{4} \)
$5$ \( 6160819200 + 33072640 T - 179328 T^{2} - 336 T^{3} + T^{4} \)
$7$ \( 1179914752144 - 1091635168 T - 2616456 T^{2} + 680 T^{3} + T^{4} \)
$11$ \( 616855133477120 + 92451285760 T - 47418144 T^{2} - 3856 T^{3} + T^{4} \)
$13$ \( -1135121051964912 + 1092466557728 T - 130456680 T^{2} - 10680 T^{3} + T^{4} \)
$17$ \( -85261472264688 + 456617575456 T - 40749672 T^{2} - 26232 T^{3} + T^{4} \)
$19$ \( 66184194227060736 - 15442631512064 T - 1652181504 T^{2} + 15456 T^{3} + T^{4} \)
$23$ \( 78506732047722752 + 19501261404416 T - 1649434656 T^{2} - 11312 T^{3} + T^{4} \)
$29$ \( 3510543429849657600 - 892236262302720 T - 18595712736 T^{2} + 1856 T^{3} + T^{4} \)
$31$ \( \)\(28\!\cdots\!16\)\( - 1414228573341792 T - 46853382216 T^{2} + 71752 T^{3} + T^{4} \)
$37$ \( \)\(11\!\cdots\!80\)\( - 45208903974156320 T - 367286474856 T^{2} + 180088 T^{3} + T^{4} \)
$41$ \( \)\(99\!\cdots\!16\)\( - 5527704361317984 T - 94782752040 T^{2} - 11224 T^{3} + T^{4} \)
$43$ \( -\)\(14\!\cdots\!28\)\( + 38694299846713344 T - 240423117696 T^{2} - 66688 T^{3} + T^{4} \)
$47$ \( -\)\(31\!\cdots\!48\)\( + 242095834182836480 T + 161444890080 T^{2} - 1334448 T^{3} + T^{4} \)
$53$ \( \)\(93\!\cdots\!16\)\( - 75129531842036736 T - 1858173310944 T^{2} + 864576 T^{3} + T^{4} \)
$59$ \( \)\(34\!\cdots\!96\)\( + 5922536324035566848 T - 5003969676960 T^{2} - 1878448 T^{3} + T^{4} \)
$61$ \( \)\(64\!\cdots\!76\)\( - 1369768940648072224 T - 3789284339304 T^{2} + 1901176 T^{3} + T^{4} \)
$67$ \( -\)\(14\!\cdots\!56\)\( + 21045834946226912000 T + 1396391412576 T^{2} - 5505488 T^{3} + T^{4} \)
$71$ \( \)\(27\!\cdots\!92\)\( + 11621312350171994880 T - 20031637873440 T^{2} - 967696 T^{3} + T^{4} \)
$73$ \( \)\(21\!\cdots\!28\)\( + 60876432342660625312 T - 30431014778280 T^{2} - 3244760 T^{3} + T^{4} \)
$79$ \( -\)\(53\!\cdots\!88\)\( - 33551667235350446432 T + 5100752087352 T^{2} + 6471816 T^{3} + T^{4} \)
$83$ \( \)\(84\!\cdots\!48\)\( - \)\(21\!\cdots\!64\)\( T + 99098563131360 T^{2} - 17019600 T^{3} + T^{4} \)
$89$ \( -\)\(39\!\cdots\!44\)\( + 8127212659654219744 T + 34822069903896 T^{2} - 13559816 T^{3} + T^{4} \)
$97$ \( \)\(25\!\cdots\!00\)\( - \)\(14\!\cdots\!00\)\( T - 169078534713000 T^{2} - 2180520 T^{3} + T^{4} \)
show more
show less